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We show that closed convex cones, having bounded order intervals (in particular weakly complete proper
convex cones) in conuclear spaces, are generated by their extreme rays. An analogue of Choquet’s theorem
is obtained for these cones, as well as for the conuclear cones defined in this article. Well-capped cones
are conuclear. The main tool is Choquet’s notion of conical measure, of which we present the necessary
properties here.
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Introduction

At the present time there are two entirely different methods known to obtain integral
representations by extreme generators in convex cones : Choquet’s theory of integral
representations [8], [10], [11], [29] and certain generalizations [6], [15] on the one hand,
and on the other hand the method, described more fully below, based on the nuclear
spectral theorem of Maurin [26], or on the results of Berezanski [2], which followed the
introduction of nuclear spaces into spectral theory by Gelfand and Kostjucenku [17], [18].

The present paper was motivated by the desire to accomplish a synthesis between these
two approaches. In fact more than such a synthesis is obtained : namely a new theorem on
the existence of extremals, independent of the Krein Milman theorem, and a corresponding
integral representation theorem. This theorem is valid for a certain class of convex cones
which we define in section 3, conuclear cones (having metrizable compact sets). The well-
capped cones, defined by Choquet, are conuclear. But the closed convex cones, having
bounded order intervals, in conuclear spaces, also happen to be conuclear cones.

Let Γ be a closed convex proper cone in a locally convex space F . Assume, for the
purpose of this introduction, that the union ext(Γ ) of the extreme rays is non trivial and
that there exists a Suslin space, e.g. a second countable locally compact space T , and a
continuous map t 7−→ et from T to ext(Γ )\{0} such that each extreme ray of Γ contains
et for precisely one value of t (this is an example of an admissible parametrization of the
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extreme rays, cf. 1.20). An integral representation of an element f ∈ Γ , as understood

here, is then a decomposition f =
∫
T etdm(t), where m is a Radon measure on T .

Choquet’s theorem states that if Γ has a compact metrizable hyperplane section or ‘base’
B, every element f ∈ Γ has an integral representation f =

∫
T e dm(e), the integral

extending over the set T = B ∩ ext(Γ ) of extreme points of B. Moreover, the measure
is in each case uniquely determined by f if and only if B is a simplex i.e. Γ is a lattice
with respect to its proper order : f ≤ g if g− f ∈ Γ . More generally, if Γ is the union of
metrizable caps, compact convex sets K ⊂ Γ such that Γ\K is convex, it is a consequence
of Choquet’s theorem that the elements of Γ still have integral representations. Classical
integral representation theorems such as those of Bochner, Bernstein, etc. can be recovered
in this way, and many others have been first obtained using Choquet theory (cf. [8], [11],
[29]).

The second method applies essentially only to the important case of the integral repre-
sentation of positive kernels on nuclear spaces. For instance, kernels invariant under some
group action can be decomposed into extreme invariant kernels by interpreting the kernel
as the reproducing kernel of a Hilbert space, diagonalising a maximal commutative C∗-
algebra commuting with the group action, and using Mautner’s theorem [14, ch2]. This
method has been used by Maurin [25] and Schwartz [31]. An example of its use in a more
complex situation can be found in the work of Borchers and Yngvason [3], and combined
with Choquet theory, in Hegerfeldt [21]. This method has the drawback however that
there is no statement as to uniqueness if the cone happens to be a lattice.

The main result of this paper, in its most practical form, is the theorem below, in which
we make use of the following notation : If f belongs to the convex cone Γ , the set
If = Γ ∩ (f − Γ ) is the interval between 0 and f with respect to the proper order of Γ ,

and Γ (f) =
⋃
λ≥0

Iλf , the set of elements of Γ majorized by a multiple of f , is the face

generated by f in Γ . It is a convex subcone whose proper order equals the order induced
on it by Γ . The cone Γ is a lattice if and only if Γ (f) is a lattice for all f ∈ Γ .

Theorem. Let F be a quasi-complete conuclear space. Let Γ ⊂ F be a closed convex
cone such that the order intervals Γ ∩(f−Γ ), f ∈ Γ , are bounded subsets of the topological
vector space F . Then :

1. Γ is the closed convex hull of its extreme rays.

2. If t 7−→ et, T −→ ext(Γ ) is an admissible parametrization of the extreme rays then :

A) For every f ∈ Γ there exists a Radon measure m on the parameter space T such that

f =
∫
T etdm(t).

B) The measure m is uniquely determined by f if and only if the face Γ (f) generated by
f is a lattice. In particular the representing measure is unique for every f ∈ Γ if and
only if Γ is a lattice.

Remarks and examples.

There always exists an admissible parametrization of the extreme rays (cf. 1.20).
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The strong dual of any barreled nuclear space is conuclear, e.g. the space of distributions
D′(V ) on a manifold V is conuclear. Every nuclear Fréchet space is conuclear ; for instance
the space C∞(V ) is conuclear if V is countable at infinity (section 3 and [20]).

If Γ is a weakly complete proper convex cone in a locally convex space F , the order
intervals Γ ∩ (f − Γ ) are bounded (Choquet [8], prop. 30.10).

The condition that the order intervals be bounded in the topology of F is not enough to
ensure the existence of extreme rays if the space F is not conuclear : for example the set

of non-negative elements of L2[0, 1] is a weakly complete cone, but it has no extreme rays.

On the other hand a closed convex proper cone, with unbounded order intervals, in a
conuclear space, does not necessarily have any extreme rays. An example is the cone
C∞+ (IR) of non negative functions in C∞(IR). Here every non zero f ∈ C∞+ (IR) can be

decomposed as a sum f = f1 + f2, with fi ∈ C∞+ (IR) not proportional to f (partition of

unity), i.e. no f 6= 0 is extremal. The order interval If is unbounded in the C∞-topology

however, unless f = 0.

In the case of Bernstein’s theorem on completely monotonic functions on IR+ the cone

Γ = {f ∈ C∞(0,+∞) : (−1)nf (n) ≥ 0 ∀ n ≥ 0} does have order intervals which are

bounded in the C∞-topology. Since the extreme generators e−tx, t ≥ 0, are easy to
determine (cf. [8] §32, [11]), Bernstein’s theorem, according to which every f ∈ Γ has an
integral representation

f(x) =

∫ +∞

0
e−txdµ(t) ∀ x > 0

is an immediate consequence of the above theorem.

Any well-capped cone has bounded order intervals : if f belongs to a cap K ⊂ Γ the
interval If is contained in K, and so compact.

Let N be a barreled nuclear space. Then the cone Γ composed of separately continuous
non-negative sesquilinear forms K : N × N −→ IC, equipped with the topology of bi-
bounded convergence, is the union of metrizable caps [35]. This makes the above theorem,
particularly the uniqueness part, or theorem 5.3, available to cases where the nuclear
spectral theorem applies.

An important example to which the theorem can be applied is the cone of positive definite
distributions on a Lie group G :

Γ = {T ∈ D′(G) : T (ϕ ∗ ϕ̃) ≥ 0 ∀ ϕ ∈ C∞c (G)}

or any closed convex subcone of Γ . Thanks to the factorization theorem of Dixmier
and Malliavin [13], according to which every test function is a finite sum of convolution
products of test functions, this cone has bounded order intervals. The subcone of central
positive definite distributions is a lattice cone, which leads to a generalization of the
Bochner-Schwartz theorem for unimodular Lie groups [12], [23], [35], [36].

An interesting example to which the theorem applies has been discussed by Wyss [40,
4.1]. The term ”integral representation” can indeed be applied to this example, by the
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above theorem, because not only the cone is weakly complete and proper, but also the
surrounding space is conuclear.

A further application can be found in [1].

Methods.

Since the proof of the theorem is long we give some indication here of the method used.
We shall in fact prove a more general theorem (theorem 5.1), which at the same time
comprises the case of a cone, not necessarily contained in a conuclear space, which is
the union of its metrizable caps. Theorem 5.1 involves cones Γ , which we call conuclear
cones, with the property that for every compact convex set A ⊂ Γ containing 0, there
exists another compact convex set B in Γ , containing A, such that A and the convex hull
co(Γ\B) are disjoint. It will turn out that closed convex cones having bounded order
intervals in conuclear spaces have this property.

Cones which are the union of their caps (well-capped cones, cf. section 2) obviously
also have this property, but an example due to Goullet de Rugy [19] shows that not
all conuclear cones are well-capped (Example 3.7 below). As in the case of Choquet’s
theorem, which we obtain as a particular case, we have to impose metrizability on the
compact sets. In the case of a conuclear space (as always assumed quasi-complete) all
compact subsets are metrizable however.

The cones to which our theorem applies do not necessarily have a hyperplane section, even
unbounded. The formulation of the theorem with the help of an admissible parametriza-
tion of the extreme rays, while practical for the above summary and in many applications,
is neither esthetically satisfactory nor a good foundation for a proof of the theorem. In-
stead we make use of the conical measures, introduced by Choquet [7], [8] for the purpose
of formulating representation theorems for cones. Rather than restricting attention to
weakly complete cones however, and using maximal conical measures, we directly con-
struct conical measures which are localizable on the extreme rays of a convex cone. In the
case of a weakly complete proper convex cone in a conuclear space these are identical to
the maximal conical measures used by Choquet. It will be seen that in the general case
also our methods of proof are inspired by Choquet’s methods.

To get the existence of extreme rays in a conuclear cone we shall not be able to apply
the Krein Milman theorem (as in the case of well-capped cones). In fact at this writing
it is unknown whether an arbitrary conuclear cone (one in which the compact subsets
are not necessarily metrizable) has any extreme rays. Instead we use a method akin to,
and inspired by, the method of Hervé [22] for proving the existence part of Choquet’s
theorem : if B is a convex compact metrizable set, and Φ is a strictly convex continuous
function on B, any Radon measure m on B maximizing the integral

∫
Φdm among all the

Radon probability measures with resultant the given point f ∈ B, is concentrated on the
set of extreme points of B.

A large part of the paper is therefore devoted to the properties of localizable conical
measures (which for convenience we call conical integrals). This part may be of interest
in itself however, as conical measures are used in connection with other subjects as well,
e.g. in statistics (cf. [24]).
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The notion of Radon measure on topological spaces following Bourbaki [4], Choquet [9]
and Schwartz [32] is crucial to this paper. A summary of the facts needed about Radon
measures can be found at the end of section 1.

I should like to thank D.H. Fremlin [16] for the proof of Lemma 1.9, in the case of an
arbitrary locally convex space.

Related work.

This is not the first time a connection has been made between Choquet theory and the
theory of nuclear spaces. Mokobodzki [27] has shown that certain normal cones in nuclear
spaces are well-capped. Wittstock [39] has shown that in conuclear spaces convex compact
sets are contained in simplices. Peters, in his paper [28] asks whether the cone of positive
definite Bruhat distributions on a locally compact group is well-capped. In the case where
the group is second countable the space of test functions has been shown by Bruhat to
be nuclear and so the answer is positive by the results in [35] ; consequently the above
theorem is also applicable.

The results in the present paper are not the most general possible. One can, following the
example of Bourgin and Edgar [6], [15], generalize by replacing the compact metrizable
sets by closed bounded Suslin sets having the Radon Nikodym property. But in the case
of conuclear spaces no generality is gained by this (cf. Proposition 3.1), and the price
would have been an appreciable lengthening of the proof (cf. [37]).

