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1. Introduction

We discuss here the lower semicontinuity for integral functionals of the type

I[u, v] =

∫

G
F (x, u(x), v(x)) dx (1.1)

with respect to a sequence (uk, vk)k≥0 subjected to the constraints

(x, uk(x)) ∈ A, vk(x) ∈ Q(x, uk(x)) a.e. in G, k ∈ IN (1.2)

where G ⊂ IRν is a bounded open set and Q : A× IRm → 2IRN , A ⊂ IRν+n, is a given
multifunction.

A great deal of research was devoted to this subject for the topology of Lp−convergence
of (uk)k≥0 and weak Lq−convergence of (vk)k≥0. We only mention Cesari [9e] and for

the free case (i.e. Q(t, x) = IRN , (t, x) ∈ A) we refer to [2,5,7,8,9e,12,13,15,16,17,18,23]
where also a list of references can be found.

We are interested here in a result which involves a weaker topology; more precisely, it
should not require any additional convergence assumption on the differential elements of
the highest order when applied to the functionals of the calculus of variations. The reason
is that this kind of theorems fit in optimization problems where BV (not necessarily
continuous) solutions are expected, since the compactness results on BV do not involve
the weak convergence of the gradients, as it occurs in Sobolev’s spaces.

To this purpose we introduce here the mean value (mv) condition (see Section 2). Roughly
speaking a sequence (vk)k≥0 of summable functions satisfies (mv) provided for a.e.
t0 ∈ G

lim
h→0

lim
k→+∞

−
∫

B(t0,h)
[vk(t)− v0(t)] dt = 0.
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It is easy to see that (mv) is weaker than L1−convergence, but the main point is that
(mv) is the proper assumption for our setting. In fact (see Proposition 3.7) if (xk)k∈IN

is a sequence in W 1,1(G, IRn) which L1–converges to a BV function x0, then we get
that a subsequence of the gradients (Dxk)k≥0 satisfies (mv). Here Dx denotes the
“essential gradient” of the BV function x, i.e. the density of the absolutely continuous
part of the distributional derivative with respect to the Lebesgue measure.

The lower semicontinuity results we present here are obtained as a consequence of a closure
theorem for an orientor field of type (1.2) with respect to the convergence

uk L1–converges to u0 and (vk)k∈IN satisfies (mv). (1.3)

Our main lower semicontinuity theorem is the following (see Theorem 5.1)

Main result. Assume that A is closed and F is non negative.

Let (uk, vk)k≥0 be a sequence of summable functions such that

i) (t, uk(t)) ∈ A, vk(t) ∈ Q(t, uk(t)) a.e. in G, k ∈ IN;

ii) uk L1–converges to u0 and (vk)k∈IN satisfies (mv).

iii) Suppose that the multifunction

Q̃0(t, x) = {(y0, y) : y0 ≥ F (t, x, y), y ∈ Q(t, x)}

satisfies property (Q) and (wF̃) at the point (t0, u0(t0)), for a.e. t0 ∈ G.
Then (t, u0(t)) ∈ A, v0(t) ∈ Q(t, u0(t)) a.e. in G and

lim inf
k→+∞

I[uk, vk] ≥ I[u0, v0].

Property (Q), introduced by Cesari in 1966 (see [9e]), is an intermediate condition be-
tween upper semicontinuity and Kuratowski property. As we recall in Section 6, it is a
seminormality assumption on the integrand and hence implies that F (t, x, ·) is convex.

Condition (wF̃) acts on the second variable, it was introduced in [11c] as a variant of

Cesari’s Lipschitz condition (F). Actually, we prove here (see Section 6) that (wF̃) is
really a weakening of assumption (F).

Some noteworthy particular cases of our functionals are the following

I[x] =

∫

G
F (t, (Ux)(t), (Lx)(t)) dt (1.4)

where U and L are given operators not necessarily linear. For example

Lx = Dx, or Lx = div x or Lx = D[Ψ(·, x(·))]

with Ψ a Lipschitzian function.

For the details and further examples we refer to Section 7.
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We wish to recall that the lower semicontinuity for functionals of type (1.4), with respect
to the weak topology in Sobolev’s spaces, was studied by E.Rothe [23], G.Fichera [18],
Cesari [9c,d] and Cesari-D.E.Cowles [12].

A particular class of integrals to which our theory apply, is the following

I[u] =

∫

G
|< a(t), D[Ψ(t, u(t))] > +Φ(t, u(t))| dt

where a is continuous, Ψ is Lipschitzian and Φ is a Carathéodory function such that
|Φ(t, x)| ≤ φ(t), with φ summable.

They take their source from problems of conservation laws. In order to prove existence
results for the relaxed functional on BV, Cesari [5d] adopted a suitable tranformation
which allows to reduce the functional I to standard integrals of the calculus of variations.

Now, in force of the present formulation, where abstract operators are involved, we can
deal with functional I directly with remarkable advantages both in the assumptions and
in the proofs.

Note that also functionals of the type

I[u] =

∫

G
[< a(t), D[Ψ(t, u(t))] > +Φ(t, u(t))]+ dt

can be handled in the same way.

Finally, we wish to mention that our research is partially motivated by a study of a
variational model for the plastic deformation of beams and plates, where functionals of
type (1.4) and BV solutions are involved ([11e,14,3a,b,4].)

2. Preliminaries

Let ν, m and p be given integers. Let G ⊂ IRν be a bounded open set.

According to standard notations, we denote by L1(G, IRm) the space of summable

functions x : G → IRm, by W p,1(G, IRm) the Sobolev space of the functions x ∈
L1(G, IRm) whose distributional derivatives up to the order p are summable functions
and by BV (G, IRm) the space of the functions x ∈ L1(G, IRm) which are of bounded
variation in the sense of Cesari [9a].

For m = 1 we will briefly write L1, W
p,1 and BV, respectively.

