
Journal of Convex Analysis
Volume 1 (1994), No. 2, 173–193

A New Approach to a Hyperspace Theory

Roberto Lucchetti
Dipartimento di Matematica, Università di Milano,
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1. Introduction

By hyperspace of a topological space (X, t) we mean the set of the closed subsets of
X, CL(X), endowed with a topology τ such that the function i : (X, t) → (CL(X), τ)
defined as i(x) = {x} is a homeomorphism onto its image. Since the beginning of the
century some hyperspace topologies, also called hypertopologies, have been introduced
and investigated; in particular the Hausdorff metric and Vietoris topologies. These two
topologies are very fine, at least in view of some applications, and this explains why in the
last years several new hypertopologies were defined, aimed at applications in probability,
statistics and variational problems, for instance. In minimum problems, also, functions
are regarded as sets by identifying them with their epigraphs, and classical convergence
notions either are too strong or do not have a good behaviour with respect to stability.

The impressive growth of the number of hypertopologies recently introduced and used
in particular problems and the increasing interest to them for their great potentiality
in different fields of applications explains the effort in understanding more sharply their
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structure and in finding general patterns to describe them. About this last aspect, we
mention the papers [2], [9], [10], devoted to a description and classification of the hyper-
topologies as initial topologies, namely as the weakest topologies making continuous some
families of real-valued functionals defined on CL(X). Not only this is useful in order
to have a common description of the hypertopologies, but also allows us to treat some
application in a fairly general way ([3], [8]).

All the mentioned papers deal with the hyperspace of a metric space. The aim of this
paper is to give a general classification of hypertopologies for a topological space X which
is not necessarily metrizable. Most of our results hold for completely regular spaces, or
even for spaces with least separation properties. It seems to us that the most striking
motivation for doing this is the following: the space we could have to consider can already
be a hyperspace! In this case we should work with CL(CL(X)). Let us mention an
interesting possible application for this: information structures are usually defined as
families of closed sets, namely as subsets of CL(X). And observe that, starting from a
metrizable space X, most of the known hypertopologies are at least completely regular
(as initial topologies), while they are not usually metrizable. Moreover, our approach,
being different from the previous ones, offers a new way of describing topologies which
are not necessarily completely regular, as the Fell topology, when X is not locally compact.
Finally, our method allows us to define in a natural way new topologies.

The paper is organized as follows: Section 2 introduces notions and the background
material. In Section 3 we give the definitions leading to the idea of a hypertopology,
and we collect the first related elementary properties. Sections 4 and 5 are dedicated to
relate our definitions of topologies to hit-and-miss topologies and hit-and-strongly-miss
topologies and to show how well-known hypertopologies can be described in our setting.
Finally, Section 6 introduces some possible developments of the material of this paper.

2. Preliminaries and background material

In the sequel (X, t) is a topological space, supposed to be at least Hausdorff, and not
consisting of a single point. CL(X) and K(X) denote respectively the set of the closed
and of the compact subsets of X; if X is metrizable with complete distance d, CLB(X)
indicates the set of all closed and d-bounded subsets of X; if X is a normed linear space,
Kw(X) denotes the set of all weakly compact subsets of X, CC(X) the closed convex
subsets and CBC(X) the closed convex bounded subsets. When the empty set is excluded,
the previous sets are denoted CL0(X), K0(X), CLB0(X) and Kw,0(X) respectively.

When X is metrizable with compatible distance d, B(x, r) denotes the closed ball centered
at x and with radius r, and S(x, r) is the open ball with same center and radius. For
a nonempty set A ∈ CL(X) its distance from a point x ∈ X is defined, as usual, as
d(x,A) = infa∈A d(x, a). We define d(x, ∅) = supy∈X d(x, y), a definition which works

better than the usual one d(x, ∅) = +∞ when the metric d is bounded. The closed
(open) ε-enlargements of a set A are, respectively, Bε[A] = {x ∈ X : d(x,A) ≤ ε} and
Sε[A] = {x ∈ X : d(x,A) < ε}.
Given two sets A and B, A nonempty, we define the gap between them as

d(A,B) = inf
a∈A

d(a, B).
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Observe that d(A,B) > 0 implies that two closed sets are disjoint and the vice versa holds
too whenever one of the two sets is compact.

Now we introduce some terminology and notations to describe hypertopologies. For V ⊂
X, let:

V − = {A ∈ CL(X) : A ∩ V 6= ∅}
V + = {A ∈ CL(X) : A ⊂ V }

and if X is metrizable with metric d:

V ++ = {A ∈ CL(X) : Sε[A] ⊂ V for some ε > 0}.

Observe that V ++ is a set depending on the choice of the metric, and not only on the

topology on X. Moreover, if V is nonempty, then V ++ = {A ∈ CL(X) : d(A, V c) > 0}.
All the hypertopologies we shall introduce are the supremum of a lower part and an upper
part. The former one can be characterized in the following way: an open set containing
A contains also all the closed supersets of A. The opposite holds with upper topologies,
that have also the property that if A and B belong to an open set, then their union too
belongs to the same open set.

Clearly, sets as V − are suitable to define lower topologies, while V + and V ++ define
upper topologies. More precisely, the family

CL(X) ∪ {V − : V is open in X}

is a subbase for the lower Vietoris topology τ−V , which is also the lower topology for the

bounded Vietoris τ−bV , proximal τ−p , bounded proximal τ−bp, ball τ−B , ball proximal τ−pB,

Wijsman τ−W and Fell τ−F topologies. The upper Vietoris topology τ+
V has as a base the

family of open sets

{V + : V is open in X};
the upper bounded Vietoris τ+

bV (defined when a metric d on the space X is given)

{(Lc)+ : L is closed and bounded};

the upper ball topology τ+
B has as a subbase

{(Bc)+ : B is a closed ball};

the upper Fell topology τ+
F has as a base

{(Kc)+ : K is compact}.
All these upper topologies are miss topologies: a basic open set is made by all elements
missing a particular closed set.

Not all known topologies can be described as the supremum of hit and miss topologies.
For instance, the Hausdorff metric topology τH is rather defined in terms of open basic
upper neighborhoods of a set A

{B ∈ CL(X) : B ⊂ Sε[A]},



176 R. Lucchetti, A. Pasquale / A new approach to a hyperspace theory

and open basic lower neighborhoods of a set A

{B ∈ CL(X) : A ⊂ Sε[B]},

for ε > 0. Observe that the empty set is isolated in the upper topology, whereas CL(X) is
the only neighborhood of ∅ in the lower topology. It turns out that the upper part of the

Hausdorff metric topology τ+
H can be also described in terms of strongly miss topology

generated by the sets

{V ++ : V open in X}
(cf. [4]).