1. Conical integrals.

Let F be a locally convex Hausdorff space over IR, let F ′ be the set of continuous linear
forms ` : F −→ IR. Following Choquet [7], [8] define the space h(F ) to be the lattice

generated by F ′ in IRF . The elements ϕ ∈ h(F ), the Choquet test functions, can be
written in the form

ϕ = sup
i
`i − sup

j
`′j (1.1)

where (`i) and (`′j) are finite sequences of continuous linear forms. In particular the

functions ϕ ∈ h(F ) are positive homogeneous of degree one :

ϕ(λx) = λϕ(x) ∀ x ∈ F, ∀ λ ≥ 0 (1.2)

Let h+(F ) denote the set of ϕ ∈ h(F ) such that ϕ(x) ≥ 0 ∀ x ∈ F .

According to Choquet [7], [8] a conical measure is a linear form µ : h(F ) −→ IR, such

that µ(ϕ) ≥ 0 for all ϕ ∈ h+(F ). The set of all these positive linear forms obviously forms

a convex cone in the algebraic dual of h(F ). Let it be denoted by M+(F ).

Now let F∗ = {x ∈ F : x 6= 0}, and let B(F∗) be the set of Borel subsets of F∗. Let
m : B(F∗) −→ [0,+∞] be a measure, i.e. a countably additive set function, having the
following two properties :

m(A) = sup
K⊂A

m(K) ∀ A ∈ B(F∗) (K compact in F∗) (1.3)
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∫
|`(x)|dm(x) < +∞ ∀ ` ∈ F ′ (1.4)

For each ` ∈ F ′ consider the set O = {x ∈ F : |`(x)| > 1}. Then O is an open subset of
F∗ and m(O) < +∞. Thus, since every x ∈ F∗ belongs to a set of this type, m is locally
finite on F∗. Consequently, being inner regular and locally finite, m is a Radon measure
(cf. the Note on Radon measures at the end of this section). The condition (1.4) implies
that the functions ϕ ∈ h(F ) are m-summable.

Definition 1.1. A conical measure µ is said to be localizable if there exists a measure
m, having the properties (1.3) and (1.4) such that :

µ(ϕ) =

∫
ϕdm ∀ ϕ ∈ h(F ) (1.5)

In this case µ is said to be localized in m. If m is concentrated on a set S, µ is localizable
on S. We shall use the term conical integral instead of ”localizable conical measure”.

The set of conical integrals will be denoted by M+
loc(F ).

Remark. Every conical measure localizable on a compact subset K ⊂ F (cf. Choquet
[8, 30.4]) is localizable according to the above definition, namely on K ∩ F∗ (any mass at
0 can be removed without changing the integrals (1.5)).

Remark. There are infinitely many different Radon measures in which a given coni-
cal integral µ 6= 0 can be localized. For instance by (1.2) we have µ(ϕ) =

∫
ϕdm =

1
λ

∫
ϕ(λx)dm(x) for all λ > 0. If m is bounded one may make use of this invariance to

replace m by a probability measure.

1.1. Localization on sections

Definition 1.2. A section is a subset S ⊂ F∗ meeting each ray in at most one point :
x 6= 0, α > 0, β > 0, αx ∈ S, βx ∈ S =⇒ α = β.

Thus, for example, a non homogeneous hyperplane {x : `(x) = 1} in F is a section, as is
the set of points at distance r > 0 from the origin with respect to a norm on F .

Our next objective is to prove :

1. That a conical integral has at most one localization on a given section S.

2. There exists a section on which every conical integral can be localized.

Let us first prove the following approximation theorem, a variant of the lattice form of
the Stone-Weierstrass theorem.

Theorem 1.3. Let X be a completely regular Hausdorff space (containing at least two

points). Let m be a Radon measure on X. Let H be a subspace of L1(X,m) consisting of
continuous functions. Assume moreover that :

a) H is a sublattice : ϕ, ψ ∈ H =⇒ sup(ϕ, ψ) ∈ H, and
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b) ∀ x, y ∈ X, x 6= y, ∀ α, β ∈ IR, ∃ ϕ ∈ H such that ϕ(x) = α and ϕ(y) = β.

Then H is dense in L1(X,m).

The proof essentially consists in replacing X by a large compact subset K and keeping
control of what happens outside K. Denote H+ = {h ∈ H : h(x) ≥ 0 ∀ x ∈ X} :

Lemma 1.4. For every compact set K ⊂ X, ε > 0 and number M ≥ 0 there is a

function h ∈ H+ such that h(x) ≥ M for all x ∈ K, and
∫
Kc hdm ≤ ε.

Proof. Let x ∈ K and y ∈ Kc = X\K, then there exists a function ϕx,y ∈ H such

that ϕx,y(x) > M and ϕx,y(y) < 0. Thus there exists a neighborhood Vx of x such that

ϕx,y(z) > M for all z ∈ Vx. If K ⊂ Vx1 ∪ . . . ∪ Vxn, let ϕy = sup(ϕx1,y, . . . , ϕxn,y). Then

ϕy(x) ≥ M for all x ∈ K, and ϕy(y) < 0. Let ϕyo be such a function. Now choose a

compact set H ⊂ Kc such that
∫
Kc\H ϕ

+
yodm ≤ ε. For every point y ∈ H there exists a

function ϕy as previously defined, such that ϕy(y) < 0, and consequently ϕy(z) < 0 for z

in some neighborhood Wy of y. If H ⊂ Wy1 ∪ . . . ∪Wym, let ϕ = inf(ϕyo, ϕy1, . . . , ϕym).
This function then has the following properties :

i) ϕ(x) ≥M ∀ x ∈ K,

ii) ϕ(y) ≤ 0 ∀ y ∈ H,

iii) ϕ ≤ ϕyo.

Consequently
∫
Kc ϕ+dm =

∫
Kc\H ϕ

+dm ≤
∫
Kc\H ϕ

+
yodm ≤ ε. Thus the function h = ϕ+

satisfies the requirement.

Lemma 1.5. Let Φ ∈ L1(X,m; IR) be a continuous m-integrable function. Then there

exists ψ ∈ H such that
∫
X |Φ− ψ|dm ≤ 3ε.

Proof. Choose a compact set K ⊂ X, with m(K) > 0, such that
∫
Kc |Φ|dm ≤ ε and put

M = maxx∈K |Φ(x)|. Let h ∈ H+ be chosen so that h(x) ≥ M on K and
∫
Kc hdm ≤ ε

(lemma 1). By the approximation theorem of Stone-Weierstrass [5, ch. 10, § 4 no 1,
Cor. prop. 2] there exists ϕ ∈ H such that |Φ(x) − ϕ(x)| ≤ ε/m(K) for all x ∈ K. Let
ψ = sup(−h, inf(ϕ, h)). Then ψ ∈ H and |Φ(x) − ψ(x)| ≤ ε/m(K) for all x ∈ K, while
|ψ(x)| ≤ h(x) for all x ∈ X. Consequently we have

∫

X
|Φ− ψ|dm =

∫

K
|Φ− ψ|dm+

∫

Kc
|Φ|dm+

∫

Kc
|ψ|dm ≤ 3ε.

Proof of the theorem. It is well known that in the case of a completely regular space

the subspace of continuous integrable functions is dense in L1(X,m; IR). With lemma 1.5
this completes the proof.

The following theorem was proved by Choquet [8, II, p. 192] in the case of a compact
section S.
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Theorem 1.6. Let S ⊂ F∗ be a section. Let m1 and m2 be localizations on S of a
conical measure µ. Then m1 = m2.

Proof. Let m = m1 +m2. Then m is concentrated on S. Let H be the set of restrictions
ϕ|S, with ϕ ∈ h(F ). Then H satisfies the hypotheses of theorem 1.3 : if x ∈ S and y ∈ S
are non proportional there exists ` ∈ F ′ such that `(x) = α and `(y) = β. If y = λx we

must have λ < 0 according to the hypothesis on S. Then if `1 ∈ F ′ is such that `1(x) = 1,

we have `1(y) < 0, `+1 (x) = 1 and `+1 (y) = 0. Similarly there exists `2 ∈ F ′ such that

`+2 (x) = 0 and `+2 (y) = 1. Then ϕ = α`+1 + β`+2 has the required property. Consequently

H is dense in L1(S,m). The continuous linear forms ϕ 7−→
∫
ϕdmi, i = 1, 2, coincide on

H, and are therefore identical. It follows that m1 = m2.

Theorem 1.7. There exists a section S ⊂ F∗ such that every conical integral can be
localized on S.

The proof will result from the following two lemmas :

Lemma 1.8. Let m be an arbitrary localization of µ. Let p : F 7−→ [0,+∞] be a
function with the following properties.

a) p is positive homogeneous of degree 1 : p(λx) = λp(x) ∀ λ ≥ 0 ∀ x ∈ F.
b) p is m-measurable.

c. 0 < p(x) < +∞ m-almost everywhere.

Then µ is localizable on the section S = {x ∈ F : p(x) = 1}.

Proof. Let X = {x ∈ F∗ : 0 < p(x) < +∞}. For x ∈ X let ρ(x) = x/p(x). Then ρ is
defined m-almost everywhere and m-measurable (cf. Note on Radon measures, below).
Let m̃ = ρ(pm), the image of the measure pm under ρ. Then m̃ is a Radon measure,
concentrated on S, localizing µ. Note that pm may not be locally finite. Since the result
is crucial we give the details : First let us check that m̃ satisfies the condition (1.3) : Let

λ < m̃(A) =
∫
ρ−1(A) pdm. Then there exists a compact set K ⊂ ρ−1(A) ⊂ X such that

λ <
∫
K pdm. By Lusin’s theorem we may assume that the restriction ρ|K is continuous.

Let H = ρ(K). Then H is a compact subset of A and K ⊂ ρ−1(H). Thus λ < m̃(H) =∫
ρ−1(H) pdm, which proves that m̃ satisfies the condition (1.3). Let ϕ ∈ h+(F ). Then

ϕ(ρ(x))p(x) = ϕ(x) for m almost all x. Therefore
∫
ϕdm̃ =

∫
ϕ(ρ(x))p(x)dm(x) =∫

ϕ(x)dm(x) = µ(ϕ). Putting ϕ = |`| we see that m̃ also satisfies the condition (1.4).

In particular, m̃ is locally finite. Thus, every element ϕ in h(F ) being the difference of

functions ϕ± in h+(F ), m̃ is a Radon measure localizing µ. Finally, it has to be shown
that m̃ is concentrated on S. Since ρ(x) ∈ S for all x ∈ X, it is sufficient to show that
S is m̃-measurable. Let C ⊂ F∗ be a compact subset. Then m̃(C) < +∞. Thus, as
in the proof of condition (1.3), given ε > 0 we can find a compact set H = ρ(K) ⊂ C
such that m̃(C) − m̃(H) ≤ ε. But then H ⊂ S ∩ C ⊂ C, and so S ∩ C belongs to the
Lebesgue completion of B(F∗) with respect to m̃. The compact set C being arbitrary, S
is m̃-measurable.
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Lemma 1.9. There exists a universally measurable function p : F∗ −→ (0,+∞) which
is positive homogeneous of degree 1.