A BV function x admits an “essential gradient” [26], i.e. has a.e. partial derivatives ∂xi

∂tj

computed by usual incremental quotients disregarding the values taken by x on a suitable
null set. Moreover the “essential gradient” coincides with the density of the absolutely
continuous part of the distributional derivative with respect to the Lebesgue measure. We

denote by Dx =
(
∂xi

∂tj
, i = 1, ..., m, j = 1, ..., ν

)
and call Dx the gradient of x.

Given a point t0 ∈ G and a constant h > 0, we put

qh(t0) = [t0 − h, t0 + h] = {t ∈ IRν : t0j − h ≤ t0j ≤ t0j + h, j = 1, ..., ν}



154 P. Brandi, A. Salvadori / On lower semicontinuity in BV setting

in the case the point t0 is clearly determined, we briefly write qh(t0) = qh.

Moreover, we denote by |qh| the area of the interval.

Given a function x ∈ L1(G, IRm), for every t0 ∈ G and h > 0 sufficiently small, we
put

−
∫

qh

x(t) dt = |qh|−1

∫

qh

x(t) dt.

Given a function x0 : R0 → IR, where R0 is a closed interval, for every subinterval
R = [a, b] = {t ∈ IRν : aj ≤ tj ≤ bj , j = 1, ..., ν}, we consider the difference of order ν
relative to the 2ν vertices of R, say

∆Rx
0 = x0(b)− x0(a) if ν = 1

∆Rx
0 = x0(b1, b2)− x0(b1, a2)− x0(a1, b2) + x0(a1, a2) if ν = 2

and so on.

The function x0 is said to be of bounded variation in the sense of Vitali (VBV) [25]

provided the interval function ∆Rx
0 has bounded variation. A VBV function has a.e.

superficial derivatives, say D∗x0(t0) = lim
h→0

(2h)−ν∆qhx
0(t0) and D∗x0 is a summable

function.

The function x0 is said to be absolutely continuous in the sense of Vitali (VAC) [25]

if the interval function ∆Rx
0 is absolutely continuous; in this case we have ∆Rx

0 =∫
RD∗x0(t) dt.

3. The mean-value condition

We introduce the following definition for a sequence (vk)k≥0 in L1(G, IRm).

Definition 3.1. We say that (vk)k≥0 satisfies the mean value (mv) condition at a
point t0 ∈ G provided

(mv) there exists a null set H = H(t0) ⊂ IR+ such that, for every number ε > 0
a constant 0 < h0 = h0(t0, ε) can be determined in such a way that, for every
h ∈]0, h0[−H, an integer k0 = k0(t0, ε, h) exists such that for every k ≥ k0

∣∣∣∣ −
∫

qh

vk(t) dt− v0(t0)

∣∣∣∣ < ε.

We say that (vk)k≥0 satisfies (mv) condition on G if (mv) holds at a.e. point t0 ∈ G.

Let us observe that (mv) can be written:

(mv) there exists a null set H = H(t0) ⊂ IR+ such that for i = 1, ..., m

lim
h→0,h/∈H

lim inf
k→∞

−
∫

qh

vik(t)dt = lim
h→0,h/∈H

lim sup
k→∞

−
∫

qh

vik(t)dt = vi0(t0).
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The following criterions for (mv) condition can be easily proved.

Proposition 3.2. Let (vk)k≥0 and (wk)k≥0 be two sequences which satisfy (mv) at
t0 ∈ G, then for every α, β ∈ IR the sequence (αvk + βwk)k≥0 satisfies (mv) at the
same point.

Proposition 3.3. Let (vk)k≥0 be a sequence in L1(G, IRm) and assume that

i) for a.e. t0 ∈ G there exists a constant h0 = h0(t0) > 0 such that for a.e. h ∈]0, h0[

lim
k→+∞

∫

qh

vk(t) dt =

∫

qh

v0(t) dt.

Then (vk)k≥0 satisfies (mv) on G.

As an immediate consequence of Proposition 3.3 we also have

Corollary 3.4. If vk ⇀ v0 weakly in L1(G, IRm), then the sequence (vk)k≥0 satisfies
(mv) on G.

Remark 3.5. On the converse, note that (mv) condition does not imply condition i)
in Proposition 3.3 and, a fortiori, weak convergence in L1(G, IRm). To this purpose, let

us consider a sequence (uk)k∈IN in W 1,1(G, IRm) which L1–converges to a function
u0 ∈ BV (G, IRm) and let vk = Duk, k ≥ 0, be the sequence of the gradients. Of
course (Duk)k≥0 does not satisfy condition i) since, otherwise the limit function would

still belong to W 1,1(G, IRm). But, by virtue of Proposition 3.7 below, there exists a
subsequence of the gradients which satisfies (mv) on G.

Still as a consequence of Proposition 3.3 we have

Corollary 3.6. Let (uk)k≥0 be a sequence which converges in L1(G, IRm) and let
Φ : A→ IR be a Carathéodory function such that

|Φ(t, uk(t))| ≤ φ(t), a.e. in G, k ∈ IN

with φ ∈ L1 .

Then the sequence ( Φ(·, uk(·)) )k≥0 satisfies (mv) G.

Moreover, note that Lemma 2 and 6 in [11d] can be written in terms of (mv) condition
as it follows.

Proposition 3.7. Let (uk)k∈IN be a sequence in W 1,1(G, IRn) which L1–converges
to a function u0 ∈ BV (G, IRn).

Then there exists a subsequence of the gradients (Dusk)k≥0 which satisfies (mv) on G.

Proposition 3.8. Let (u0
k)k∈IN be a sequence of VAC functions which converges

pointwise a.e. in R0 to a VBV function u0.