The bounded-Hausdorff topology can be defined in the following way: the open neighbor-

hoods of a set A ∈ CL(X) in the upper part τ+
bH are the sets of the form

{B ∈ CL(X) : B ∩ L ⊂ Sε[A]},

and dually, in the lower part τ−bH are the sets of the form

{B ∈ CL(X) : A ∩ L ⊂ Sε[B]}

when L ranges among the bounded subsets of X and ε > 0. τ+
bH coincides with the

topology generated by {∅} and (Lc)++, where L is a bounded set ([2]).

An useful way of generating new hypertopologies is to select a lower part of the previous
topologies and an upper part of another topology and then taking their supremum. Thus
we have the proximal and bounded proximal topologies having the lower Vietoris topology
from one side and the Hausdorff and bounded Hausdorff topologies respectively on the
other side.

A recent unifying way of presenting hypertopologies is to show that they are initial topolo-
gies for given families of geometric functionals defined on CL(X). We shall see that, in
the metric case, our approach describes upper parts of initial topologies in a very simple
way.

A fundamental topology cannot be included in the previous framework, since its upper
part can be described as a miss topology only in particular cases: this is the Wijsman
topology. Recalling its original definition, a net {At}t∈T , T a directed set, converges to
A ∈ CL(X) if lim d(x,At) = d(x,A) for every x ∈ X. Again, the lower part can be defined
by considering the relation lim sup d(x,At) ≤ d(x,A) for every x ∈ X, and, dually, the
upper part is provided by the inequalities lim inf d(x,At) ≥ d(x,A) for every x ∈ X. It
turns out that the lower part coincides with the lower Vietoris topology, while the upper
part in particular spaces (for instance spaces in which the balls are totally bounded) is the

upper part of the ball proximal topology, generated by the sets (Bc)++ when B ranges
among the closed balls. Of course, the Wijsman topology is an initial topology.

There are other topologies, defined on the closed convex subsets of a linear space X and
that are worth to be mentioned : the Mosco, slice and linear topologies. They have the
lower Vietoris topology as their lower part, while the upper part of the Mosco topology
is generated by the family

{(wKc)+ : wK is a weakly compact set},
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the upper part of the linear topology by the family

{(Sc)++ : S is a convex set},
and the upper part of the slice topology by the family

{(Sc)++ : S is a bounded convex set}.
For easy reference, we collect the hypertopologies introduced above together with their
subdivision into lower and upper parts in the following table:

Topology Notation Lower Part Upper Part Space

Fell τF τ−V τ+
F topological

Wijsman τW τ−V τ+
W metric

Ball Proximal τpB τ−V τ+
pB metric

Ball τB τ−V τ+
B metric

b-Proximal τbp τ−V τ+
bH metric

Proximal τp τ−V τ+
H metric

b-Vietoris τbV τ−V τ+
bV metric

Vietoris τV τ−V τ+
V topological

b-Hausdorff τbH τ−bH τ+
bH metric

Hausdorff τH τ−H τ+
H metric

Slice τS τ−V τ+
S normed

Mosco τM τ−V τ+
M normed

Linear τl τ−V τ+
l normed

The last three topologies are considered on the subspace of the closed convex subsets of
X.

To conclude, we refer the reader to the book [1] for more about the above topologies, and
for a complete reference list.

3. Basic definitions and properties

This section is devoted to the introduction of topological structures on CL(X) and to the
investigation of their basic properties.

Let F be a nonempty family of real-valued, lower bounded functions f : X → IR, let r
be a positive real number and P a subset of X. For a nonempty closed subset A of X,
define:

N+(A,F , r, P ) = {F ∈ CL(X) : inf
F∩P

f > inf
A
f − r ∀f ∈ F},

N−(A,F , r, P ) = {F ∈ CL(X) : inf
A∩P

f > inf
F
f − r ∀f ∈ F},

with the agreement inf∅ f = supX f , and:

N+(∅,F , r, P ) = (P c)+ ∪ {F ∈ P− : inf
F∩P

f > sup
X
f − r ∀f ∈ F},
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N−(∅,F , r, P ) = CL(X).

Finally set

N (A,F , r, P ) = N+(A,F , r, P ) ∩ N−(A,F , r, P ).

The following properties are immediate to verify:

i) A ∈ N (A,F , r, P );

ii) F ⊂ G ⇒ N+(A,G, r, P ) ⊂ N+(A,F , r, P )

F ⊂ G ⇒ N−(A,G, r, P ) ⊂ N−(A,F , r, P );

(antitonicity with respect to the family of functions)

iii) r ≤ s⇒N+(A,F , r, P ) ⊂ N+(A,F , s, P ),

r ≤ s⇒N−(A,F , r, P ) ⊂ N−(A,F , s, P );

(isotonicity with respect to the real variable)

iv) P ⊂ Q⇒N+(A,F , r, Q) ⊂ N+(A,F , r, P ),

P ⊂ Q⇒N−(A,F , r, Q) ⊂ N−(A,F , r, P ).

(antitonicity with respect to set P )

Now, let F be a (nonempty) family of (nonempty) sets F of real-valued lower bounded
functions on X with the following basic property:

(FU) F1,F2 ∈ F⇒ ∃F ∈ F : F1 ∪ F2 ⊂ F ,

and let P be a (nonempty) family of subsets of X with the basic property:

(PU) P1, P2 ∈ P⇒ ∃P ∈P : P1 ∪ P2 ⊂ P .

In the sequel we shall always assume that (FU) and (PU) are verified.

Given A ∈ CL(X), we consider the following families of (closed) sets:

{N+(A,F , r, P )}(F∈F,P∈P,r>0),

{N−(A,F , r, P )}(F∈F,P∈P,r>0),

{N (A,F , r, P )}(F∈F,P∈P,r>0) =

= {N+(A,F , r, P ) ∩ N−(A,F , r, P )}(F∈F,P∈P,r>0).

These three families of closed sets are easily seen to form a local filter base at A ∈ CL(X)2.

The first one gives rise to an upper convergence, denoted c+(F,P), the second one to a

lower convergence, denoted c−(F,P), the third one to a convergence, denoted c(F,P),
which is the supremum of the first two. When c is a topology, we shall rather use the

symbol τ . We shall also indicate by N+(A,F,P) (resp. N−(A,F,P) and N (A,F,P)) the

2 For this and other concepts in general topology, we refer to [6] and [5], especially Ch.2.
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local filter at A ∈ CL(X). Finally, for easy notation, we shall write c(F) (resp. τ(F))

when we use the family P={X}.3

The next elementary result, which follows from the monotonicity properties mentioned
above, is useful to compare topologies and/or convergences.

Write

F � G if for every F ∈ F there is G ∈ G with F ⊂ G, and

P � R if for every P ∈ P there is R ∈ R such that P ⊂ R,

P ∼ R if P�R and R�P.