Proof. We first give a proof in the particular case, where F is metrizable or separated
by a countable subset of the dual. Let (qn)n∈IN be a sequence of continuous seminorms

such that for all x ∈ F∗ there exists n for which qn(x) > 0. (If F is separated by the

sequence (`n)n∈IN in F ′ one can take qn(x) = |`n(x)|). Let Fn = {x ∈ F : qn(x) > 0}. Let

Γ1 = F1, and Γn+1 = Fn+1\
n⋃
i=1

Fi. Then the sets Γn are pairwise disjoint cones covering

F∗. Let p(x) = qn(x) if x ∈ Γn, i.e. if n is the first index for which qn(x) > 0. Then p is
a Borel function, positive homogeneous of degree 1, and 0 < p(x) < +∞ for all x ∈ F∗.

Therefore in this case theorem 1.7 is proved.

For the generalization to arbitrary spaces I am indebted to D.H. Fremlin [16]. The proof
proceeds by transfinite induction : Let (qi)i∈I be a family of continuous seminorms such
that for each x ∈ F∗ there exists i ∈ I with qi(x) > 0 (e.g. a fundamental system of
continuous seminorms). Let the set I be well-ordered. If λ is the corresponding ordinal
number we may assume I = [0, λ). If 0 ≤ κ ≤ λ , let pκ(x) = qi(x) if i ∈ [0, κ) is the
smallest index in [0, κ) for which qi(x) > 0, and pκ(x) = 0 if there is no such index.
Let m be a bounded Radon measure on F∗. Then it follows by induction on κ that pκ
is m-measurable for all κ ≤ λ. Clearly pκ is m-measurable if κ is countable. Assume
that pξ is m-measurable for all ordinals ξ < κ. If κ = ξ + 1 we have pκ(x) = qξ(x) if

pξ(x) = 0, while pκ(x) = pξ(x) if pξ(x) > 0. Thus pκ is m-measurable. Next assume that

κ = sup
n
ξn, (ξn)n∈IN being a sequence of ordinals smaller than κ. Then pκ = sup

n
pξn, and

so pκ is m-measurable. Finally, if κ is not the supremum of a sequence of smaller ordinals,
let

Hξ = {x : pξ(x) = 0} = {x : qη(x) = 0 ∀ η < ξ}

Then these sets are closed, they decrease as ξ increases, and their intersection for ξ < κ
is Hκ. Consequently we have m(Hκ) = infξ<κm(Hξ). Let ξn < κ be such that m(Hξn) ≤
m(Hκ) + 1/n, and let ξ = sup

n
ξn. Then m(Hκ) = m(Hξ), while by the hypothesis ξ < κ.

But pκ(x) = pξ(x) for all x not belonging to Hξ\Hκ, i.e. for m-almost all x. Thus pκ is

m- measurable. This proves that pλ is universally measurable. As we have pλ(x) > 0 for
all x ∈ F∗, the function p = pλ has the required properties.

Thus theorem 1.7 is valid for an arbitrary locally convex Hausdorff space.

1.2. Integration.

Theorem 1.10. Let µ be a conical integral, and let m1 and m2 be localizations of µ.

1. Let Φ : F∗ −→ IR be positive homogeneous of degree α ∈ IR i.e. : Φ(λx) = λαΦ(x)
∀ λ > 0, ∀ x ∈ F∗. Then Φ is m1-measurable (resp. m1-almost everywhere equal to
0) if and only if Φ is m2-measurable (resp. m2-a.e. equal to 0).
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2. Let Φ : F∗ −→ IR be homogeneous of degree 1. Then Φ is m1-summable if and only if

Φ is m2-summable, and in that case one has
∫
Φ dm1 =

∫
Φ dm2. The same equality

holds if Φ : F∗ −→ [0,+∞] is homogeneous of degree 1 and measurable.

Definition 1.11. The function Φ will be said to be µ-measurable if it is homogeneous
of degree α for some α ∈ IR, and measurable with respect to some (hence any) localization
m of µ. Similarly Φ is µ-summable if Φ is homogeneous of degree 1, and m-summable. If Φ
is µ-summable or non-negative, homogeneous of degree 1 and µ-measurable, the integral
of Φ with respect to µ is defined by :

∫
Φ(x)dµ(x) =

∫
Φ(x)dm(x) (1.6)

The notation µ(Φ) will also be used to denote the integral.

Proof of 1.10. Let p : F∗ −→ (0,+∞) be positive homogeneous of degree 1 and univer-
sally measurable. Let S = {x : p(x) = 1} be the corresponding section, let ρ(x) = x/p(x)
and let m̃i = ρ(pmi). Then m̃1 and m̃2 being localizations of µ on S, one has m̃1 = m̃2

by theorem 1.6. Thus it suffices to prove the theorem for m and m̃.

In case 1. a function Φ is m̃-measurable (resp. m̃-negligible) if and only if (Φ ◦ ρ)p

is m-measurable (resp. m-negligible). Since Φ(ρ(x))p(x) = p(x)1−αΦ(x) this is clearly
equivalent to Φ being m-measurable (resp. m-negligible). Similarly, in case 2, since

Φ(ρ(x))p(x) = Φ(x) we have, if Φ ≥ 0,
∫
Φdm̃ =

∫
Φdm ≤ +∞. In particular if Φ :

X −→ IR,
∫
|Φ|dm̃ =

∫
|Φ|dm ≤ +∞ which shows that Φ is m-summable if and only if

Φ is m̃-summable. The equalities of the integrals in that case is obtained similarly, or by

decomposing Φ in its positive and negative parts Φ+ and Φ−, which are also homogeneous
of degree 1 and µ-summable.

Remark 1.12. Let Γ ⊂ F be a cone i.e. a set such that λΓ ⊂ Γ for all λ ≥ 0. Then
the indicator function is homogeneous of degree 0, and so it makes sense to say that Γ is
µ-measurable (resp. µ-negligible) if it is m-measurable (resp. m-negligible) with respect
to some localization m of µ.

Let L1(µ) denote the linear space of functions Φ : F∗ −→ IR which are positive homo-
geneous of degree 1, and µ-summable, equipped with the seminorm N1 : Φ 7−→ µ(|Φ|).
The quotient of L1(µ) by the subspace of null functions is as usual denoted L1(µ). It is
a Banach space. In fact we have :

Theorem 1.13. Let µ be a conical integral. Then

1. L1(µ) is complete.

2. The space h(F ) is a dense subspace of L1(µ).

Proof. 1. Let m be a localization of µ on a section S. Let Φn ∈ L1(µ) be such that∑
n
µ(|Φn|) < +∞. Let Φ(x) =

∑
n
Φn(x) if

∑
n
|Φn(x)| < +∞, and let Φ(x) = 0 otherwise.
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Then Φ is positive homogeneous of degree 1, and Φ =
∑
n
Φn in the space L1(m), and so

in L1(µ). This implies that L1(µ) is complete.

2. Let S be a section on which µ can be localized in a measure m (theorem 1.7). Then, as
shown in the proof of theorem 1.6, the set H of restrictions ϕ|S, with ϕ ∈ h(F ), satisfies

the conditions of theorem 1.3. The space H being dense in L1(S,m), h(F ) is dense in

L1(µ).

Note that since µ(||Φ| − |ϕ||) ≤ µ(|Φ− ϕ|), the set h+(F ) is also dense in L1
+(µ).

Let us determine the dual of L1(µ) : Let L∞(µ) be the space of functions

Ψ : F∗ −→ IR which are positive homogeneous of degree 0, i.e. constant on rays, µ-
measurable, and such that there exists a number M ∈ IR such that |Ψ(x)| ≤M µ-almost
everywhere (i.e. m-almost everywhere for any localization m of µ). Let N∞(Ψ) denote the
smallest number M with this property. The quotient of the space L∞(µ) by the subspace
of functions equal to 0 µ-a.e. is denoted by L∞(µ).

Theorem 1.14. Let Φ ∈ L1(µ), Ψ ∈ L∞(µ). Then ΦΨ ∈ L1(µ) and

|
∫
ΦΨdµ| ≤ N1(Φ)N∞(Ψ) (1.7)

In particular Ψ defines a continuous linear form on L1(µ) which only depends on the class

of Ψ in L∞(µ). The corresponding map from L∞(µ) to L1(µ)′ is an isometric isomorphism

of the first space onto the second : i.e. L1(µ)′ = L∞(µ).

Proof. ΦΨ being homogeneous of degree 1 the first assertion is obvious. Let m be a
localization of µ on a section S which meets every ray in F∗. Then the map Ψ 7−→ Ψ |S
is a linear isomorphism of L∞(µ) onto L∞(S,m). Thus the assertion results from the
corresponding theorem for Radon measures.

In particular, if Γ is a µ-measurable cone one defines the integral of Φ ∈ L1(µ) over Γ :

∫

Γ
Φdµ =

∫
1ΓΦ dµ (1.8)

Remark. If 1 < p < +∞ one can similarly define the space Lp(µ) to be the space of
functions Φ : F∗ −→ IR which are positive homogeneous of degree 1/p, µ-measurable, and

such that
∫
|Φ|pdµ < +∞. The space Lp(µ) is a Banach space whose dual is isomorphic

to Lp
′
(µ), if 1/p′ + 1/p = 1. Theorems 1.13 and 1.14 allow us to prove the following fact

however, relevant to our subject :

Theorem 1.15. Let µ be a conical integral, i.e. a localizable conical measure, and let ν
be a conical measure such that 0 ≤ ν ≤ µ i.e. :

0 ≤ ν(ϕ) ≤ µ(ϕ) ∀ ϕ ∈ h+(F ) (1.9)
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Then ν is localizable. Moreover, if m is a localization of µ there exists a localization n of
ν such that 0 ≤ n ≤ m.

Proof. For ϕ ∈ h(F ) we have :

|ν(ϕ)| ≤ ν(|ϕ|) ≤ µ(|ϕ|) (1.10)

Thus by theorem 1.13 ν extends to a continuous linear form on L1(µ). By theorem 1.14
there exists a function Ψ ∈ L∞(µ) such that :

ν(ϕ) =

∫
ϕΨdµ ∀ ϕ ∈ h(F ) (1.11)

Now since h+(F ) is dense in L1
+(µ), the inequalities (1.9) imply that 0 ≤ Ψ(x) ≤ 1

µ a.e., and so we may assume 0 ≤ Ψ ≤ 1. If µ is localized in m we have, by definition of
the integral in (1.11) that ν(ϕ) =

∫
ϕΨdm. This means that ν is localized in the measure

n = Ψm, and 0 ≤ n ≤ m.

1.3. Admissible sections.

In connection with integral representations one is interested in conical integrals which are
concentrated on cones :

If µ is localizable on Γ , i.e. some localization of µ is concentrated on Γ , it is a consequence
of theorem 1.10 (remark 1.12) that every localization of µ is concentrated on Γ . In this
case the conical integral µ will be said to be itself concentrated on Γ . More intrinsically,
Γ∗ denoting Γ\{0} : µ is concentrated on Γ if the cone F\Γ∗ is µ-negligible.

Obviously, if µ is concentrated on Γ we have µ(ϕ) ≥ 0 for every ϕ ∈ h(F ) such that
ϕ(x) ≥ 0 for all x ∈ Γ , i.e. µ is carried by Γ .

Conversely it can be shown that if Γ is a weakly closed cone (in particular if Γ is a closed
convex cone) a conical integral µ carried by Γ is concentrated on Γ , [34].