Then the superficial derivatives (D∗uk)k≥0 satisfies (mv) on R0.
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Remark 3.9. Note that for ν = 1 and R0 = [a, b] the concepts of VAC and VBV

reduce to W 1,1 and BV respectively. Thus, by virtue of Proposition 3.8 the result of
Proposition 3.7 improves as follows:

if uk : [a, b]→ IRm, k ∈ IN, is a sequence of curves in W 1,1 which converges pointwise

a.e. to a curve u0 ∈ BV, then the derivatives (u′k)k≥0 satisfies (mv) on [a, b].

As an application of Proposition 3.7 we can also prove the following criterion.

Proposition 3.10. Let (uk)k∈IN be a sequence in W 1,1(G, IRn) which L1–converges

to a function u0 ∈ BV (G, IRn).

Assume that A ⊂ IRν+n is a set whose projection in the t-space IRν contains G and
Ψ : A→ IRm is a Lipschitzian function.

Then there exists a subsequence of the gradients

( D[Ψ(·, usk(·))] )k≥0

which satisfies (mv) on G.

Proof. Note that the sequence Ψk : G→ IRm defined by Ψk(t) = Ψ(t, uk(t)), k ≥ 0,
satisfies the assumptions of Proposition 3.7.

4. A closure result

Let A ⊂ IRν+n, with n ∈ IN, be a set whose projection in the t-space IRν contains G.

Let Q : A → 2IRm

be a multifunction with nonempty values and let us consider the
multivalued equation

(t, u(t)) ∈ A, v(t) ∈ Q(t, u(t)), a.e. in G. (4.1)

We denote by SQ the set of the measurable solutions of (4.1) and also use the notation

S1
Q = SQ ∩L1(G, IRn+m).

We recall that multifunction Q is said to satisfy Cesari’s property (Q) at a point (t0, x0) ∈
A, provided [9e]

Q(t0, x0) = ∩
σ>0

cl co {∪ Q(t, x), |t− t0| ≤ σ, |x− x0| ≤ σ}. (Q)

Note that if (Q) holds, then the set Q(t0, x0) is necessarely closed and convex.

Moreover, in [11c] (see also [11d]) the following condition on multifunction Q was intro-
duced.

Let S = (uk, vk)k∈IN be a given sequence in S1
Q, we say that Q satisfies condition (wF)

at a point (t0, x0) ∈ A, with respect to the sequence S, provided



P. Brandi, A. Salvadori / On lower semicontinuity in BV setting 157

(wF) given any number ε > 0, there exist two numbers 0 < σ = σ(t0, x0,S, ε) ≤ ε
and 0 < h0 = h0(t0, x0,S, ε) ≤ σ such that for a.e. 0 < h < h0 there exist a
subsequence (sk)k∈IN and a sequence (usk , wsk)k∈IN in SQ with the property

that for every k ∈ IN

|usk(t)− x0| ≤ σ a.e. in qh and

∣∣∣∣ −
∫

qh

[wsk(t)− vsk(t)] dt

∣∣∣∣ ≤ ε.

Besides equation (4.1), also the following type of multivalued equations are involved in
problems of the calculus of variations (see [9e])

(t, u(t)) ∈ A, (v0(t), v(t)) ∈ Q̃(t, u(t)), a.e. in G. (4.1̃)

where Q̃ : A→ 2IRm+1
has the following property:

if (y0, y) ∈ Q̃(t, x) and y′ > y0, then (y′, y) ∈ Q̃(t, x).

Let S
Q̃

denote the set of the solutions of (4.1̃) and again we put S1

Q̃
= S

Q̃
∩L1(G,

IRn+1+m).

Note that condition (wF) modifies as follows (see [11c,d]).

Given a sequence S = (uk, v
0
k, vk)k∈IN in S1

Q̃
, we shall say that Q̃ satisfies condition

(wF̃) at a point (t0, x0) ∈ A, with respect to the sequence S, provided

(wF̃) given any number ε > 0, there exist two numbers 0 < σ = σ(t0, x0,S, ε) ≤ ε
and 0 < h0 = h0(t0, x0,S, ε) ≤ σ such that for a.e. 0 < h < h0 there exist a

subsequence (sk)k∈IN and a sequence (usk , w
0
sk
, wsk)k∈IN in S

Q̃
with the property

that for every k ∈ IN

|usk(t)− x0| ≤ σ a.e. in qh and

∣∣∣∣ −
∫

qh

[wsk(t)− vsk(t)] dt

∣∣∣∣ ≤ ε −
∫

qh

[w0
sk

(t)− v0
sk

(t)] dt ≤ ε.

We are ready to state the following closure result which can be proved by the same
technique adopted for Theorem 3 in [11d].

Theorem 4.1. (A closure result). Assume that A is closed.

Let Q̃ : A→ 2IRm+1

be a multifunction with nonempty values and let (uk, v
0
k, vk)k≥0 be

a given sequence.

Suppose that

i) (uk, v
0
k, vk) ∈ S1

Q̃
, k ∈ IN;

ii) uk L1 –converges to u0;
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iii) (v0
k, vk)k≥0 satisfies (mv) on G;

iv) for a.e. t0 ∈ G, multifunction Q̃ has properties (Q) and (wF̃), with respect to

the sequence (uk, v
0
k, vk)k∈IN, at the point (t0, u0(t0))

v) if (y0, y) ∈ Q̃(t, x) and y′ > y0, then (y′, y) ∈ Q̃(t, x).

Then the limit function (u0, v
0
0, v0) belongs to S1

Q̃
.

Remark 4.2. Theorem 4.1 also holds in the case A = G×A0 with A0 ⊂ IRn closed
set.

Note that, in the particular case that A = G× A0 and multifunction Q̃ : G→ 2IRm+1

depends only on variable t, assumption (wF̃) is trivially satisfied.

Remark 4.3. As a particular case of Theorem 4.1 a closure result can be proved

for equation (4.1), where assumption v) is obviously omitted and condition (wF̃) is
replaced by (wF).

Again, in the particular case that A = G×A0 and multifunction Q : G→ IRm depends
only on variable t, assumption (wF) is trivially satisfied.