Then we have:

Proposition 3.1.

c+(F,P) is finer than c+(G,P), ∀ P ∀ F,G such that F � G;

c+(F,P) is finer than c+(F,R), ∀ F ∀ P,R such that P � R.

The same holds with lower c− and c convergences.

As a result, for a fixed F, the choice of P = {X} gives the finest convergence (topol-

ogy). Moreover, the families P ∼ P′ generate the same topology. As an example, one

cannot change topology by playing with P={bounded sets}, P′= {open bounded sets},
P′′={closed bounded sets}, P′′′={balls}.

A basic family of sets of functions is C:= { all finite (nonempty) sets of continuous lower
bounded functions f : X → IR}. Most (but not all) of our results deal with some F ⊂ C.
We shall use the following notation:

∪F =: {f : X → IR : ∃F ∈ F with f ∈ F}.

The first interesting question is when the convergences c± are topological. The next two
theorems provide an answer.

Theorem 3.2. Suppose F ⊂ C and P = {X}. Then the convergences are topological.

Proof. Let us prove it for the upper part.

Let F ∈ N+(A,F , r, X) ∩ N+(B,G, s, X). Choose ε with 0 < ε < min{r, s} so that
infF f > infA f − r + ε ∀f ∈ F , and infF g > infB f − s+ ε ∀g ∈ G.

Let F ∪ G ⊂ H ∈ F and let t = min{min{r, s} − ε, ε}. Then it is easy to see that

N+(F,H, t, X) ⊂ N+(A,F , r, X) ∩ N+(B,G, s, X).

3 We use the following convention: bold (calligraphic) characters are used to indicate a
family of subsets of X which is the specialization of P, even if, when merely considered
as a set, it is indicated with the notation of Section 2. For instance, CL(X) denotes the
family of all closed nonempty subsets of X, but when we select this family as our family
P, then we write CL (having omitted the dependence on X for simplicity).
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Theorem 3.3. Let F and P have the following properties:

i) F ⊂ C;

ii) P ⊂ CL(X), P covers X and P contains all closed subsets of its elements;

iii) For every A ∈ CL(X) and P ∈ P with P 6= ∅ and A ∩ P = ∅, there is f ∈ ∪F such
that f ≥ 0 and supP f < infA f .

Then the convergences are topological.

We do not prove the previous theorem, because in the next section we shall prove more:
indeed, we shall characterize these topologies. Let us observe here that Assumption ii) is
very strong in requiring that P contains all closed subsets of its elements, while iii) is a
sort of separation property: in particular, if F = C and X is normal, then iii) holds even

with P = CL (see footnote 3 for the notation).

Another important question is when the topologies are admissible.

Proposition 3.4. Suppose the families F and P⊂ CL(X) provide a topology, and
moreover

i) F ⊂ C, and for every x ∈ X and for every open set V in X with x ∈ V there is
f ∈ ∪F such that f(x) = 0 and infV c f > 0,

ii) P covers X.

Then the topology τ(F,P) is admissible.

Proof. We need to prove that i : X → CL(X) defined by i(x) = {x} is a homeomorphism
onto its image.

Let us show that i is an open mapping by showing that the image of an open subset V
in X is

i(V ) = i(X) ∩
⋃

x∈V
N−(x,Fx,

rx
2
, Px),

where Fx ∈F contains the function fx such that fx(x) = 0 and infV c fx = rx > 0, and
Px is an element of P containing x.

The inclusion i(V ) ⊂ i(X) ∩ ⋃x∈V N−(x,Fx, rx2 , Px) is obvious. Conversely, let {y} ∈
N−(z,Fz, rz2 , Pz) for some z ∈ V . Then 0 = fz(z) = infw∈{z}∩Pz fz(w) > fz(y) − rz

2 ,

hence fz(y) ≤ rz
2 and y ∈ V .

For the continuity of i, it is not difficult to prove that

i−1{N+(A,F , r, P )} = P c ∪
⋂

f∈F
{x : f(x) > inf

A
f − r}

and

i−1{N−(A,F , r, P )} =





X if A ∩ P = ∅
⋂
f∈F{x : f(x) < infA∩P f + r} otherwise
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We end this section with the presentation of a connection between our approach and the
approach of [2] and [9, 10], where the hypertopologies are presented as weak topologies.

In the rest of the section, (X, d) is a metric space, F⊂ C, and the family P will be simply
P={X}. Remember that in this case, we shall indicate the topology by τ(F) rather than
by τ(F,P).

There is a strict connection between the topology τ(F) (for a suitable choice of F) and
the weak topologies on CL(X) induced by gap functionals of the form d(E, ·) for E ∈ Ω,
Ω being a prescribed family of nonempty subsets of X. More precisely, the weak topology
τweak induced on CL(X) by the family of functionals {d(E, ·) : E ∈ Ω} is the topology

τ(F) when the elements ofF are all the sets {d(E1, ·), . . . , d(En, ·)} as n ∈ IN∗ and Ei ∈ Ω.

The lower and the upper parts of the weak topology τweak are exactly τ−(F) and τ+(F).

For example, if Ω = S = { singleton subsets of X} and DS= {{d(x1, ·), . . ., d(xn, ·)}:
n ∈ IN∗, xi ∈ X}, then τ(DS)=τW , τ

−(DS) = τ−W = τ−V and τ+(DS) = τ+
W . Another

example is obtained when X is a reflexive Banach space.

Setting DKw = {{d(K1, ·), . . . , d(Kn, ·)} : n ∈ IN∗, Ki ∈ Kw(X)}, we have, on the set of

the weakly closed subsets of X, τ(DKw) = τM , τ
−(DKw) = τ−V and τ+(DKw) = τ+

M

(cf. [2]).

More generally, define a family of functionals {Fi : i ∈ J} on CL(X) to be of inf-type if
each Fi arises as inf of real valued lower bounded functions on X, i.e. if for every i ∈ J
there is a real valued lower bounded function fi on X such that Fi(A) = infA fi for every
A ∈ CL(X).

If {Fi : i ∈ J} is a family of functionals on CL(X) of inf-type, the weak topology on
CL(X) induced by {Fi : i ∈ J} is the topology τ(F) where the elements of F are all

finite sets {Fi1 , . . . , Fin} as n ∈ IN∗ and Fih ∈ {Fi : i ∈ J}.

To conclude, as a consequence of Theorem 2.1 [2], we also have:

Theorem 3.5. Let (X, d) be a metric space and let Ω be a class of nonempty closed
subsets of X that is stable under enlargements (i.e. clSε[E] ∈ Ω for all E ∈ Ω and ε > 0)
and that contains the singleton subsets of X. Let DΩ = {{d(E1, ·), . . . , d(En, ·)} : n ∈
IN∗, Ei ∈ Ω}. Then the topology τ on CL(X) having as a subbase all sets of the form

(Ec)++ where E ∈ Ω,and V −, V open in X, is the topology τ(DΩ).