A subset S of Γ∗ such that each ray in Γ meets S in precisely one point will be called a
section of Γ . One can then define the gauge of S, as the function pS : Γ −→ [0,+∞),
positive homogeneous of degree 1, which is equal to 1 on S. It then follows that S = {x ∈
Γ : pS(x) = 1}.

Definition 1.16. The section S of Γ will be called admissible if the function pS :
Γ −→ [0,+∞) is universally measurable.

For instance a hyperplane section (where pS is the restriction to Γ of a continuous
linear form) is an admissible section. Note however that even proper closed convex cones

do not in general have hyperplane sections (e.g. IRIN
+ in IRIN).

The section constructed for the benefit of theorem 1.7 is an admissible section of F∗. We
therefore have as a consequence of theorem 1.7 :
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Corollary 1.17. Every cone Γ has an admissible section.

Proof. The restriction to Γ of a universally measurable function is a universally mea-
surable function on Γ (whatever the topological properties of Γ ). It suffices therefore to
take the intersection of Γ with an admissible section of F∗.

Theorem 1.18. Let Γ be a cone and let S be an admissible section of Γ . Let µ be a
conical integral which is concentrated on Γ . Then µ has a unique localization on S.

Proof. The uniqueness is a consequence of theorem 1.6. Existence : Let m be a lo-
calization of µ. Then m is concentrated on Γ , hence 0 < pS(x) < +∞ m a.e.. Let
ρ(x) = x/pS(x). By lemma 1.8 µ is localizable on S = {x ∈ Γ : pS(x) = 1} in the
measure m̃ = ρ(pSm).

To obtain practical criteria yielding admissible sections recall that a topological Hausdorff
space is called a Suslin space if it is the continuous image of a Polish space. Such a space
is of course separable. Borel subsets of Suslin spaces are Suslin. Schwartz [32] has shown
that practically every separable space encountered in analysis is Suslin (the only exception

seems to be IRIR). In particular any nuclear space which is a strict inductive limit of a
sequence of Fréchet spaces (necessarily separable), is a Suslin space and its strong dual is
also a Suslin space [32, p.115].

Theorem 1.19.

1. Let S ⊂ Γ be a Suslin section of Γ (i.e. a section of Γ which is a Suslin space).
Then S is an admissible section.

2. A cone Γ has a Suslin section if and only if Γ is itself a Suslin space. In particular,
every closed cone in a locally convex Suslin space has a Suslin section.

As a consequence we see that a Borel section of a Suslin cone is admissible. On the other
hand there seems to be no particular reason for a Borel section of an arbitrary cone to be
admissible.

Proof of 1.19. Let pS be the gauge of S. Let π : IR+ × Γ −→ Γ be the function defined
by π(λ, x) = λx. Then for every number α ≥ 0, the set

{x ∈ Γ : pS(x) ≤ α} =
⋃

0≤λ≤α
λS = π([0, α]× S) (1.12)

is the continuous image of the Suslin space [0, α] × S and so is a Suslin subspace of Γ .
Thus it is a universally measurable subset of Γ [32, p. 124]. If Γ has a Suslin section
S, Γ = π([0,+∞) × S) is itself a Suslin space. Conversely, if Γ is a Suslin space, there
exists a countable family (`n)n∈IN of continuous linear forms separating the points of Γ

[32, p.105]. Let p(x) = |`n(x)| if n is the smallest index for which |`n(x)| is positive. Then
S = {x ∈ Γ : p(x) = 1} is a Borel section of Γ , and therefore a Suslin section.

To translate the theorem on integral representations below into the more usual concrete
terms we introduce the following definition :
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Definition 1.20. An admissible parametrization of the cone Γ is a one-to-one contin-
uous map t 7−→ γ(t) from a Hausdorff space T to Γ such that the image S = Im(γ) is an
admissible section and the inverse map S −→ T is universally measurable.

(Trivial example : T = S an admissible section, γ the identity).

Theorem 1.21. Let µ be a conical integral concentrated on Γ . Let γ be an admissible
parametrization of Γ . Then there exists a unique Radon measure m on T such that :

µ(ϕ) =

∫

T
ϕ(γ(t))dm(t) (1.13)

for all ϕ ∈ h+(F ). Conversely, if m is a Radon measure on T such that

∫

T
|`(γ(t))|dm(t) < +∞ ∀ ` ∈ F ′ (1.14)

formula (1.13) defines a conical integral which is localizable on Γ .

Proof. Let n be a localization of µ on S = Im(γ), and let m be the image of n under

γ−1. Then γ being continuous, m is locally finite. Moreover m is the only measure whose
image under γ is n. Thus n being uniquely determined by µ, so is m. For the converse
observe that by (1.14) the image n of m under γ satisfies condition (1.4), and so is locally
finite. The regularity condition (1.3) follows from the continuity of γ.

Example 1.22. Let T be a Suslin space. Then if γ : T −→ Γ\{0} is continuous,
one-to-one, and such that every ray of Γ meets the image Im(γ) in one point, γ is an
admissible parametrization of Γ .

Indeed S = Im(γ) is then a Suslin section of Γ , and the inverse map is universally
measurable by von Neumann’s selection theorem ([32] p.127).

Note that every Polish space, and in particular every locally compact space having a
countable basis of open sets, is Suslin (cf. Introduction). Also the set E(K) of extreme
points of a compact convex metrizable set K is a Gδ in K, so E(K) is Polish ([29], prop.
1.3).

1.4. Note on Radon measures.

A positive Radon measure m on a Hausdorff space X is a positive measure on the Borel
sets of X which is locally finite (the open sets of finite measure cover X) and inner regular
with respect to compact sets. Since we make use of positive measures only we refer to
positive Radon measures simply as Radon measures.

Choquet [9] has characterized Radon measures as functions of a compact set which are
increasing, sub-additive, additive for disjoint sets and continuous on the right. This
characterization is in the case of Hausdorff spaces almost as useful as the Riesz Markov
theorem in the case of locally compact spaces.
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The integration theory used in this article for m, following [32] and [4], is the standard

theory for the measure space (X,Bm, m), where Bm is the set of m-measurable subsets
of X i.e. the set of subsets A ⊂ X such that for every compact subset K of X,A ∩ K
is in the Lebesgue completion with respect to m of the Borel σ-algebra. For A ∈ Bm

m(A) is defined by inner regularity as in (1.3). The Radon measure m is concentrated
on a set S ⊂ X if S is m-measurable and m(X\S) = 0. By Lusin’s theorem a function
Φ : X −→ IR is measurable with respect to Bm if and only if for every compact K ⊂ X,
and ε > 0 there exists a compact subset K ′ ⊂ K, such that m(K\K ′) ≤ ε and the

restriction of Φ to K ′ is continuous. For functions Φ to more general topological spaces
this is taken as a definition of m-measurability.

If n is a Radon measure on an arbitrary topological subspace S ⊂ X, its image under
the inclusion map is a Radon measure m on X which is concentrated on S, and n is the
restriction of m to S. Thus one need not distinguish between measures on S and measures
on X concentrated on S (cf. [32, pp. 36,37]).

The integral of a non-negative m-measurable function Φ ≥ 0 has the property :
∫
Φdm =

sup
K

∫
K Φdm. We use the term m-summable, to denote the m-measurable functions

Φ : X −→ IR such that
∫
|Φ|dm < +∞. These functions are called essentially m-

integrable by Bourbaki [4].

If m is moderate, i.e. if X is the union of a countable set of open subsets of finite
measure, m is then outer regular as well, and the terms m-summable and m-integrable
are synonymous.

If there exists a sequence (`n)n∈IN in F ′ separating the points of F , every measure m on

F∗ which satisfies condition (1.4) is moderate. The open sets On,k = {x ∈ F∗ : |`n(x)| >
1/k} then form a countable covering of F∗ by open sets of finite m-measure.

There exist conuclear spaces which are not countably separated, for instance the dual of

IRI , I uncountable, so we do not make any assumption as to the space being countably
separated. All spaces of practical importance seem to be countably separated however.

2. Integral representations.

Recall from [7] that if µ is a conical measure on F , the resultant r(µ) of µ is the point

f , belonging to the weak completion of F (the algebraic dual of F ′) such that

`(f) = µ(`) ∀ ` ∈ F ′ (2.1)

If µ is a conical integral it follows that for every localization m of µ,

`(f) =

∫
`(x)dm(x) ∀ ` ∈ F ′ (2.2)

Relation (2.2), which expresses that f is the resultant of the measure m, will be abbrevi-
ated as follows :

f =

∫
xdm(x) (2.3)
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The identity map x→ x being homogeneous of degree 1 one may also write :

f =

∫
xdµ(x) (2.4)

Let M+(F ) denote the set of conical integrals µ such that r(µ) belongs to F :

M+(F ) = {µ ∈M+
loc(F ) : r(µ) ∈ F} (2.5)

If Γ ⊂ F is a cone let M+(Γ ) denote the set of µ ∈ M+(F ) such that µ is concentrated
on Γ .

Observe that M+(Γ ) is a convex subcone of M+(F ) : if µ and ν have localizations m
and n concentrated on Γ, ν + µ is localized in n + m and so concentrated on Γ . Also
r(ν + µ) = r(ν) + r(µ) belongs to F .

We shall make use of the notation :

Γ ′ = {` ∈ F ′ : `(x) ≥ 0 ∀ x ∈ Γ} (2.6)

Proposition 2.1. If Γ is a closed convex cone we have

r(µ) ∈ Γ ∀ µ ∈ M+(Γ ) (2.7)

Proof. By (2.2) `(r(µ)) ≥ 0 for all ` ∈ Γ ′. But by the Hahn-Banach separation theorem

one has Γ = {x ∈ F : `(x) ≥ 0 ∀ ` ∈ Γ ′}.

For the remaining part of the paper Γ will be a closed convex cone of F which is proper :
i.e. Γ ∩ −Γ = {0}. One then defines an order relation in F by putting :

f ≤ g ⇐⇒ g − f ∈ Γ (2.8)

In particular Γ = {f ∈ F : f ≥ 0}.

The cone Γ is said to be a lattice if any two members of Γ have a smallest common
majorant with respect to this order relation.

An extreme generator of Γ is a point f ∈ Γ such that 0 ≤ g ≤ f implies that g = λf
for some number λ ≥ 0. Let ext(Γ ) denote the set of extreme generators. It is obviously
a subcone of Γ . Alternatively :

ext(Γ ) = {f ∈ Γ : f = f1 + f2, fi ∈ Γ =⇒ fi = λif} (2.9)

If ext(Γ ) = {0} Γ is said to have no extreme generator. Note that M+(ext(Γ )) ⊂
M+(Γ ). Consequently we have r(µ) ∈ Γ for all µ ∈ M+(ext(Γ )).

Definition 2.2. Let Γ be a closed convex proper cone in F , and let f ∈ Γ . An integral

representation of f by means of extreme generators is a conical integral µ ∈ M+(ext(Γ ))
such that r(µ) = f .
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Thus the point f ∈ Γ has a (unique) integral representation by means of extreme gener-

ators if there exists µ ∈ M+(ext(Γ )) (resp. if there exists a unique

µ ∈ M+(ext(Γ ))) such that r(µ) = f .