Moreover, (wF) holds in the case Q(t, x) = IRn, (t, x) ∈ A = G× A0.

For these and other conditions assuring assumptions (wF) and (wF̃) we refer to [11c,d]
and Section 6.

5. Application to the lower semicontinuity of integral functionals

Let M = {(t, x, y) : y ∈ Q(t, x), (t, x) ∈ A} denote the graph of multifunction Q.

We consider a function F : M → IR such that, for every (u, v) ∈ S1
Q, F (·, u(·), v(·))

is measurable and F−(·, u(·), v(·)) ∈ L1.

Let I : S1
Q −→ IR∪(+∞) be the functional defined by

I(u, v) =

∫

G
F (t, u(t), v(t)) dt if F+(·, u(·), v(·)) ∈ L1

I(u, v) = +∞ elsewhere.

As an application of closure Theorem 4.1 we shall prove here some lower semicontinuity
theorems for the functional I.

To this end, let us consider the multifunction Q̃0 : A→ 2IRm+1
defined by

Q̃0(t, x) = {(y0, y) : y0 ≥ F (t, x, y), y ∈ Q(t, x)}. (5.1)
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Theorem 5.1. (A lower semicontinuity result). Assume that A is closed.

Let (uk, vk)k∈IN be a sequence in S1
Q and let (u0, v0) be a function in L1(G, IRn+m)

such that

i) uk L1 –converges to u0;

ii) (vk)k≥0 satisfies (mv) on G.

Suppose that

iii) a function λ ∈ L1 exists such that Fk(t) = F (t, uk(t), vk(t)) ≥ λ(t), a.e. in
G, k ≥ 0;

iv) for a.e. t0 ∈ G multifunction Q̃0 has properties (Q) and (wF̃), with respect to
the sequence (uk, Fk, vk)k∈IN, at the point (t0, u(t0)).

Then the couple (u0, v0) lies in S1
Q and we have

lim inf
k→+∞

∫

G
F (t, uk(t), vk(t)) dt ≥

∫

G
F (t, u0(t), v0(t)) dt.

Proof. Note that it is not restrictive to assume that lim inf
k→+∞

I(uk, vk) = lim
k→+∞

I(uk, vk) <

+∞ and sup
k∈IN

I(uk, vk) = W < +∞.

Thus, the functions Fk(·) = F (·, uk(·), vk(·)), k ∈ IN are summable.

Fixed an interval R0 = [a0, b0] ⊃ G, let us extend Fk to R0 by putting Fk(t) = 0, t ∈
R0 −G, k ∈ IN.

Then let φk : R0 → IR, k ∈ IN, be the sequence defined by

φk(t) =

∫

[a0,t]
Fk(τ) dτ.

Observe that (φk)k∈IN is a sequence of VAC functions which have equi-bounded variation

in the sense of Vitali: in fact, for every finite partition D = [R] of the interval R0, we
have

∑

R∈D
|∆R φk| =

∑

R∈D

∣∣∣∣
∫

R
φk(t) dt

∣∣∣∣ ≤
∫

R0

φk(t) dt+ 2

∫

R0

|λ(t)| dt ≤ W + 2

∫

G
|λ(t)| dt.

Thus, by virtue of Helly’s theorem ([20], see also [11c], proof of Theorem 1”), a function
φ0 ∈ VBV exists such that (for a suitable subsequence)

φk −→ φ0 pointwise in R0.

Taking into account of Proposition 3.8, we can deduce that the sequence of superficial
derivatives

(D∗φk)k∈IN satisfies (mv) on G. (5.2)

It is easy to see that
D∗φk(t) = Fk(t) a.e. in G, k ∈ IN (5.3)
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and moreover
(uk, Fk, vk) ∈ S1

Q̃0
, k ∈ IN. (5.4)

From (5.2)− (5.4) and the assumptions i), ii) and iv), by virtue of Theorem 4.1, we get

that (u0,D∗φ0, v0) ∈ S1

Q̃0
or equivalently

(u0, v0) ∈ S1
Q and D∗φ0(t) ≥ F (t, u0(t), v0(t)) a.e. in G. (5.5)

From assumption iii), we deduce that φ0(t) ≥ λ̂(t), a.e. in R0, where λ̂(t) = λ(t) on

G, and λ̂(t) = 0 on R0 −G.
Let us consider the function Φ0(t) = φ0(t) −

∫
[a0,t]

λ̂(τ) dτ, t ∈ R0; since the interval

function ∆RΦ0 is additive and non-negative, we have ([22], Theorem III.1.28)

∆R0Φ0 = φ0(b)−
∫

R0

λ̂(t) dt ≥
∫

R0

D∗Φ0(t) dt ≥
∫

G
D∗φ0(t) dt−

∫

G
λ(t) dt.

Finally, from (5.5), we deduce that

I(u0, v0) ≤
∫

G
D∗φ0(t) dt ≤ φ0(b) = lim

k→+∞
φk(b) = lim

k→+∞
I(uk, vk)

which concludes the proof.

We wish to remark that, in the case both multifunction Q and integrand F (and

hence multifunction Q̃0) do not depend on variable x, then Theorem 5.1 reduces to the
following result.

Theorem 5.2. (A lower semicontinuity result). Assume that A = G× A0 with A0

closed.

Let (vk)k∈IN be a sequence in S1
Q and let v0 be a function in L1(G, IRm).

Suppose that

i) (vk)k≥0 satisfies (mv) on G.

ii) a function λ ∈ L1 exists such that F (t, vk(t)) ≥ λ(t), a.e. in G, k ≥ 0;

iii) multifunction Q̃0 has property (Q) a.e. in G.

Then v0 ∈ S1
Q and

lim inf
k→+∞

∫

G
F (t, vk(t)) dt ≥

∫

G
F (t, v0(t)) dt.