Moreover τ−(= τ−V ) = τ−(DΩ) and τ+ = τ+(DΩ).

In particular when Ω = CL0(X) or Ω = CLB0(X), setting

DC= {{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CL0(X)}
and

DB= {{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CLB0(X)},
then we have

τ(DC) = τp, τ
−(DC) = τ−p = τ−V , τ

+(DC) = τ+
p = τ+

H (the proximal topology)

and
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τ(DB) = τbp, τ
−(DB) = τ−bp = τ−V , τ

+(DB) = τ+
bp = τ+

bH (the bounded proximal

topology).

4. Connections to hit-and-miss topologies

The following theorems show how to relate, in a general fashion, topologies described by
our method to hit-and-miss topologies. Recall that we always assume the space X to be
Hausdorff. Moreover Assumptions (FU) and (PU) are supposed to be verified.

Let us start with a general theorem concerning lower topologies.

Theorem 4.1. Let F and P satisfy the following properties:

i) F ⊂ C;

ii) P covers X;

iii) For every x ∈ X and every open set V containing x there is f ∈ ∪ F such that f ≥ 0
on X and 0 = f(x) < infV c f .

Then the convergence c−( F, P) is topological, i.e. τ−( F, P) exists and τ−( F, P) =

τ−V , the lower Vietoris topology.

Proof. Notice first that in both topologies the unique neighborhood of the empty set is
CL(X). Therefore it is enough to compare the neighborhoods of a nonempty subset A of
CL(X).

Given ∅ 6= A ∈ CL(X), F = {f1, . . . , fm} ∈ F, r > 0 and P ∈ P, we first show that

there are open sets V1, . . . , Vn in X such that A ∈ V −1 ∩ . . . ∩ V −n ⊂ N−(A,F , r, P ). If

A ∩ P = ∅, then N−(A,F , r, P ) ⊃ CL0(X) = X−. If A ∩ P 6= ∅, choose ai ∈ A ∩ P so
that fi(ai) < infA∩P fi + r

2 for i = 1, . . . , m. For i = 1, . . . , m, let Vi = {x ∈ X : fi(x) <

fi(ai) + r
2}, a nonempty open set in X. As ai ∈ A∩Vi, then A ∈ V −1 ∩ . . .∩V −m . Suppose

C ∈ V −1 ∩ . . .∩V −m : there are c1, . . . , cm ∈ C so that fi(ci) < infA∩P fi+r for all i. Hence

infC fi − r < infA∩P fi, i.e. V −1 ∩ . . . ∩ V −m ⊂ N−(A,F , r, P ).

On the other hand, take ∅ 6= A ∈ CL(X) and open sets Vi such that A ∈ V −1 ∩ . . . ∩ V −n .

Let ai ∈ A ∩ Vi, Pi ∈ P with ai ∈ Pi, and fi ∈ ∪ F with fi ≥ 0 on X and 0 = fi(ai) <
ri = infV ci fi. Because of (PU) and (FU) we can select P ∈ P and F ∈ F such that

P1 ∪ . . . ∪ Pn ⊂ P and {f1, . . . , fn} ⊂ F . Let r = min{ri : i = 1, . . . , n}: it is easy to

show that N−(A,F , r, P ) ⊂ V −1 ∩ . . . ∩ V −n .

Theorem 4.2. Let P and F be with the following properties :

i) F ⊂ C;

ii) P ⊂ CL(X) and P contains all closed subsets of its elements;

iii) For every A ∈ CL(X) and every P ∈ P such that A ∩ P = ∅ there is f ∈ ∪ F such
that supP f < infA f .

Then τ+( C, P) = τ+( F, P) = τ+
P, where τ+

P is the topology with open base (P c)+, P ∈ P.
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Remark 4.3. Condition ii) and (PU) imply P1 ∪P2 ∈ P, for every P1, P2 ∈ P. This in
turn implies that (P c)+, P ∈ P is an open base (and not only a subbase) for a topology.

Proof of the theorem

Let A ∈ CL(X), {f1, . . . , fn} ∈ F, r > 0, and P ∈ P. Let E = {x ∈ X : fi(x) > infA fi−
r/2 for i = 1, . . . , n}, and let P ′ = P \ E ∈ P. Clearly A ∈ (P ′c)+. Suppose B ∈ (P ′c)+.
Then B ∩ P ⊂ E, so infB∩P fi > infA fi − r for all i, i.e. B ∈ N+(A, {f1, . . . , fn}, r, P ).
On the other hand, let A ∈ CL(X) and P ∈ P such that A ∈ (P c)+. We shall provide
P ′, r,F such thatN+(A,F , r, P ′) ⊂ (P c)+. Any choice works if P = ∅. Suppose therefore
P 6= ∅. By iii) there is f ∈ ∪ F with supP f < infA f . It is not difficult to prove that
N+(A,F , r, P )⊂ (P c)+ for any F ∈F with f ∈F and any r > 0 with infA f−r > supP f .
This ends the proof.

Remark 4.4.

1) If R is equivalent to P, then τ+(F,R)= τ+(F,P)=τ+
P by Proposition 3.4. Note

that given R⊂ CL(X) there exists and is unique the family P that satisfies ii) and
is equivalent to R.

2) The proof shows that if τ+(F,P) exists and P satisfies i) then τ+(F,R) = τ+(F,P)�
τ+
P for all R∼P, whereas if F satisfies ii), then τ+(F,R) = τ+(F,P)� τ+

P for all

R∼P.

When (X, d) is a metric space, as we already noticed, upper topologies can be defined by
a subbase consisting of the sets CL(X) and (Ec)++, when E ranges among the elements
of a fixed family of subsets in X.

We shall now characterize these upper topologies via families of finite sets of gap functions
on X and families of finite sets of uniformly continuous functions on X whose sublevel
sets are in a fixed family of subsets of X. More precisely, if Ω is a family of nonempty
subsets of X, we shall consider

DΩ= {{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ Ω}
and

UCΩ= {{f1, . . . , fn} : n ∈ IN∗, fi : X → IR are uniformly continuous and inf-Ω},
where f : X → IR is said to be inf-Ω if {x ∈ X : f(x) ≤ r} ∈ Ω∪ {∅} for all r > 0. In the
particular case when Ω = CL0(X), for simplicity we shall indicate the previous family by
UC.

Theorem 4.5. Let (X, d) be a metric space and let Ω, P⊂ CL(X) be families of subsets
of X with the following properties:

i) P contains all closed subsets of its elements;

ii) P contains some ε-enlargement of its elements, i.e. for all P ∈ P there is ε > 0 such
that Bε[P ] ∈ P;

iii) Ω satisfies (PU) and P\{∅} ⊂ Ω.