Let us verify that this definition agrees with the usual concept of “integral representation” :

In the first place, assume Γ has a hyperplane section, a base :

B = {x ∈ Γ : `o(x) = 1} (2.10)

where `o ∈ F ′ is such that `o(x) > 0 for all x ∈ Γ∗. Then B ∩ ext(Γ ) = E(B), the set

of extreme points of B, is an admissible section of ext(Γ ), and so every µ ∈ M+(ext(Γ ))
has a unique localization m on E(B). Thus f ∈ Γ has a (unique) integral representation if
and only if there exists a (unique) Radon measure m on E(B), satisfying condition (1.4),

such that f =
∫
xdm(x).

Next assume γ : t 7−→ et is an admissible parametrization of ext(Γ ) defined on T . Then
f has a (unique) integral representation if and only if there exists a (unique) Radon

measure on T satisfying condition (1.14) such that `(f) =
∫
`(et)dm(t) for all ` ∈ F ′, i.e.

f =
∫
etdm(t). Thus our definition is simply a precise rendering of the accepted notion.

The problem is to know for which convex cones Γ every element f ∈ Γ has a (unique)

integral representation. Precisely : for which convex cones is the map r :M+(ext(Γ ))→
Γ surjective (respectively bijective).

To summarize the main results known today we shall say that a closed convex cone Γ has
the integral representation property (I.R.P.) if :

a) For every closed convex subcone Γ1 ⊂ Γ , the map r :M+(ext(Γ1))→ Γ1 is onto.

b) The map r : M+(ext(Γ1)) −→ Γ1 is bijective if and only if Γ1 is a lattice (with
respect to its proper order).

Then Choquet’s theorem affirms that if Γ has a compact metrizable base, Γ has the
I.R.P. .

The theorem of Edgar and Bourgin [6], [15] says that if F is a separable Banach space,
and Γ has a bounded base having the Radon Nikodym property, then Γ has the I.R.P. .
Their results and theorem 5.1 below have a common generalization in which the compact
metrizable sets are replaced by closed bounded Suslin sets having the Radon-Nikodym
property [37].

On the other hand, Choquet’s results on weakly complete cones show that every closed

convex proper subcone of IRIN has the I.R.P. . More generally, every weakly complete
cone which is the union of metrizable caps, in particular every weakly complete weakly
metrizable proper convex cone, has the I.R.P. (cf. [8, §30]).

Recall that a cap of a cone Γ is a convex compact set K ⊂ Γ such that Γ\K is convex.
The extreme points of such a cap lie on the extreme rays of Γ , i.e. E(K) ⊂ ext(Γ ). Thus if
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Γ is a closed convex cone, not necessarily weakly complete, which is the union of its metriz-

able caps, Choquet’s theorem immediately implies that the map r : M+(ext(Γ )) −→ Γ
is onto. We’ll show that such a cone actually has the I.R.P., i.e. also the uniqueness
theorem holds, even if Γ is not weakly complete.

3. Conuclear spaces and conuclear cones.

Recall the definition of a conuclear space (cf. [20], [30], [32]) : Let F be a locally convex
Hausdorff space, which, to avoid trivial complications, is assumed to be quasi-complete
(i.e. the closed bounded sets are complete).

Let S be a set of closed, bounded, convex, symmetric subsets of F . With every set
A ∈ S one associates the space FA =

⋃
λ≥0

λA, equipped with the norm whose unit ball is

A. Then FA is a Banach space continuously included in F . If B ∈ S and A ⊂ B one has
continuous inclusions FA ↪→ FB ↪→ F .

The space F is S-conuclear if for every set A ∈ S, there exists B ∈ S, such that A ⊂ B,
and such that the inclusion FA ↪→ FB is a nuclear map (cf. [32] p.222, 227). If S is
the set of all closed convex bounded symmetric sets of F , the space F is simply called a
conuclear space.

Proposition 3.1. In a quasi-complete conuclear space every closed bounded set A is
compact and metrizable.

Proof. The closed convex hull of A∪(−A) being bounded we may assume that A is closed
convex and symmetric. Then there exists a closed bounded symmetric set B containing A
such that the inclusion map FA ↪→ FB is nuclear. But then, nuclear maps being compact,
A is relatively compact in the Banach space FB. Being closed in F, A is closed and so
compact in FB, hence compact metrizable in F .

Most conuclear spaces are duals of nuclear spaces. In fact a space is conuclear, quasi-
complete, and barreled if and only if it is the strong dual of a quasi-complete barreled
nuclear space. The dual of a nuclear Fréchet space being nuclear, and nuclear Fréchet
spaces being reflexive, every nuclear Fréchet space is conuclear (cf.[20], [32]).

One can give an equivalent definition of conuclear spaces as follows :

Proposition 3.2. The space F is S-conuclear if for every set A ∈ S, there exists
B ∈ S, with A ⊂ B, such that the inclusion FA ↪→ FB is an absolutely summing map.

Proof. Nuclear maps being absolutely summing, and the product of two absolutely sum-
ming maps being nuclear, this is clear (cf. [30] 3.3.5).

If B is a closed convex bounded set in F , containing 0, let :

pB(x) = inf{λ ≥ 0 : x ∈ λB} (3.1)

Then pB : F → [0,+∞] is subadditive, positive homogeneous of degree 1, and one has :

B = {x ∈ F : pB(x) ≤ 1} (3.2)
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If B is symmetric FB = {x ∈ F : pB(x) < +∞} and the restriction of pB to FB is the
norm of FB.

Proposition 3.3. The inclusion map FA ↪→ FB is absolutely summing if and only if
there exists a constant M ≥ 0 with the property that for every finite family (xi)i∈I in FA
one has ∑

i∈J
xi ∈ A ∀ J ⊂ I =⇒

∑

i∈I
pB(xi) ≤M. (3.3)

(which implies
∑
i∈I

pMB(xi) ≤ 1).

Proof. More generally, let FA and FB be normed spaces over IR with unit ball A and B
respectively, and let u : FA −→ FB be a linear map. Denote A◦ the unit ball of the dual
(FA)′. Then u is absolutely summing if there exists M such that for every finite family
(xi)i∈I in FA one has :

∑

i∈I
| < xi, x

′ > | ≤ 1 ∀ x′ ∈ A◦ =⇒
∑

i∈I
||u(xi)|| ≤M (3.4)

Now the condition
∑
i∈I
| < xi, x

′ > | ≤ 1 ∀ x′ ∈ A◦ implies | < ∑
i∈J

xi, x
′ > | ≤ 1 ∀ x′ ∈

A◦, hence
∑
i∈J

xi ∈ A, for all J ⊂ I. Conversely the condition
∑
i∈J

xi ∈ A, for all J ⊂ I,

implies
∑
i∈I
| < xi, x

′ > | ≤ 2 ∀ x′ ∈ A◦ ; it suffices to distinguish the indices i ∈ I such

that < xi, x
′ >> 0 and < xi, x

′ >≤ 0. The conclusion follows.

One can now define conuclear cones in analogy with this : Let Γ be a convex cone in a
locally convex Hausdorff space F . Let co(S) denote the convex hull of a set S ⊂ F .

Proposition 3.4. Let A,B be closed convex bounded sets in Γ , containing 0. Then the
following properties of the pair (A,B) are equivalent :

1. For every finite family (xi)i∈I of elements in Γ one has :

∑

i∈I
xi ∈ A =⇒

∑

i∈I
pB(xi) ≤ 1 (3.5)

2. A ∩ co(Γ\B) = ∅.

Notation : If (A,B) satisfies these equivalent conditions we write A << B. Note that
A << B implies A ⊂ B.

Proof of the equivalence : 1. =⇒ 2. Let (A,B) satisfy 1. and let us assume on the
contrary that A ∩ co(Γ\B) 6= ∅. Let yi ∈ Γ\B,

∑
i
αiyi ∈ A, αi ≥ 0, and

∑
i
αi = 1. Then

∑
i
αipB(yi) =

∑
i
pB(αiyi) ≤ 1, which is a contradiction since pB(yi) > 1 for all i.
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2. =⇒ 1. Let xi ∈ Γ be such that
∑
i
xi ∈ A, xi 6= 0 for all i, and assume to the contrary

that
∑
i
pB(xi) > 1. Then there are numbers αi such that 0 < αi < pB(xi) and

∑
i
αi = 1.

Let yi = xi/αi. Then pB(yi) > 1 so yi ∈ Γ\B, and
∑
i
xi =

∑
i
αiyi ∈ co(Γ\B), in

contradiction to the assumption.

Let S be a set of closed bounded convex subsets of Γ containing 0. It is convenient to
assume that S satisfies the following two conditions :

A ∈ S =⇒ λA ∈ S ∀ λ ≥ 0,

Γ = ∪{A : A ∈ S}. (3.6)

Definition 3.5. The cone Γ will be called S-conuclear if Γ is the union of the sets
belonging to S and if for every A ∈ S there exists B ∈ S such that A << B.

If S is the set of all compact convex subsets of Γ containing 0, we shall say that Γ is
cc-conuclear.

Example 3.6. Let Γ be the union of its caps (resp. its metrizable caps). Let K (resp.
Ko) denote the set of caps (resp. metrizable caps) of Γ . Then Γ is K-conuclear (resp.
Ko-conuclear).

In fact a cap is a convex compact subset A ⊂ Γ containing 0 such that Γ\A is convex.
Thus A << A by the second characterization in 3.4. This can also be seen by the first
characterization, because it is known that the gauge pA of a cap is additive.

Example 3.7. Let F = C([0, 1])′ = M([0, 1]) be the space of real Radon measures on
[0, 1], equipped with the weak * topology. Let δ be the Dirac measure at 0 (or any other
point). Let K = {ν − δ : ||ν|| ≤ 1} and let Γ =

⋃
λ≥0

λK. Then Γ is a closed convex

cc-conuclear cone in M([0, 1]) which is not the union of its caps.

The fact that it is closed is seen as follows : every element in Γ can be written in the
form λ(ν − δ), where ||ν|| ≤ 1 and ν{0} = 0. This implies ||ν − δ|| ≥ ||ν||+ 1 ≥ 1. From
this one easily deduces that the intersection of Γ with every closed ball is closed (in the
weak * topology). Thus by the theorem of Banach-Dieudonné Γ is itself closed. Now it
has been shown by Goullet de Rugy ([19], prop. 2.3) that K << 2K (K is ‘conical’ in
the terminology of [19]) and that Γ is not the union of its caps. Thus if S = {λK}λ≥0 Γ
is S-conuclear, although Γ is not the union of its caps. By the argument showing that Γ
is closed it follows that every compact subset of Γ is contained in some set λK. Thus Γ
is also cc-conuclear.

Proposition 3.8. Let Γ be a closed convex cone which is S-conuclear. Then any closed
convex cone Γ1 ⊂ Γ is S1-conuclear where S1 is the set of intersections A ∩ Γ1, with
A ∈ S.

This is obvious.
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Proposition 3.9. Let Γ be a closed convex cone which is S-conuclear. Then for every
point f ∈ Γ the order interval Γ ∩ (f − Γ ) is a bounded subset of Γ . In particular
Γ ∩ (−Γ ) = {0}, i.e. Γ is proper. If Γ is cc-conuclear, Γ ∩ (f − Γ ) is compact for each
f ∈ Γ .

Proof. Let f ∈ A ∈ S. Choose B ∈ S such that A << B. Then Γ ∩ (f − Γ ) ⊂ B.
In fact, if g ∈ Γ ∩ (f − Γ ) one has f = g + (f − g), both term belonging to Γ , so
pB(g) + pB(f − g) ≤ 1. In particular pB(g) ≤ 1, i.e. g ∈ B. The set Γ ∩ (−Γ ), being a
bounded linear subspace, equals {0}. Finally, if B is compact (resp. compact metrizable)
the set Γ ∩ (f − Γ ), being a closed subset of B, has the same property.