Note that assumptions (Q) in Theorems 5.1 and 5.2 implies that multifunction Q is
convex valued and the integrand F is convex in the last variable. For further remarks
on the assumptions on the integrand, see Section 6.
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Theorems 4.1 and 5.1 represent an extension of the closure and lower semicontinuity
results in [11a,b,c,d] which are given in the particular case vk = Duk, k ≥ 0. To point
out the interest of the present research we refer to Sections 7 and 8 where various new
applications are presented.

Moreover, we wish to mention that the present paper is inspired by the results given in
[9c,d,12] for control problems. Our theorems can be considered as a translation of those
results in BV setting. Note that here a weaker topology is taken into consideration; more
precisely, in [9c,d,12] weak-L1 convergence of the differential elements is adopted, whereas
the present theorems do not require any convergence assumptions on the differential ele-
ments of the highest order (see Section 7 for details).

6. Some remarks on assumptions (Q) and (wF̃)

In order to illustrate the operativity of our semicontinuity result, we shall present some

conditions on the integrand F which assure that the assumptions on multifunction Q̃0

are satisfied. Let us start by recalling some well-known results (see [9e] for details).

Property (Q) is intermediate between Kuratowski condition (K) and upper semiconti-
nuity. As we already observed in [11b,c], assumption (Q) can not be replaced by weaker
condition (K) in the present setting.

We recall that if Q̃0 satisfies property (Q) at the point (t0, x0), then Q̃0(t0, x0) is a
closed and convex set.

Let us assume now that Q(t, x) = IRn, (t, x) ∈ A, thus Q̃0(t, x) = epi F (t, x, ·), (t, x) ∈
A. In this case Q̃0(t0, x0) is closed and convex iff F (t0, x0, ·) is lower semicontinuous
and convex.

Moreover, the following result holds [9e].

Proposition 6.1. Multifunction Q̃0(t, x) = epi F (t, x, ·), (t, x) ∈ A, satisfies property
(Q) at the point (t0, x0) ∈ A iff F is seminormal at the same point, i.e.

(s/n) for every ε > 0 and y0 ∈ IRm, a constant σ = σ(t0, x0, y0, ε) > 0 and an affine
function z : IRm → IR exist such that

F (t0, x0, y0) < z(y0) + ε

F (t, x, y) ≥ z(y), for every y ∈ IRm and (t, x) ∈ A with |t−t0| < σ, |x−x0| < σ.

For further conditions assuring property (Q) we refer to [9e], we only recall here the
following criteria for seminormality (see [9b, 28, 27]).

For more recent results about seminormality, see [2].

Proposition 6.2. Assume that F : A × IRm → IR+
0 is continuous and F (t, x, ·)

is convex, (t, x) ∈ A. Given a point (t0, x0) ∈ A, if there exists an affine function
w : IRm → IR such that

F (t0, x0, y) ≥ w(y), y ∈ IRm and lim
|y|→+∞

[F (t0, x0, y)− w(y)] = +∞

then F is seminormal at the point (t0, x0).
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Proposition 6.3. Assume that F : A × IRm → IR+
0 is continuous and F (t, x, ·) is

convex, (t, x) ∈ A. Then the function Fε : A× IRm → IR+
0 , ε > 0 defined by

Fε(t, x, y) = F (t, x, y) + ε|y|

is seminormal at every point (t0, x0) ∈ A.

Proof. Note that Fε satisfies the assumptions of Proposition 6.2 with z(y) = 0, y ∈ IRm.

Condition (wF̃) acts on the variable x; indeed, as we already observed, it is trivial

provided Q̃0 does not depend on x.

It was introduced in [11d] as a weakening of conditions (F ′i ), i = 1, . . . , 3 in [11c]. They

can be considered as variants of Cesari’s Lipschitz-type property (F ) ([9e]) which was
proposed in Cesari-Suryanarayana [13] as an important tool in optimal control theory.
The Authors also showed that these assumptions are rather natural, easy to verify and
actually satisfied in many applications. See also Cesari-Angell [10].

In what follows we assume that A = G × A0, with A0 closed, and Q : G → 2IRn

.

Moreover, let S = (uk, vk)k∈IN be a sequence in S1
Q and let u0 ∈ L1(G, IRn) be such

that uk L1–converges to u0.

The main consequence of condition (F) is the following result (see [13a])

Proposition 6.4. Suppose that F satisfies conditions

(C) for every ε > 0 a compact set Kε ⊂ G exists such that meas (G−Kε) < ε, and
F/Kε×A0×IRm is continuous;

(F) for a.e. t ∈ G, every u1, u2 ∈ A0 and every k ∈ IN,

|F (t, u1, vk(t))− F (t, u2, vk(t))| ≤ C φ(|u1 − u2|)

where C > 0 is a constant and φ : IR+
0 → IR+

0 is a non decreasing function such

that φ(0+) = 0, φ(ζ) ≤ c|ζ|, c ≥ 0, for all ζ ≥ ζ0 ≥ 0.

Then

lim
k→+∞

∫

G
|F (t, uk(t), vk(t))− F (t, u0(t), vk(t))| dt = 0. (D)

We called our condition (wF̃) = weak (F) since we thought that it could be implied by
assumption (F) even if we were not able to prove this result. Now we can finally justify
this terminology (see Propositions 6.5 and 6.7 below).

Proposition 6.5. If F satisfies conditions (C) and (F), then

(R) for every ε > 0, every compact set K ⊂ G with meas (G − K) < ε and a.e.
t0 ∈ K

lim sup
h→0

lim sup
k→+∞

|qh|−1

∫

qh−K
[F (t, u0(t0), vk(t))− F (t, uk(t), vk(t))] dt ≤ 0.
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Proof. By virtue of Proposition 6.4

δk(·) = F (·, u0(·), vk(·))− F (·, uk(·), vk(·)) −→ 0 in L1

then we deduce that (see also Proposition 3.3), for a.e. t0 ∈ G

lim
h→0

lim
k→+∞

−
∫

qh

|δk(t)| dt = 0. (6.1)

Let ε > 0 be fixed and let K ⊂ G be a compact set with meas (G−K) < ε.