Then τ+(DΩ,P) and τ+(UC,P) exist and τ+(DΩ,P) = τ+(UC,P) = τ++
P , the topology

with subbase (P c)++, P ∈ P.



184 R. Lucchetti, A. Pasquale / A new approach to a hyperspace theory

Proof. Let N+
A be the filter of neighborhoods of A ∈ CL(X) in τ++

P . We shall show

that N+
A � N+(A,DΩ,P)� N+(A,UC,P)� N+

A for all A ∈ CL(X).

For every P1, . . . , Pn ∈P such that A ∈ (P c1 )++ ∩ . . .∩ (P cn)++, choose r > 0 such that

Sr[A] ⊂ P ci for all i = 1, . . . , n, and let εi > 0 such that Bεi [Pi] ∈ P. Because of i) we

can suppose εi <
r
2 . By (PU) for P there is P ∈P such that Bε1[P1]∪ . . . ∪Bεn [Pn] ⊂ P .

Observe that we can assume Pi 6= ∅ for all i, so from iii) {d(P1, ·),. . .,d(Pn, ·)} ∈DΩ. Let

us now prove that N+(A, {d(P1, ·),. . .,d(Pn, ·)}, r2 , P ) ⊂ (P c1 )++ ∩ . . . ∩ (P cn)++. If A 6= ∅
and B ∈ N+(A, {d(P1, ·),. . .,d(Pn, ·)}, r

2 , P ), then for i = 1, . . . , n, d(Pi, B ∩ Bεi [Pi]) ≥
d(Pi, B ∩ P ) > d(Pi, A)− r

2 ≥ d(Sr[A]c, A)− r
2 ≥ r

2 . Hence B ∩ Bεi [Pi] ⊂ S r
2
[Pi]

c. Thus

B ∩ Sεi [Pi] ⊂ S r
2
[Pi]

c∩ S r
2
[Pi] = ∅. If A = ∅, we have the same result. In fact B ∈ (P c)+

implies B ∩ Sεi[Pi] = ∅ for all i as well. Therefore N+
A � N+(A,DΩ,P).

N+(A,DΩ,P)� N+(A,UC,P) because DΩ⊂UC.
Finally N+(A,UC,P)� N+

A . Suppose first A 6= ∅: for every {f1, . . . , fn} ∈UC, r > 0 and

P ∈ P, choose ε > 0 such that | fi(x)− fi(y) |< r
2 , for i = 1, . . . , n, provided d(x, y) < ε

. Let Q = P \ Sε[A]. If B ∩ Q = ∅, then B ∩ P ⊂ Sε[A], so infB∩P fi > infA fi − r.
Indeed if x ∈ B ∩ P , there is ax ∈ A such that d(x, ax) < ε, hence fi(x) > fi(ax)− r

2 ≥
infA fi − r

2 . Therefore A ∈ (Qc)++ ⊂ (Qc)+ ⊂ N+ (A, {f1, . . . , fn}, r, P ). If A = ∅, then

∅ ∈ (P c)++ ⊂ (P c)+ ⊂ N+(∅,{f1,. . .,fn},r, P ).

Remark 4.6.

1) The proof shows that if τ+(DΩ,P) and τ+(UC,P) exist and P satisfies i), then

τ+(DΩ,P) � τ+(UC,P)� τ++
P .

2) The theorem cannot be directly applied to the family P of the compact subsets of
X because of ii), but from the proof one can see that the result holds for this family

too, by using that (P c)+ = (P c)++ for every compact set P .

Theorem 4.7. Let (X, d) be a metric space and let Ω and P be families of subsets of
X with the following properties:

i) Ω is closed under finite unions and stable under enlargements, i.e. clSε[E] ∈ Ω for
all E ∈ Ω and ε > 0;

ii) P contains all closed subsets of its elements;

iii) P contains some ε-enlargement of its elements;

iv) Ω ⊂ P.

Then τ+(DΩ,P) and τ+(UCΩ,P) exist and τ+(DΩ,P)= τ+(UCΩ,P) = τ+(UCΩ) = τ++
Ω ,

the topology having as an open base CL(X) and(Ec)++, E ∈ Ω.

Proof. Let N+
A be the filter of neighborhoods of A ∈ CL(X) in τ++

Ω . We shall show that

N+
A � N+(A,DΩ,P)� N+(A,UCΩ,P)� N+(A,UCΩ, {X}) � N+

A for all A ∈ CL(X).

For every E ∈ Ω with A ∈ (Ec)++, let r > 0 such that Sr[A] ⊂ Ec and 0 < ε <
r
2 such that Bε[E] ∈P. Then N+(A, {d(E, ·)}, r2 , Bε[E]) ⊂ (Ec)++ because, if B ∈



R. Lucchetti, A. Pasquale / A new approach to a hyperspace theory 185

N+(A, {d(E, ·)}, r2 , Bε[E]), then d(E,B ∩ Bε[E]) > d(E,A)− r
2 ≥ d(Sr[A]c, A)− r

2 ≥ r
2 .

Hence B ∩ Sε[E] ⊂ S r
2
[E]∩ (S r

2
[E])c = ∅, i.e. B ∈ (Ec)++ (and (Bε[E]c)+ ⊂ (Ec)++ if

A = ∅). Thus N+
A � N+(A,DΩ,P).

N+(A,DΩ,P)� N+(A,UCΩ,P) because DΩ⊂UCΩ. In fact, for every E ∈ Ω, d(E, ·)
is uniformly continuous on X and {x ∈ X : d(E, x) ≤ r} = Br[E] ∈ Ω because of i).

N+(A,UCΩ,P) � N+(A,UCΩ, {X}) is always true.

Finally, N+(A,UCΩ, {X}) � N+
A : for every {f1, . . . , fn} ∈ UCΩ and r > 0, consider E =

∪ni=1{x : fi(x) ≤ infA fi− r
2}. E ∈ Ω because fi is inf-Ω for all i and Ω is closed under finite

unions. Moreover A ∈ (Ec)++ : if ε > 0 is so that d(x, y) < ε implies | fi(x)− fi(y) | < r
2

for all i, then Sε[A] ⊂ Ec. Furthermore (Ec)+ ⊂ N+(A, {f1, . . . , fn}, r), because B ∈
(Ec)+, then fi(b) > infA fi − r

2 for all b ∈ B and all i, so infB fi > infA fi − r
2 , i.e.

B ∈ N+(A, {f1, . . . , fn}, r).

5. Connections.

In this section we show that the general definition of hypertopologies given in Section 2
allows us to recover known hypertopologies by selecting suitable families F and P.

We first list the families F and P we use.