Theorem 3.10. Let F be a quasi-complete conuclear space. Let Γ ⊂ F be a closed
convex cone. Then the following conditions are equivalent :

1. Γ ∩ (f − Γ ) is bounded for every f ∈ Γ .

2. Γ ∩ (f − Γ ) is compact for every f ∈ Γ .

3. Γ is cc-conuclear.

4. There exists S satisfying conditions (3.6) such that Γ is S-conuclear.

We shall call a closed convex cone Γ in a quasi-complete conuclear space, which satisfies
the conditions in theorem 3.10, simply a conuclear cone.

Corollary 3.11. Let F be a quasi-complete conuclear space and let Γ ⊂ F be a weakly
complete proper convex cone. Then Γ is conuclear.

In fact it is known that in that case F ′ = Γ ′ − Γ ′ (cf. (2.6)), and so the order intervals
are weakly bounded, hence bounded by Mackey’s theorem (cf. [8 prop. 30.10]).

Proof of 3.10. 1. =⇒ 2. by theorem 3.1. ; 3. =⇒ 4. is trivial ; 4. =⇒ 1. is a consequence
of 3.9. For the proof of the main assertion 2. =⇒ 3. we need the following lemma. In it
and in the sequel we use the notation :

If = Γ ∩ (f − Γ ) (3.7)

for the the interval between 0 and f with respect to the proper order of Γ , and

A∗ = Γ ∩ (A− Γ ) (3.8)

for the set
⋃
f∈A

If .

Lemma 3.12. Let Γ be a closed convex cone in a sequentially complete locally convex
space F such that the order intervals If are compact for all f ∈ Γ . Then for every

compact subset A ⊂ Γ , the set A∗ is closed and bounded.

Proof. Since A−Γ is closed so is A∗. To prove that A∗ is bounded it is sufficient to show
that every sequence (xn)n∈IN in A∗ is bounded. Let yn ∈ A be such that 0 ≤ xn ≤ yn.

Let (λn)n∈IN be a sequence of non negative numbers such that
∑
n
λn < +∞. Then for
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every continuous seminorm p, we have
∑
n
λnp(yn) < +∞. The space F being sequentially

complete the series
∞∑
n=1

λnyn converges. Let f =
∞∑
n=1

λnyn and put sn =
n∑
k=1

λkxk. Then

0 ≤ sn ≤ sn+1 ≤ f . Consequently, for every ` ∈ Γ ′ (cf. (2.6)) we have `(sn) ≤ `(sn+1) ≤
`(f), which implies that lim

n→∞
`(sn) exists. Now since Γ ∩ (−Γ ) = {0}, Γ ′ separates

the points of F . Therefore on the compact set If the uniform structure induced by F

coincides with the uniform structure defined by the topology σ(F, Γ ′). Thus (sn)n∈IN
is a Cauchy sequence. It converges and so the series

∑
n
λnxn converges. In particular

lim
n→∞

λnp(xn) = 0 for every continuous seminorm p. This being the case for every such

sequence (λn)n∈IN we have sup
n
p(xn) < +∞, i.e. (xn)n∈IN is bounded.

One can now prove the implication 2. =⇒ 3. in 3.10 : Let A be a convex compact subset
of Γ . Then A∗ is convex and compact by the lemma and by proposition 3.1. Thus the
set As = A∗ −A∗ is convex compact and symmetric. The space F being conuclear, there
exists a convex compact symmetric set Bs containing As such that the inclusion map
FAs ↪→ FBs is absolutely summing. Replacing Bs by MBs if necessary, one can assume

that the constant M occurring in the analogue of (3.3) equals 1. Then if B = Γ ∩Bs we

have A << B. In fact, if xi ∈ Γ and
∑
i∈I

xi ∈ A, we have
∑
i∈J

xi ∈ A∗ ⊂ As for all subsets

J ⊂ I, and so, since pB(x) = pBs(x) for all x ∈ Γ , we have
∑
i∈I

pB(xi) ≤ 1

4. Approximation lemmas.

Let F be any locally convex Hausdorff space over IR. Let s(F ) be the set of functions of
the form

ϕ = sup
i
`i (4.1)

i.e. supremum of a finite family of continuous linear forms. Then s(F ) is a convex cone
in h(F ), and h(F ) = s(F )− s(F ) (cf. (1.1)).

Given conical measures µ and ν one defines, following Choquet [8], an order relation as
follows :

µ ≺ ν ⇐⇒ µ(ϕ) ≤ ν(ϕ) ∀ ϕ ∈ s(F ) (4.2)

Since s(F ) generates h(F ) this relation is in fact anti-symmetric.

Also note that for ` ∈ F ′, both ` and −` belong to s(F ). Thus

µ ≺ ν =⇒ r(µ) = r(ν) (4.3)

For any point x belonging to F , or its weak completion, one defines the conical measure
εx, for ϕ ∈ h(F ), by :

εx(ϕ) = ϕ(x) (4.4)
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Note that by (1.2)
λεx = ελx ∀ λ ≥ 0 (4.5)

expressing the fact that we are dealing with rays in cones rather than with points in convex
sets. The conical measure εx is localizable if and only if x belongs to F . If f = r(µ) one
obviously has :

εf ≺ µ (4.6)

Let D be the set of conical integrals which are finite sums
∑
i
εxi, with xi ∈ F .

The following definitions will be useful when dealing with cones which are not necessarily
weakly complete :

Definition 4.1. A conical measure µ ∈M+(F ) is approximable if one has,

µ(ϕ) = sup{ν(ϕ) : ν ≺ µ, ν ∈ D} ∀ ϕ ∈ s(F ) (4.7)

A conical measure µ ∈M+(F ) is strictly approximable if µ belongs to the closure, for the

topology σ(M+(F ), h(F )), of the set of conical integrals ν ∈ D such that ν ≺ µ.

Remark. Every strictly approximable conical measure is obviously approximable. No
example seems to be known of an approximable conical measure which is not strictly

approximable. By the Hahn-Banach theorem D is dense in M+(F ) for the topology

σ(M+(F ), h(F )).

If Γ is a weakly closed cone, in particular if Γ is a closed convex cone, a conical measure
µ is said to be carried by Γ if µ(ϕ) = 0 for all ϕ ∈ h(F ) such that ϕ(x) = 0 for all x ∈ Γ .
Equivalently µ(ϕ) ≥ 0 for all ϕ ∈ h(F ) such that ϕ(x) ≥ 0 for all x ∈ Γ (cf. [8, 30.5,
30.6]).

Proposition 4.2. Let µ be an approximable conical measure carried by a closed convex
cone Γ . Then, if ν =

∑
i
εxi ≺ µ, we have xi ∈ Γ for all i. Also r(µ) ∈ Γ .

Proof. Let ` ∈ Γ ′ and let `− = sup(−`, 0) be its negative part. Then
∑
i
`−(xi) =

ν(`−) ≤ µ(`−) = 0. Thus `−(xi) = 0 for all i. Consequently `(xi) ≥ 0 for all ` ∈ Γ ′, and
so by the Hahn-Banach separation theorem xi belongs to Γ . Finally r(µ) = r(ν) =

∑
i
xi

belongs to Γ .

Applying this with Γ = F we get :

Corollary 4.3. If µ is approximable r(µ) belongs to F .

In the remainder of this section it is assumed that Γ is a closed convex cone such that
the closed convex hull of any compact subset K ⊂ Γ is compact, i.e. Γ has the convex
envelope property : Γ ∈ (CE).

If F is quasi-complete this is the case for every closed convex cone.



248 E.G.F. Thomas / Integral representations in conuclear cones

Proposition 4.4. Let Γ be a closed convex cone satisfying condition (CE). Then every
conical integral concentrated on Γ , with r(µ) ∈ F , is strictly approximable and carried by
Γ .

Proof. Let µ be localized in m on Γ . Let K be a compact subset of Γ and let µK be

the conical integral defined by µK(ϕ) =
∫
K ϕ(x)dm(x). By our hypothesis on Γ, r(µK) =∫

K xdm(x) belongs to Γ . Consequently r(µ − µK) = r(µ) − r(µK) belongs to F , hence

to Γ , µ− µK being concentrated on Γ (cf. 2.1).

Now fix ϕ ∈ h(F ) and let ε > 0 be given. Choose K convex and compact in Γ such that
|µ(ϕ)− µK(ϕ)| ≤ ε and such that, if xo = r(µ− µK), |ϕ(xo)| ≤ ε. The restriction of ϕ to
K being uniformly continuous for the weak topology, there exists a partition of K into
convex Borel sets Ai, i = 1, . . . , n, intersections of polyhedral sets with K, such that for

any choice of points ai belonging to the closure Ai one has the following approximation
of the integral by Riemann-Lebesgue sums :

|
∫

K
ϕdm−

n∑

i=1

ϕ(ai)m(Ai)| ≤ ε (4.8)

in particular for ai = 1
m(Ai)

∫
Ai
xdm(x) if m(Ai) > 0. Thus, if mi = 1Aim and xi = r(mi)

we have :

|µK(ϕ)−
n∑

i=1

ϕ(xi)| ≤ ε (4.9)

Also, if ψ ∈ s(F ), we have :

n∑

i=1

ψ(xi) =
n∑

i=1

′m(Ai)ψ(ai) ≤
n∑

i=1

∫

Ai

ψdm =

∫

K
ψdm (4.10)

the primed sum being over all the indices i such that m(Ai) > 0. Thus we have
n∑
i=1

εxi ≺

µK . Since εxo ≺ µ − µK we have
n∑
i=0

εxi ≺ µ. By our construction it follows that

|µ(ϕ) −
n∑
i=0

εxi(ϕ)| ≤ 3ε. It is clear that if {ϕ} is any finite subset of h(F ), one could

have chosen K and the partition (Ai) in such a way that the approximation is valid
simultaneously for all the functions ϕ under consideration. Thus µ belongs to the closure
of the set of ν ∈ D such that ν ≺ µ. Since any conical integral concentrated on Γ is
obviously carried by Γ this ends the proof.

Proposition 4.5. Let Γ be a closed convex cone satisfying the condition (CE). Let
Γ be S-conuclear, S being a set of compact subsets of Γ satisfying the conditions (3.6).

Then the following conditions on the conical measure µ ∈M+(F ) are equivalent :

1. µ is localizable on Γ and r(µ) ∈ F , briefly : µ ∈ M+(Γ ).
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2. µ is strictly approximable and carried by Γ .

3. µ is localizable on a set B ∈ S, in a measure m with
∫
B dm ≤ 1.

Proof. 1. =⇒ 2. This is a particular case of the previous result 4.4. ; 2.=⇒ 3. By 4.2
we know that r(µ) belongs to Γ . Let f = r(µ) belong to A ∈ S.

Choose B such that A << B. If ν =
∑
i∈I

εxi ≺ µ, we have xi ∈ Γ and
∑
i∈I

xi = f .

Consequently
∑
i∈I

pB(xi) ≤ 1. Thus, δy being the Dirac measure at y, ν is localizable on B

in the measure
∑
i∈I

pB(xi)δyi , where yi = xi/pB(xi). This measure has a total mass ≤ 1.