By virtue of well-known density results [19], for a.e. t0 ∈ K

lim
h→0
−
∫

qh

|u0(t)− u0(t0)| dt = 0 lim
h→0

meas (qh −K)

|qh|
= 0. (6.2)

Let t0 ∈ K be fixed in such a way that assumption (F) and (6.2) hold.

Denoted by E = {t ∈ G : |u0(t0)− u0(t)| ≥ ζ0}, from (F) we have

|qh|−1

∫

qh−K
[F (t, u0(t0), vk(t))− F (t, u0(t), vk(t))] dt ≤

≤ C

|qh|

∫

qh−K
φ(|u0(t0)− u0(t)|) dt ≤

≤ Cc|qh|

∫

(qh−K)∩E
|u0(t0)− u0(t)| dt+

C

|qh|

∫

(qh−K)−E
φ(ζ0) ≤

≤Cc−
∫

qh

|u0(t0)− u0(t)| dt+ Cφ(ζ0)
meas (qh −K)

|qh|

and hence, from (6.2) we deduce

lim sup
h→0

lim sup
k→+∞

|qh|−1

∫

qh−K
[F (t, u0(t0), vk(t))− F (t, uk(t), vk(t))] dt ≤ 0. (6.3)

The assertion is an immediate consequence of (6.1) and (6.3).

Remark 6.6. Let us consider the following weakening of condition (R)

(wR) for every ε, % > 0, every compact set K ⊂ G with meas (G − K) < % and

a.e. t0 ∈ K, there is a constant 0 < h′ = h′(ε, %,K, t0, u0(t0),S) such that for

a.e. 0 < h < h′ a subsequence (sk)k∈IN exists with the property that

|qh|−1

∫

qh−K
[F (t, u0(t0), vsk(t))− F (t, usk(t), vsk(t))] dt ≤ ε.

Let us present now a criterion for (wF̃).
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Proposition 6.7. If F satisfies condition (wR), then Q̃0 satisfies condition (wF̃),
with respect to S, at (t0, u0(t0)) for a.e. t0 ∈ G.

Proof. From the assumption uk L1–converges to u0, we deduce that there is a subse-
quence, say still (k), such that uk → u0 a.e. in G.

Then, by virtue of Egoroff’s and Lusin’s theorems, for every ε > 0, a compact set Kε

exists such that meas (G−Kε) < ε and the following conditions hold

u0/Kε is continuous (6.4)

uk → u0 uniformly on Kε. (6.5)

Let ε > 0 be fixed.

We consider the sequence εm = ε
2m , m ∈ IN. Let Km denote the compact set corre-

sponding to εm and let Nm ⊂ Km be the null subset of the points t0 to which (wR)
does not apply; note that N = ∪

m
Nm ∪(∩

m
(G−Km)) is a null set.

Let t0 ∈ G−N be fixed.

Then there exists m = m(t0) ∈ IN such that t0 ∈ Km − Nm. From (6.4) and (6.5)

we deduce that a constant h = h(ε, t0, u0) > 0 and an integer k = k(ε, (uk)k≥0) exist

such that for every 0 < h < h0 and every k > k, if t ∈ Km ∩ qh

|uk(t)− u0(t0)| < |uk(t)− u0(t)|+ |u0(t)− u0(t0)| < εm + εm <
ε

2
+
ε

2
= ε. (6.6)

Moreover, let 0 < h′ = h′(ε, t0, u0(t0),S) ≤ ε be a constant such that (see Remark

6.6) for a.e. 0 < h < min(h, h′) a subsequence (sk)k∈IN exists with the property that

sk ≥ k, k ∈ IN, and

|qh|−1

∫

qh−Km
[F (t, u0(t0), vsk(t))− F (t, usk(t), vsk(t))] dt ≤ εm < ε (6.7).

Now, let us consider the sequence (usk , w
0
sk
, wsk)k∈IN defined by

usk =

{
u0(t0) t ∈ qh −Km
usk(t) t ∈ qh ∩Km

wsk(t) = vsk(t) w0
sk

(t) = F (t, usk(t), vsk(t)) t ∈ G.
Of course the sequence (usk , w

0
sk
, wsk)k∈IN lies in S

Q̃0
and moreover, from (6.6) and

(6.7), we get
|usk(t)− u0(t0)| ≤ ε t ∈ qh

−
∫

qh

[w0
sk

(t)− f(t, usk(t), vsk(t))] dt =

= |qh|−1

∫

qh−Km
[F (t, u0(t0), vsk(t))− F (t, usk(t), vsk(t))] dt ≤ ε

which proves the assertion.
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Let us prove another sufficient condition for (R).

Proposition 6.8. If F satisfies the condition

(F′′) two functions Φ : A0 → IR and ψ ∈ L1 exist such that Φ(uk) converges to
Φ(u0) in L1 and for a.e. t0 ∈ G a constant ρ = ρ(t0, u0(t0),S) > 0 exists such
that for a.e. t ∈ G with |t− t0| < ρ and k ∈ IN we have

|F (t, u0(t0), vk(t))− F (t, uk(t), vk(t))| ≤ |Φ(u0(t0))− Φ(uk(t))|+ |ψ(t0)− ψ(t)|,

then F satisfies condition (R).

Proof. Observe that, by virtue of well-known density results [19], for a.e. t0 ∈ G we
have

lim
h→0
−
∫

qh

|ψ(t0)− ψ(t)| dt = 0, lim
h→0
−
∫

qh

|Φ(u0(t0))− Φ(u0(t))| dt = 0 (6.8)

and lim
h→0

lim
k→∞

−
∫

qh

|Φ(u0(t))− Φ(uk(t))| dt = 0.