Families F of sets of real-valued lower-bounded functions on X:

C={{f1, . . . , fn} : n ∈ IN∗, fi : X → IR continuous },

and when (X, d) is a metric space

UC={{f1, . . . , fn} : n ∈ IN∗, fi : X → IR uniformly continuous },

UCB={{f1, . . . , fn} : n ∈ IN∗, fi : X → IR uniformly continuous and inf- CLB(X)},

DC={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CL0(X)},

DB={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CLB0(X)},

DS={{d(x1, ·), . . . , d(xn, ·)} : n ∈ IN∗, xi ∈ X},

D={{d(x, ·) : x ∈ X}}.

When X is a normed space we also consider

UCKwC={{f1, . . . , fn} : n ∈ IN∗, fi : X → IR uniformly continuous and inf-KwC(X)},

UCKw={{f1, . . . , fn} : n ∈ IN∗, fi : X → IR uniformly continuous and inf-Kw(X)},

DKw={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ Kw,0(X)},

DKwC={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ KwC0(X)},
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DBC={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CBC0(X)}.

DCC={{d(E1, ·), . . . , d(En, ·)} : n ∈ IN∗, Ei ∈ CC0(X)}.

where

CC(X) = { all finite unions of closed convex subsets of X}
CBC(X) = { all finite unions of closed bounded and convex subsets of X}
and

KwC(X) = { all finite unions of weakly compact convex subsets of X}.

Observe that all the families F we consider but D consist of finite sets of functions on X,
and that D consists of a single element. In particular, (FU) is always satisfied.

Families P of subsets of X:

{X} = {the singleton X}(∼ CL),

CLB= {the closed and bounded subsets of X},
K = {the compact subsets of X},
and, when X is a normed space,

Kw = {the weakly compact subsets of X}.

All these families P are closed under finite unions of their elements, hence they satisfy
(PU).

We start by describing hypertopologies whose lower parts are usually strictly finer than
the lower Vietoris topology.

Lemma 5.1.

For every A ∈ CL(X), Sε[A] = {y ∈ X : d(x, y) > d(A, x)− ε ∀x ∈ X}.

Proof. The proof is easy and is left to the reader. Observe only that in the case A = ∅,
then Sε[A] is empty for each ε > 0 if d is unbounded, while this is not always the case if
the distance is bounded.

Corollary 5.2.

τH = τ(D,{X}).

The same holds for lower and upper parts separately.

Corollary 5.3.

τbH = τ(D,CLB).

The same holds for lower and upper parts separately.

We now turn our attention to topologies that can be described by families of finite subsets
of functions.

As a consequence of Theorem 4.2. we immediately have:
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τ+(C)=τ+
V , when X is normal;

τ+(C,K) = τ+
F , when X is completely regular;

τ+(C,CLB) = τ+
bV , when X is metric.

From Theorem 4.1 we have:

τ−(C)=τ−(C,K) = τ−(C,CLB ) = τ−V if X is completely regular.

Consequently, we have:

Proposition 5.4.

If X is a normal space, then τ(C) = τV ;

If X is completely regular, then τ( C,K) = τF ;

If X is a metric space, then τ(C,CLB) = τbV .

From Theorem 4.5. we get τ+(UC) = τ+(DC) = τ+
p and τ+(UC,CLB) = τ+(DC,CLB)

= τ+
bp.

Remark 4.6, 2) after the same theorem gives τ+(UC,K) = τ+(DC,K) = τ+
F .

Since {d(x, ·) : x ∈ X} ⊂ ∪ F, for F=UC or F=DC, Theorem 4.1 implies τ−(UC) =

τ−(DC) = τ−(UC,CLB) = τ−(DC,CLB) = τ−(UC,K) = τ−(DC,K) = τ−V .

Therefore the following proposition holds:

Proposition 5.5. If (X, d) is a metric space, then

τ(UC) = τ(DC) = τp;

τ(UC,CLB) = τ(DC,CLB) = τbp;

τ(UC,K) = τ(DC,K) = τF .

Remark 5.6. Since DC ⊂ UC, by Proposition 3.1., we have that the results of Propo-
sition 5.5 hold for any F with DC ⊂ F ⊂ UC.

We have already noticed that τ+(DC,K) = τ+
F . As a matter of fact, for all families F we

are considering, we have τ+(F,K) = τ+
F . A general result is the following:

Theorem 5.7. Let Ω be a family of subsets of (X, d) such that S = { singletons of

X} ⊂ Ω ⊂ CL0(X). Then we have τ+(DΩ,K) = τ+
F .

Proof. Since S ⊂ Ω ⊂ CL0(X), we have DS ⊂ DΩ ⊂ DC, so for all A ∈ CL(X)

N+(A,DS,K) � N+(A,DΩ,K) � N+(A,DC,K) =N+
A , where N+

A is the filter of neigh-

borhoods of A in τ+
F .

We only need to show that N+
A � N+(A,DS,K). Let K be a nonempty compact subset of

X such that A ∈ (Kc)+ and let r > 0 be such that d(A,K) = r. Choose x1, . . . , xn ∈ K
such that K ⊂ ∪ni=1B(xi,

r
2). Then N+(A, {d(x1, ·), . . . , d(xn, ·)}, r2 , K) ⊂ (Kc)+. In fact,
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if d(xi, B ∩K) > d(xi, A)− r
2 ≥ d(K,A)− r

2 = r
2 for all i, then B ∩K = ∅; otherwise for

b ∈ B ∩K, choose j ∈ {1, . . . , n} with b ∈ B(xj ,
r
2): then d(xj , B ∩K) ≤ d(xj , b) <

r
2 , a

contradiction.

From Theorem 5.7. the following characterization for the upper Fell topology follows

τ+(DS,K) = τ+(DB,K) = τ+(DC,K) = τ+
F for (X, d) metric;

if X is normed, τ+(DBC,K) = τ+(DKw,K)= τ+(DKwC,K)= τ+
F .

Since τ−(DS,K) = τ−(DB,K) = τ−(DC,K) = τ−V and,

for X normed, τ−(DBC,K) = τ−V according to Theorem 4.1., we have:

Proposition 5.8. If (X, d) is a metric space, then

τ(DS,K) = τ(DB,K) = τ(DC,K) = τF ;

if X is a normed space, then τ( DBC,K) = τ(DKw,K)= τ(DKwC,K)=τF .

In order to complete the discussion of the topologies obtained when P = K, we have to

analyze τ±(UCB,K) and τ±(D,K).

Proposition 5.9. If (X, d) is a metric space, then

τ+(UCB,K) = τ+
F and τ−(UCB,K) = τ−V .