(Since ε0 = 0, we may assume without loss of generality that xi 6= 0 for all i ∈ I). Now
let (να) be a net in D, with να ≺ µ, and µ(ϕ) = lim

α
να(ϕ) for all ϕ ∈ h(F ). Let mα be

a localization of να on B such that
∫
dmα ≤ 1. The set of Radon measures on B, with

total mass ≤ 1, is compact in the vague topology. If m is a limit point of the net (mα)
we have :

µ(ϕ) = lim
α
να(ϕ) = lim

α

∫

B
ϕdmα =

∫

B
ϕdm (4.11)

Thus the restriction of m to B\{0} is a localization of µ on B with total mass at most 1.

3. =⇒ 1. If µ is localized on B in m, with
∫
B dm ≤ 1, we have r(µ) = r(m) ∈ B. Thus

r(µ) belongs to F , and µ belongs to M+(Γ ).

Remark 4.6. It has been shown in the course of the proof that if A and B are compact

subsets of Γ such that A << B, every µ ∈ M+(Γ ), such that r(µ) ∈ A, can be localized
on B in a measure with total mass ≤ 1.

5. The main integral representation theorem.

In this section it is again assumed that F is an arbitrary locally convex Hausdorff space
and that Γ is a closed convex cone in F satisfying the condition (CE) i.e. the closed
convex envelope of every compact subset of Γ is compact. If F is quasi-complete every
closed convex cone Γ in F has this property.

For f ∈ Γ let If = Γ∩(f−Γ ) be the order interval between 0 and f , and let Γ (f) =
⋃
λ≥0

Iλf

be the face generated by f in Γ . Then Γ (f) is a convex subcone of Γ whose proper order
is identical to the order induced by Γ . Clearly Γ is a lattice if and only if Γ (f) is a lattice
for all f ∈ Γ .

Theorem 5.1. Let Γ be a closed convex cone in F satisfying condition (CE). Assume
that Γ is S-conuclear, S being a set of compact metrizable subsets of Γ whose union is
Γ . Then we have :

A) The map r :M+(ext(Γ )) −→ Γ is surjective, i.e. every point f ∈ Γ has an integral
representation.
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B) The point f ∈ Γ has a unique integral representation, i.e. the set

{µ ∈ M+(ext(Γ )) : r(µ) = f} is a singleton, if and only if Γ (f) is a lattice. In

particular the map r :M+(ext(Γ ))→ Γ is bijective if and only if Γ is a lattice.

Before proving this theorem we note two consequences : the theorem mentioned in the
introduction (in terms of conical integrals), and the theorem on well-capped cones :

Theorem 5.2. Let F be a quasi-complete conuclear space. Let Γ ⊂ F be a closed convex
cone such that the order intervals Γ ∩(f−Γ ), f ∈ Γ , are bounded subsets of the topological
vector space F . Then Γ has the properties A) and B) of theorem 5.1. In particular this
is the case for every weakly complete proper convex cone Γ ⊂ F .

The first statement is a consequence of theorem 5.1 because Γ is cc-conuclear (theorem
3.10) and because the compact subsets of Γ are metrizable (proposition 3.1). By corollary
3.11 weakly complete cones have bounded order intervals.

Theorem 5.3. Let F be an arbitrary locally convex Hausdorff space. Any closed convex
cone Γ ⊂ F , satisfying the condition (CE), which is the union of metrizable caps, has the
properties A) and B).

In fact, if Ko is the set of metrizable caps in Γ , Γ is Ko-conuclear. Note that in this

case the surjectivity of the map r : M+(ext(Γ )) → Γ is an immediate consequence of
Choquet’s theorem applied to the caps.

Corollary 5.4. Under the assumption of theorem 5.1 Γ equals the closed convex hull of
its extreme generators : Γ = co(ext(Γ )).

Proof. By proposition 2.1 Γ = r(M+(ext(Γ ))) is contained in co(ext(Γ )) ⊂ Γ .

Corollary 5.5. Under the hypotheses of theorem 5.1 Γ has the integral representation
property (cf. section 2).

In fact by proposition 3.8. every closed convex subcone of Γ satisfies the conditions of
the theorem.

Corollary 5.6. (Choquet). Any closed convex proper cone in IRIN has the integral
representation property.

In fact IRIN being both weakly complete and conuclear, this immediately results from
theorem 5.2. In this case Choquet has shown that Γ is actually well-capped [8].

Remark 5.7. a) It can happen that some but not all elements of Γ have a unique
integral representation. For instance, any element e ∈ ext(Γ )\{0} has a unique integral
representation : Γ (e) is a ray (cf. [29, 1.4]).

If Γ is a cone with four extreme rays in IR3 it is clear that the elements on the topological
boundary have a unique “integral representation” while those in the interior do not.

From the theory of the Stieltjes moment problem it follows that there exists a closed convex

proper cone Γ ⊂ IRIN which is not a lattice, such that the set of elements in Γ having a
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unique integral representation is dense in Γ . In fact the closed cone Γ ⊂ IRIN generated
by the sequences eλ = (λn)n≥0, λ ∈ IR+, which can be shown to form a section of ext(Γ ),

is not a lattice cone. For Stieltjes [33, p.510] has shown that there are sequences in Γ
having more than one integral representation (cf.[38]). On the other hand the sequences
eλ, with λ ∈ IR+, being linearly independent, their finite linear combinations with positive
coefficients, which are dense in Γ , have a unique ”integral representation”.

b) Under the assumptions of theorem 5.1 it can be shown (using dilations) that a conical

integral µ ∈ M+(Γ ) belongs to M+(ext(Γ )) if and only if µ is maximal in M+(Γ ) with
respect to the Choquet order. If Γ is weakly complete every conical measure carried by

Γ is strictly approximable [8, proof of 30.9], hence belongs to M+(Γ ). Therefore if Γ is

weakly complete µ belongs toM+(ext(Γ )) if and only if µ is maximal in the cone M+(Γ )
of conical measures carried by Γ .

Problem : By theorem 5.1 the cone considered in example 3.7 has the integral represen-
tation property although it is not the union of its caps. Whether the cones in conuclear
spaces considered in theorem 5.2 are union of their caps (i.e. well-capped) is unknown,
even in the case of weakly complete cones. If such a cone is a lattice it is a consequence

of theorem 5.2 that it is well-capped (essentially because M+(ext(Γ )) is well-capped).

For the proof of A) and B), under the assumptions of theorem 5.1, we use the following
abbreviations :

Mf = {µ ∈ M+(Γ ) : r(µ) = f} (5.1)

and
Df = D ∩Mf (5.2)

i.e. the set of finite sums ν =
∑
i
εxi, with xi ∈ Γ and

∑
i
xi = f .

Without restricting the generality we may assume that S is invariant under the transfor-
mations A 7→ λA, λ ≥ 0, i.e. S satisfies conditions (3.6).

For every ϕ ∈ h(F ) and x ∈ Γ let

ϕ′(x) = sup
∑

i

ϕ(xi) (5.3)

where the supremum is taken over all finite families (xi)i∈I such that xi ∈ Γ for all i ∈ I,
and

∑
i
xi = x. Equivalently :

ϕ′(x) = sup{ν(ϕ) : ν ∈ Dx) (5.4)

Lemma 5.8. The function ϕ′ has the following properties :

ϕ(x) ≤ ϕ′(x) < +∞ ∀ x ∈ Γ (5.5)

ϕ′(x + y) ≥ ϕ′(x) + ϕ′(y) ∀ x, y ∈ Γ (5.6)
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ϕ′(λx) = λϕ′(x) ∀ λ ≥ 0, ∀ x ∈ Γ (5.7)

ϕ′(x) = ϕ(x) ∀ x ∈ ext(Γ ) (5.8)

These are, except for the finiteness in (5.5), immediate consequences of the definition.

The inequality ϕ′(x) < +∞ can be obtained as follows : Let x ∈ A << B, and let
M = sup

y∈B
ϕ(y). Then by the homogeneity of pB we have ϕ ≤ MpB on Γ . Consequently

ϕ′(x) ≤ M sup(
∑
i
pB(xi)) ≤ M , the supremum being taken over the same families as in

(5.3).

Lemma 5.9. For every set A ∈ S the restriction ϕ′|A is upper semi-continuous.

Proof. Instead of (5.4) we also have

ϕ′(x) = sup{µ(ϕ) : µ ∈ Mx} (5.9)

since by proposition 4.4 Dx is dense in Mx. If x ∈ A << B we know (remark 4.6)

that every µ ∈ Mx can be localized on B in a measure m with
∫
B dm ≤ 1. Let M1

x(B)

be the set of Radon measures on B such that
∫
B dm ≤ 1 and r(m) = x. Then by

(5.9) ϕ′(x) = sup{
∫
ϕdm : m ∈ M1

x(B)}. Now M1
x(B) being compact in the vague

topology (i.e. the weak * topology in the duality with the continuous functions on B),

this supremum is attained. If (xα) is a net in A converging to x, and such that k ≤ ϕ′(xα)

for all α, let mα ∈ M1
x(B) be such that ϕ′(xα) =

∫
B ϕdmα, and let m be a limit point

of the net (mα) with respect to the vague topology. Then m ∈ M 1
x(B) and we have

k ≤
∫
B ϕdm ≤ ϕ′(x). Thus ϕ′|A is upper semi-continuous.

Lemma 5.10. If µ ∈ Mf , ϕ′ is µ-summable and one has :

µ(ϕ) ≤ µ(ϕ′) ≤ ϕ′(f) (5.10)

Proof. Let f ∈ A << B, and let m be a probability measure on B localizing µ (if

m ∈ M1
f (B) and λ =

∫
dm < 1 one can always replace m by 1/λ times the image of m

under the map x 7→ λx). Then by (5.5) and the fact that ϕ|B is upper semi-continuous

ϕ′ is m-integrable and we have
∫
B ϕdm ≤

∫
B ϕ
′dm. Also, since by (5.6) and (5.7) ϕ′ is

concave we have
∫
B ϕ
′dm ≤ ϕ′(f) (note that, by the Hahn-Banach theorem, ϕ′|B is the

infimum of functions −ψ, ψ ∈ s(F ) (cf. [8], 21.23). Thus ϕ′ being homogeneous of degree

1, ϕ′ is µ-summable and we have (5.10).

We can now proceed with the proof of part A) of the theorem : Let f ∈ Γ be given.
Choose A,B and C in S such that f ∈ A << B << C. Then B∗ ⊂ C and so B∗,
being obviously closed (cf.(3.8)), is compact and metrizable. There then exists a sequence
(`n)n∈IN of continuous linear forms on F with the property that if x, y ∈ B∗ are not

proportional, there exists n ∈ IN such that `n(x) and `n(y) are of opposite sign, hence
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|`n(x+ y)| < |`n(x)|+ |`n(y)| . Scaling the `n if necessary, we may assume |`n(x)| ≤ 1/n2

for all x ∈ B. Put Φ(x) =
∑
n∈IN
|`n(x)| for all x ∈ Γ . Then Φ : Γ −→ [0,+∞] is positive

homogeneous of degree 1, subadditive, and the restriction Φ|B is finite and continuous.
Also we have Φ(x1 + x2) < Φ(x1) + Φ(x2) if x1 and x2 belong to B∗ and are non-
proportional.