Let t0 ∈ G be fixed in such a way that (6.8) and (F′′) are satisfied, then

−
∫

qh

[F (t, u0(t0), vk(t))− F (t, uk(t), vk(t))] dt ≤

≤−
∫

qh

|Φ(u0(t0))− Φ(u0(t))| dt+−
∫

qh

|Φ(u0(t))− Φ(uk(t))| dt+−
∫

qh

|ψ(t0)− ψ(t)| dt

and the assertion follows by virtue of (6.8).

Remark 6.9. Note that, by virtue of Propositions 6.5 and 6.8, Proposition 6.7 applies
to integrands of the type

1) F (t, ·, y) Lipschitzian, t ∈ G, y ∈ IRm;

2) F (t, x, y) = f(t, x, y)+F0(t, y) with f, F0 Carathéodory and f satisfying assump-
tion (F);

3) F (t, x, y) = f(t, x, y)+F0(t, y) with F0 Carathéodory and f satisfying assumption

(F′′);

4) F (t, x, y) = |f(t, x, y) + F0(t, y)| with F0 and f as above.

Moreover it is trivially satisfied in the case

5) F is bounded.

In other words, the multifunction Q̃0 associated to any integrands of these classes satisfies

condition (wF̃).

Finally, from Theorem 5.1 and Propositions 6.1, 6.3 and 6.7, the following lower semicon-
tinuity result can be deduced.
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Theorem 6.10. (A lower semicontinuity result) Assume that A0 ⊂ IRn is closed. Let

S = (uk, vk)k≥0 be a sequence in L1(IRn+m) such that

i) uk ∈ A0, a.e. in G, k ∈ IN;

ii) uk L1–converges to u0;

iii) (vk)k≥0 is L1–equibounded and satisfies (mv).

Suppose that F : G × A0 × IRm → IR+
0 is continuous, satisfies condition (wR) and

F (x, y, ·) is convex, x ∈ A0 a.e. t ∈ G.
Then u0(t) ∈ A0 a.e. in G and

lim inf
k→+∞

∫

G
F (t, uk(t), vk(t)) dt ≥

∫

G
F (t, u0(t), v0(t)) dt.

Proof. For every ε > 0, let Fε : G× A0 × IRm → IR+
0 be the integrand defined by

Fε(t, x, y) = F (t, x, y) + ε|y|.

By virtue of Propositions 6.3, 6.1 and 6.7, Fε satisfies all the hypotheses of Theorem
5.1, thus

lim inf
k→+∞

∫

G
Fε(t, uk(t), vk(t)) dt ≥

∫

G
Fε(t, u0(t), v0(t)) dt ≥

∫

G
F (t, u0(t), v0(t)) dt. (6.9)

Now
∫

G
Fε(t, uk(t), vk(t)) dt =

∫

G
F (t, uk(t), vk(t)) dt+ ε

∫

G
|vk(t)| dt, k ∈ IN

and, since (vk)k∈IN is equibounded in L1(G, IRm), the assertion is an immediate con-

sequence of (6.9).

Remark 6.11. We wish to point out that if F : G × A0 × IRm → IR+
0 satisfies the

assumptions of Theorem 8.1, then also the integrand Fa : G× A0 × IRm → IR+
0 defined

by
Fa(t, x, y) = F (t, x, 〈a(t), y〉)

with a : G→ IRm continuous, satisfies the same assumptions.

7. Some remarkable particular cases

We wish to point out that the following formulations can be framed as particular cases of
the present setting. Let us consider a multiple integral of the type

I[x] =

∫

G
F (t, (Ux)(t), (Lx)(t)) dt (7.1)
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subjected to the constraints

(t, (Ux)(t)) ∈ A, (Lx)(t) ∈ Q(t, (Ux)(t)) a.e. in G (7.2)

where U and L are given operators and Q is a given multifunction.

Note that (7.1)− (7.2) represents a rather abstract version of integral functional of the
calculus of variations with constraints on the differential elements.

We recall that [9e] every optimal control problem can be reduced to a suitable problem
of the calculus of variations with constraints on the gradient. By virtue of this remark,
(1.1)− (1.2) contains also the following formulation:

a cost functional

I[x, y] =

∫

G
f0(t, (Ux)(t), y(t)) dt (7.3)

with state equation

(Lx)(t) = f(t, (Ux)(t), y(t)) a.e. in G (7.4)

and possible constraints of the form

(t, (Ux)(t)) ∈ A , (Lx)(t) ∈ Q(t, (Ux)(t)) a.e. in G. (7.5)

Note that operators U appearing in the definition of I and in the constraints need
not be the same, but may be thought of as different components of the same operator.
Analogous for operator L.
Optimal control problems of type (7.3)− (7.5) were studied by Cesari [9c,d] and Cesari-
Cowles [12], who also gave closure and lower closure results with respect to the weak
topology in Sobolev’s spaces.

Forthermore, lower semicontinuity theorems for integral functionals of type (7.1) had
already been proved by Rothe [23] and Fichera [18], again in the same setting.

The aim of the present paper is to study the lower semicontinuity in BV setting and, as we
shall show in what follows, we are able to prove the lower semicontinuity of (7.1)− (7.2)
(and hence (7.3) − (7.5)) with respect to a weaker topology which do not require any
convergence assumptions on the differential elements of the highest order.

Before to enter in details, we wish to mention that the interest for formulation (7.1)−(7.2)
has recently increased since optimization problems of this type, with BV optimal solutions,
were adopted as a mathematical model to describe the plastic deformation of beams and
plates under different loads [11e,14,3a,b,4].

Let (S,w) be a topological space and let U : S → L1(G, IRn) and L : S → L1(G, IRm)
be given operators.