Proof. For every A ∈ CL(X), let N+
A be the filter of neighborhoods of A in τ+

F . Since

UCB⊂UC, we have N+(A,UCB,K)� N+(A,UC,K) = N+
A . For every nonempty compact

set K with A ∈ (Kc)+, let d(A,K) = r > 0. Hence N+(A, {d(K, ·)}, r2 , K) ⊂ (Kc)+,

because, if B ∈ N+(A, {d(K, ·), r2 , K), then d(K,B ∩ K) > d(A,K) − r
2 = r

2 . d(K,B ∩
K) = 0 if B ∩K 6= ∅, so we must have B ∩K = ∅. Since {d(K, ·)} ∈ UCB, we thus get

N+
A � N+(A,UCB,K), which gives τ+(UCB,K) = τ+

F

The result for the lower parts follows from Theorem 4.1.

Proposition 5.10. If (X, d) is a metric space, then

τ+(D,K) = τ+
F and τ−(D,K) = τ−V .

Proof. For every A ∈ CL(X), let N+
A be the filter of neighborhoods of A in τ+

F . As a

consequence of Lemma 5.1, a base for the filter N+(A,D,K) consists of the sets {B ∈
CL(X) : B ∩K ⊂ Sr[A]}, as K ∈ K(X) and r > 0. Let U(A) = {B ∈ CL(X) : B ∩K ⊂
Sr[A]} for fixed K ∈ K(X) and r > 0, and let P = K\ Sr[A]. Then P is compact and

A ∈ (P c)++ = (P c)+ ⊂ U(A) because if B ∩ P = ∅, then B ∩ K ⊂ Sr[A]. Therefore

N+(A,D,K)� N+
A . Conversely N+

A = N+(A,DS,K)� N+(A,D,K) because DS � D,

since every element ofDS is contained in the unique element {d(x, ·) : x ∈ X} ofD. Thus

τ+(D,K) = τ+
F . For every A ∈ CL(X), let N−A be the filter of neighborhoods of A in τ−V .

A base for the filter N−(A,D,K) consists of the sets {B ∈ CL(X) : A ∩K ⊂ Sr[B]}, as
K ∈ K(X) and r > 0. Let V(A) = {B ∈ CL(X) : A ∩K ⊂ Sr[B]} for fixed K ∈ K(X)
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and r > 0. If A ∩ K = ∅, then V(A) = CL(X) ∈ N−A . Suppose then A ∩ K 6= ∅ and

choose x1, . . . , xn ∈ A ∩K such that A ∩K ⊂ ∪ni=1B(xi,
r
2). Clearly, A ∈ ∩ni=1B(xi,

r
2)−.

Moreover ∩ni=1B(xi,
r
2)− ⊂ V(A), because if B ∈ ∩ni=1B(xi,

r
2)−, then there are yi ∈ B

such that d(xi, yi) <
r
2 for all i. Hence Sr[B] ⊃ Sr[{y1, . . . , yn}] ⊃ A ∩ K. Therefore

N−(A,D,K)� N−A . Conversely, N−A = N−(A,DS,K)� N−(A,D,K) because DS � D.

Thus τ−(D,K) = τ−V .

Corollaries 5.2. and 5.3. and Proposition 5.10. yield

Proposition 5.11. If (X, d) is a metric space, then

τ(D) = τH ;

τ(D,CLB) = τbH ;

τ(D,K) = τF .

Theorem 4.7. allows us to analyze τ+(DB,P) and τ+(UCB,P) when P=CL or P=CLB:
namely

τ+(DB) = τ+(UCB)= τ+
bp (with the choice P=CL, Ω = CLB0(X)),

and

τ+(DB,CLB) = τ+(UCB,CLB) = τ+
bp (with the choice P=CLB, Ω = CLB0(X)).

Again, Theorem 4.1. gives:

τ−(DB) = τ−(UCB)= τ−(DB,CLB) = τ−(UCB,CLB) = τ−V .

Therefore, with Propositions 5.8. and 5.9., we have

Proposition 5.12. If (X, d) is a metric space, then

τ(UCB) = τ(DB) = τbp;

τ(UCB,CLB) = τ(DB,CLB)= τbp;

τ(UCB,K) = τ(DB,K) = τF .

Remark 5.13. Since DB⊂UCB, we have that the results of Proposition 5.12 hold for
any F with DB⊂F⊂UCB.

Let us now consider the topologies generated by DS.

We already know from Theorem 5.7. and from the discussion preceding Proposition 5.8.

that τ+(DS,K)= τ+
F and τ−(DS,K) = τ−V . τ+(DS) = τ+

W and τ−(DS) = τ−V = τ−W im-

mediately follow from the definition. Moreover Theorem 4.1. implies that τ−(DS,CLB)

= τ−V . It remains to analyze τ+(DS,CLB).

Proposition 5.14.

τ+(DS,CLB)=τ+
W .
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Proof. For every A ∈ CL(X), x1, . . . , xn ∈ X and r > 0, {B ∈ CL(X) : d(xi, B) >
d(xi, A) − r ∀i = 1, . . . , n} ⊃ {B ∈ CL(X) : d(xi, B ∩ E) > d(xi, A) − r ∀i = 1, . . . , n}
=N+(A, {d(x1, ·), . . . , d(xn, ·)}, r, E), where E = ∪ni=1C(xi, si) ∈ CLB(X), with si =

d(xi, A)− r
2 and

C(xi, si) =





{y ∈ X : d(xi, y) ≤ si} if si ≥ 0

∅ if si < 0

In fact, if d(xi, B ∩ E) > d(xi, A)− r, also d(xi, B) > d(xi, A)− r for all i: if B = ∅ the
property is true, whereas if B 6= ∅ at least one between B \ E and B ∩ E is nonempty.
If b ∈ B \ E, then d(b, xi) > si = d(xi, A)− r

2 for all i, so d(B \ E, xi) ≥ d(xi, A)− r
2 >

d(xi, A)− r. Thus d(B, xi) = min{d(B \E, xi), d(B ∩E, xi)} > d(xi, A)− r for all i. The

converse is obvious because τ+(DS)=τ+
W .

We therefore have:

Proposition 5.15. If (X, d) is a metric space, then

τ(DS) = τ(DS,CLB) = τW ;

τ(DS,K) = τF .

When X is a normed space we have seen that τ+(DBC,K) = τ+
F . From Theorem 4.1.

we have τ−(DBC) = τ−(DBC,CLB) = τ−(DBC,K) = τ−V . From Theorem 4.7. we have

τ+(DBC,CLB) = τ+
S (the slice topology), and from the definition, also τ+(DBC) = τ+

S .

A similar argument applies to the linear topology

Proposition 5.16. If X is a normed space, then

τ(DCC) = τl;

τ(DBC) = τ(DBC,CLB) = τS ;

τ(DBC,K) = τF .

The characterization of the upper Mosco topology on the weakly closed subsets of a
reflexive Banach space X is obtained from Theorems 4.5. and 4.7. In fact, the weak lower

semicontinuity of the norm implies that τ+
M has open basis (Kc)++ when K ranges among

the weakly compact subsets of X.

Chosing P = Kw and Ω ∈ {CL0(X), CLB0(X), Kw,0(X)}, we have from Theorem 4.5.

τ+(UC,Kw) = τ+(DC,Kw) = τ+(DKw,Kw) = τ+
M .

Choosing P∈ {CL, CLB, Kw} and Ω = Kw,0(X), we have from Theorem 4.7.

τ+(DKw) = τ+(DKw,CLB) = τ+(DKw,Kw )= τ+
M and

τ+(UCKw) = τ+(UCKw,CLB)= τ+(UCKw,Kw) = τ+
M .

Reflexivity of the space X also implies that τ+
M can be described by the open subbase

(Kc)++ for K weakly compact and convex.
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Hence Theorem 4.7. with P = Kw and Ω = Kw,0C(X) gives

τ+(DKwC,Kw) = τ+(UCKwC,Kw) = τ+(UCKwC) = τ+
M .

According to Theorem 4.1. and Proposition 3.1. we therefore have

Proposition 5.17. If X is a reflexive Banach space, then on the closed and convex
subsets of X

τ(F,Kw) = τM for any F with KwC ⊂ F ⊂ DC or UCKwC ⊂ F ⊂ UC;

τ(UCKw) = τ(UCKw,CLB) = τM ;

τ(DKw) = τ(DKw,CLB) = τM .

The results so far obtained are collected in the following table.

Topology Functions’ family Sets’ family Space

Fell C K completely regular
DS ⊂ DΩ ⊂DC ′′ metric
C ⊂ F ⊂ UC ′′ ′′

DB ⊂ F ⊂ UCB ′′ ′′
D ′′ ′′

Wijsman DS {X}or CLB metric

b-Proximal DC ⊂ F ⊂ UC CLB metric
DB ⊂ F ⊂ UCB {X}or CLB ′′

Proximal DC ⊂ F ⊂ UC {X} metric

b-Vietoris C CLB metric

Vietoris C {X} normal

b-Hausdorff D CLB metric

Hausdorff D {X} metric

Slice DBC {X}or CLB normed

Linear DCC {X} normed

Mosco DKwC ⊂ F ⊂ DC Kw reflexive Banach
UCKwC ⊂ F ⊂ UC Kw ′′

UCKw {X} or CLB or Kw ′′

DKw {X} or CLB or Kw ′′

6. Conclusions.

In Section 5 we have explicitely determined some hypertopologies by selecting particular
families F and P. An immediate observation is the large arbitrariety in the choice of F
and the relatively small arbitrariety in the choice of P. In fact, the global behaviour of
the hypertopology is determined by F, whereas P plays the role of localizing element.

The limits dictated by the choice ofP can be seen for instance in the following example. As
we have already remarked, the families P={ bounded sets }, P′={ open bounded sets},
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P′′={ closed bounded sets } and P′′′={ balls } are all equivalent. This makes impossible
to recover hypertopologies like the ball and the ball proximal by using the same kind of
techniques that yield to the bounded Vietoris and the proximal topologies (Theorems 4.2.
and 4.5.). The question of the possibility of including ball and ball proximal topologies
in our scheme is still open.

Because of the definition of the upper parts of the ball and the ball proximal topologies, the
first tempting familyF one can choose for trying to recover them isDBall={{d(E1, ·), . . . ,
d(En, ·)} : n ∈ IN∗, Ei is a finite union of balls }. However the topology τ+(DBall) is
in general strictly finer than the upper part of the ball proximal topology. Notice that,

according to Theorems 4.1. and 5.7., we have τ−(DBall,P)= τ−V for any P⊂ CL(X)

that covers X, and τ+(DBall, K)=τ+
F .

On the other hand, the large arbitrariety in the choice of F makes this unified method of
describing hypertopologies a very powerful tool for defining new hypertopologies.

One can start with a problem, select the families F and P that seem more reasonable in
the context, and then construct the hypertopology. Or, more abstractly, one can select a
family F consisting of functions that are naturally attached to a space, and then study the
various hypertopologies obtained with the different choices of P. For example, the choice
of C for a topological space or the choice of D and DΩ for a metric space are natural,
since continuous functions and gap functions are the most natural real-valued functions
on those spaces. On a normed linear space, the most natural functions to consider are
the continuous linear functions.

To conclude, a comment on the assumption that all functions here considered are lower
bounded. This is a reasonable assumption, and suitable to avoid technicalities in the

definitions of N+(A,F , r, P ) and N−(A,F , r, P ).

However, in some instances, we should like better to avoid such an assumption. For
instance, when working in the convex case, we would maybe like to deal with linear
functionals. In such a case, a generalization of the definition of N+(A,F , r, P ) and

N−(A,F , r, P ) could be the following.

For every A ∈ CL(X) and for every F , set FA = {f ∈ F : infA f > −∞} and let:

N+(A,F , r, P ) =

{N+(A,FA, r, P ) if FA 6= ∅

CL(X) otherwise

N−(A,F , r, P ) =

{N−(A,FA, r, P ) if FA 6= ∅

CL(X) otherwise

The interested reader can check that our theorems in Sections 3, 4, 5 still hold with these
definitions. Moreover, we can for instance prove:

Theorem 6.1. Let X be a normed linear space. Then

i) τ+(B) = τ+
hs, the topology generated by the sets H+

f,s, where Hf,s = {x ∈ X : f(x) >

s}, s ∈ IR, is the half upper space determined by the linear map f ;
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ii) τ+(B,Kw) = τ+
M on the closed and convex subsets of X, when X is a reflexive Banach

space.

Proof. The first part of the theorem comes immediately from the inclusion

N+(A,F , r) ⊂
⋂

f∈F
H+
f,rf
⊂ N+(A,F , r + ε)

where ∅ 6= A ∈ CL(X), F ∈ B, rf = infAf − r and ε > 0.

For the second part of the theorem, we appeal to the proof of Theorem 4.2.: the set
E = {x ∈ X : fi(x) > infA fi − r/2 for i = 1, . . . , n}, in that proof is weakly open for

{f1, . . . , fn} ∈ B. Therefore we can conclude τ+(B,Kw) � τ+
M .

For the opposite relation, note that in the assumption of reflexivity of X, τ+
M is generated

by the sets (Kc)++ for K weakly compact and convex. Suppose then ∅ 6= A ∈ (P c)+ for
some weakly compact P . Hence, we can find a weakly compact and convex K such that

A ∈ (Kc)++ ⊂ (P c)+. Let ε > 0 such that Bε[K]∩A = ∅, and let f be a continuous linear

function on X such that infA f > supK f + r, then N+(A, {f}, r,K) ⊂ (Kc)+ ⊂ (P c)+.
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