Our lower semicontinuity results apply under the assumption that

if uk w-converges to u0, then (for a suitable subsequence) we have that

Uuk L1–converges to Uu0 and

(Luk)k≥0 is L1–equibounded and satisfies (mv).
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For example, the following particular cases can be framed in our theory (see Propositions
3.2, 3.3, 3.7, 3.10 and Theorem 4.1):

(a) (xk)k∈IN is a sequence in W 1,1(G, IRN )L1–converging to a function u0 ∈ BV (G, IRN )
and

Ux = x, Lx = Dx or Lx = div x;

(b) (xk)k≥0 is the same sequence as in (a) and

(Ux)(t) = Φ(t, x(t)), (Lx)(t) = D[Ψ(t, x(t))]

where Φ and Ψ satisfies the assumptions of Corollary 3.6 and Proposition 3.10
respectively;

(c) (xk)k∈IN is a sequence in W p+1,1(G, IRN ) which W p,1–converges to a function

u0 ∈ W p,1(G, IRN ),with Dpu0 ∈ BV (G, IRM ), and

Ux = (x,Dx,D2x, ...,Dpx), Lx = Dp+1x

where D2x denotes the essential gradients of Dx and so on;

(d) (xk)k≥0 is the same sequence as in (c) and

U is any operator on the variables (x,Dx,D2x, ...,Dpx) which is continuous with
respect to L1−topology,

L is a linear combination of the elements of Dp+1x, for example Lx = div (Dpx);

(e) (xk)k≥0 is the same sequence as in (c) and

(Ux)(t) = Φ(t, X(t)), (Lx)(t) = D[Ψ(t, X(t))]

where X = (x,Dx,D2x, ...,Dpx) and Φ and Ψ are functions as in (b).

Finally we wish to mention that also the following operators can be framed in our setting

(f) (xk)k≥0 is a sequence in L1(G, IRn) and

(Ux)(t) =

∫

G
K(t, τ) x(τ) dτ, Lx = x

where K is a suitable kernel (see [18] and [23,24]).

Remark 7.1. Existence results for problems of the calculus of variations can be derived
from the closure and lower semicontinuity statements of Sections 4 an 5. More precisely,

let us assume that functional I is defined on W 1,1(G, IRN ) and let us consider the

Serrin-type extension to BV (G, IRN )

J [x] = inf
Γ(x)

lim inf
k→+∞

I[xk]
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where Γ(x) =
{

(xk)k∈IN : xk ∈ W 1,1(G, IRN ), satisfies (7.2) and xk L1–converges to x
}
,

if Γ(x) = φ we put J [x] = +∞, as usual.

An analogous functional can be defined in the case I ranges over W p,1(G, IRN ).

By virtue of our lower semicontinuity results, we can deduce that the natural relation
between I and J occurs

J [x] = I[x] on W 1,1(G, IRN ) and J [x] ≥ I[x] on BV (G, IRN ).

Moreover, by means of a standard process, we can prove the existence of minima for
functional J over a class Ω satisfying suitable compactness conditions. We do not enter
into detail here, but only refer to [9e] for the classical theory and to [11b,c,e] for more
recent developments.

8. Applications to a class of integral functionals

Let us consider now functionals of the type

I[x] =

∫

G
|〈a(t),D[Ψ(t, x(t))]〉+ Φ(t, x(t))| dt

where a : G→ IRνN , Φ : A→ IR and Ψ : A→ IRN are given functions.

This class of functionals takes its source from problems of conservation laws. Cesari [9f,g,h]
discussed the related optimization problems under the assumptions that Φ is continuous

and Ψ is of class C1.

In order to get the existence of BV minima for the Serrin-type extension of I, Cesari
adopted a suitable transformation which allows to reduce functional I to a standard
integral of the type

I∗[x∗] =

∫

G
F (t, x∗(t),Dx∗(t)) dt

to which the existence results of [11c,d] apply.

Now, by virtue of the present formulation where abstract operators are involved, we can
deal with functional I directly, with remarkable advantages both in the assumptions and
in the proof. We only mention here the lower semicontinuity result since, as we already
mentioned (see Remark 6.6), the existence theorem is then a standard consequence.

Theorem 8.1. Assume that A = G× A0 with A0 closed.

Let (xk)k∈IN be a sequence in W 1,1(G, IRn) and let x0 ∈ BV (G, IRn) be such that

i) xk(t) ∈ A0 a.e. in G, k ∈ IN;

ii) (xk)k∈IN has equibounded variation and L1–converges to x0.

Suppose that

iii) a is continuous,



170 P. Brandi, A. Salvadori / On lower semicontinuity in BV setting

iv) Ψ is Lipschitzian,

v) Φ is Carathéodory and there exists φ ∈ L1 such that |Φ(t, xk(t))| ≤ φ(t) a.e. in
G, k ∈ IN .

Then the limit function satisfies x0(t) ∈ A0 a.e. in G, and we have

lim inf
k→+∞

I[xk] ≥ I[x0].

Proof. Let U and L be the operators defined by

(Ux)(t) = Φ(t, x(t)), (Lx)(t) = D[Ψ(t, x(t))].

By virtue of Proposition 3.10 and Corollary 3.6, we have that (for a suitable subsequence)

Uxk → Ux0 in L1 and (Lxk)k∈IN satisfies (mv) on G.

Moreover, it is easy to see that the sequence (D[Ψ(·, xk(·))])k∈IN has equibounded vari-

ation, thus (Lxk)k∈IN is bounded in L1(G, IRνN ).

Let us consider the integrand F : G× A0 × IRνN → IR+
0 defined by

F (t, x, y) = |〈a(t), y〉+ x|

of course it satisfies assumption of Theorem 8.1 (see also Remark 7.1) and the assertion
follows as an immediate application of Proposition 6.5.

Remark 8.2. Note that a result analogous to that of Theorem 8.1 can be proved for
the functional

I[x] =

∫

G
[〈a(t),D[Ψ(t, x(t))]〉+ Φ(t, x(t))]+ dt.

We recall that the lower semicontinuity for integrals of the type

I[x] =

∫

G
[〈a(t, x(t)),Dx(t)〉+ b(t, x(t))]+ dt

with respect to weak topology in Sobolew’s spaces, was discussed in [17,1].
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