Let Φ′(x) = sup
∑
i
Φ(xi), the supremum being taken over all finite families (xi)i∈I with

xi ∈ Γ , and
∑
i
xi = x. Then, except for the finiteness, Φ′ has the properties of ϕ′

described in Lemma 5.8. In particular Φ(x) ≤ Φ′(x) for all x ∈ Γ , with equality for
x ∈ ext(Γ ).

Lemma 5.11. If µ ∈ Mf , Φ′ is µ-summable. Moreover

µ(Φ) ≤ µ(Φ′) ≤ Φ′(f) < +∞ (5.11)

and
Φ′(f) = sup{µ(Φ) : µ ∈ Mf} (5.12)

Proof. If Φ(x) ≤ M for all x ∈ B,Φ(x) ≤ MpB(x) for all x ∈ Γ , hence Φ′(f) ≤ M .

Let Φn(x) =
n∑
i=1
|`i(x)|. Then Φn ≤ Φn+1 ≤ Φ, Φ′n ≤ Φ′n+1 ≤ Φ′, Φ = sup

n
Φn and so

exchanging two suprema : Φ′ = sup
n
Φ′n. By lemma 5.10 we have µ(Φn) ≤ µ(Φ′n) ≤ Φ′n(f),

and so, applying the monotone convergence theorem to some localization of µ, we obtain
the inequalities (5.11). Now (5.12) is obvious since by definition Φ′(f) = sup{ν(Φ) : ν ∈
Df}.

Note that Φ′n|B being upper semi-continuous, Φ′|B is a Borel function.

The proof of A) now results from :

Lemma 5.12. The supremum in (5.12) is attained. If µ ∈ Mf is such that µ(Φ) =

Φ′(f), µ is concentrated on ext(Γ ). (In particular ext(Γ ) 6= {0}).

Proof. Every µ ∈ Mf being localized in some m ∈M1
f (B), the supremum in (5.12) can

be written sup{
∫
Φdm : m ∈ M1

f (B)}, and this is attained, Φ|B being continuous. This

proves the first assertion.

Let µ ∈ Mf be such that µ(Φ) = Φ′(f) then by (5.11) we have µ(Φ) = µ(Φ′). If m is a

localization of µ on B :
∫
Φdm =

∫
Φ′dm. Thus Φ(x) = Φ′(x) for m-almost all x ∈ B.

Now if x ∈ B and x = x1 + x2, x1 and x2 being non proportional elements of Γ , we have
Φ(x) < Φ(x1) + Φ(x2) ≤ Φ′(x). Thus m is concentrated on the set

B ∩ ext(Γ ) = {x ∈ B : Φ(x) = Φ′(x)} (5.13)
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and so µ is concentrated on ext(Γ ). Since r(µ) = f this ends the proof of A).

It is convenient at this point to first prove :

Proposition 5.13. Under the assumptions of theorem 5.1, ext(Γ ) is universally mea-
surable. For all B ∈ S, B ∩ ext(Γ ) is a Gδ in B. In particular, if Γ is cc-conuclear
K ∩ ext(Γ ) is a Gδ in K for every compact set K ⊂ Γ .

Proof. By (5.13) B ∩ ext(Γ ) is a Borel set for all B ∈ S. More precisely B ∩ ext(Γ ) =

{x ∈ B : Φ′(x) ≤ Φ(x)} =
⋂
n∈IN
{x ∈ B : Φ′n(x) < Φ(x) + 1/n} is a Gδ in B for all B ∈ S.

Now let m be any Radon measure on Γ with compact support. Then by condition (CE)

r(m) belongs to Γ . Thus the conical integral µ which is localized in m belongs toM+(Γ ).

By proposition 4.5 µ is also localized in a measure m′ on a set B ∈ S. Then as we have
seen, ext(Γ ) is m′-measurable. But the indicator of ext(Γ ) being homogeneous of degree
0, theorem 1.10 implies that ext(Γ ) is m-measurable.

A similar argument, using lemma 5.8, shows that the functions ϕ′ are universally mea-
surable.

Now we can give the proof of B) in theorem 5.1 : First assume that Γ (f) is a lattice.

Lemma 5.14. The set Df is directed with respect to the Choquet order.

Proof. Let ν ′ =
∑
i∈I

εxi and ν′′ =
∑
j∈J

εyj be elements of Df . In particular,
∑
i∈I

xi =

∑
j∈J

yj = f . Then by the Riesz decomposition property (cf. [29, 9.1]) there exists a family

(zij)i∈I,j∈J in Γ (f) such that xi =
∑
j∈J

zij and yj =
∑
i∈I

zij for every i and j. If ν =
∑
i,j
εzi,j

we have ν ∈ Df , ν
′ ≺ ν and ν ′′ ≺ ν.

As a consequence of this lemma we have, for each ϕ ∈ s(F ) :

ϕ′(f) = sup
ν∈Df

ν(ϕ) = lim
ν∈Df

ν(ϕ) (5.14)

Since h(F ) = s(F )− s(F ) the limit on the right hand side, with respect to the directed
set Df , also exists for every ϕ ∈ h(F ). If ϕ ∈ h(F ), let :

µf (ϕ) = lim
ν∈Df

ν(ϕ) (5.15)

Then µf is obviously a conical measure, carried by Γ , with resultant f . Moreover µf is

strictly approximable by construction. Thus proposition 4.5 implies that µf is a conical

integral localizable on a set B ∈ S. Also, with the notation of Lemma 5.11 and its proof,
we have µf (Φn) = µf (Φ′n) = Φ′n(f) and so µf (Φ) = µf (Φ′) = Φ′(f). Consequently by

lemma 5.12 we have µf ∈ M+(ext(Γ )).
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To prove the uniqueness in B) we will show that for any µ ∈ M+(ext(Γ )) with r(µ) = f

one has µ = µf . It is clear from lemma 5.10 and the identity (5.14) that for µ ∈ M+(Γ )

we have
µ(ϕ) ≤ µf (ϕ) ∀ ϕ ∈ s(F ) (5.16)

To get the opposite inequality if µ ∈ M+(ext(Γ )) it will be convenient to use the following
lemmas :

Lemma 5.15. Let µ ∈ M+(Γ ). Then

µ(ϕ′) = inf ν(ϕ′) (5.17)

where ν describes the set of discrete conical integrals obtained as follows : ν =
∑
i∈I

εxi,

where xi = r(µi), with µi ∈ M+(Γ ) and
∑
i∈I

µi = µ.

Proof. By lemma 5.10, µi(ϕ
′) ≤ ϕ′(xi), hence µ(ϕ′) ≤ ∑

i∈I
ϕ′(xi) = ν(ϕ′). Let r(µ) ∈

A << B, and let µ be localized on B in a measure m with
∫
B dm ≤ 1. Then ϕ′|B being

upper semi-continuous, there exists, ε > 0 being given, a continuous function g : B → IR
such that g ≥ ϕ′|B and

∫
B gdm ≤

∫
B ϕ
′dm + ε, (cf. [8], 21.23). Moreover, g being

uniformly continuous with respect to the weak topology, which on K coincides with the
given topology, there exists a finite partition of B :

⋃
i∈I

Bi = B, in convex Borel sets, such

that the oscillation of g on each setBi is at most ε. Let bi = 1
m(Bi)

∫
Bi
xdm(x) ifm(Bi) > 0.

Then bi ∈ Bi and so g(bi) ≤ g(x) + ε for all x ∈ Bi. Let xi = m(Bi)bi if m(Bi) > 0

and xi = 0 otherwise. Then we have
∑
i∈I

ϕ′(xi) =
∑
i∈I

m(Bi)ϕ
′(bi) ≤

∑
i∈I

m(Bi)g(bi) ≤
∑
i∈I

∫
Bi

(g(x) + ε)dm(x) ≤
∫
B gdm + ε ≤ µ(ϕ′) + 2ε. If µi is defined by the formula

µi(ψ) =
∫
Bi
ψdm, we have µi ∈ M+(Γ ), r(µi) = xi, and

∑
i∈I

µi = µ.

Lemma 5.16. Let µ ∈ Mf . Then we have :

µf (ϕ) ≤ µ(ϕ′) ∀ ϕ ∈ s(F ) (5.18)

Proof. By the previous lemma it is sufficient to prove this when µ =
∑
i∈I

εxi belongs

to Df , which we now assume. Let ν ∈ Df be such that µf (ϕ) < ν(ϕ) + ε. This can

be achieved with µ ≺ ν, µf being the limit of elements � µ (5.15). Let ν =
∑
j∈J

εyj .

Using the Riesz decomposition property of Γ (f) we may even assume that ν has been so
chosen that there exists a partition J =

⋃
i∈I

Ji such that xi =
∑
j∈Ji

yj for all i ∈ I. Then

∑
j∈Ji

ϕ(yj) ≤ ϕ′(xi) by definition of ϕ′. Adding these inequalities we obtain ν(ϕ) ≤ µ(ϕ′),

and so µf (ϕ) ≤ µ(ϕ′) + ε, which proves the lemma.
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With this the proof of the uniqueness is complete, for if µ ∈ Mf is concentrated on

ext(Γ ) we have ϕ′(x) = ϕ(x) µ almost everywhere, whence µf (ϕ) ≤ µ(ϕ′) = µ(ϕ) for

all ϕ ∈ s(F ). Comparing with (5.16) we see that µ(ϕ) = µf (ϕ) for all ϕ ∈ s(F ), hence
µ = µf .

Thus we have shown that if Γ (f) is a lattice f has a unique integral representation. In

particular, if Γ is a lattice the map r :M+(ext(Γ )) −→ Γ is a bijection.

Next consider the converse. Let us first assume that the map r is a bijection, and show that

Γ is a lattice. The map r being linear it is sufficient to show thatM+(ext(Γ )) is a lattice.

Now h(F ) being a lattice, it is well known that M+(F ) is a lattice. But M+(ext(Γ )) is

a face in M+(F ) i.e. 0 ≤ ν ≤ µ, µ ∈ M+(ext(Γ )) implies ν ∈ M+(ext(Γ )). In fact, by

theorem 1.15 if m is a localization of µ on a set B ∈ S with
∫
B dm ≤ 1, ν has a localization

n on B with n ≤ m. Thus r(ν) =
∫
xdn(x) belongs to F and n is concentrated on ext(Γ ),

i.e. ν ∈ M+(ext(Γ )). Therefore M+(ext(Γ )) is a lattice.

To obtain the full converse, assume f ∈ Γ has a unique integral representation i.e.

Mf ∩M+(ext(Γ )) is a singleton. Then every element g ∈ Γ with g ≤ f has a unique

integral representation. In fact if g = r(µ′) = r(µ′′), with µ′, µ′′ in M+(ext(Γ )), and

ν ∈ M+(ext(Γ )) is such that r(ν) = f − g, the conical integrals µ′ + ν and µ′′ + ν are

elements of M+(ext(Γ )) representing f . Since they are equal µ′ = µ′′. More generally,
every element in Γ (f) has a unique integral representation.

If x ∈ Γ (f) let µx denote the unique element ofM+(ext(Γ )) such that r(µx) = x. Then,
if f = g+h, µg+µh is a conical integral concentrated on ext(Γ ) representing f . Therefore

µf = µg +µh, in particular µg ≤ µf . Let M+(µf ) be the face generated by µf in M+(F ).

Then again by theorem 1.15 we have M+(µf ) ⊂ M+(ext(Γ )). In particular r maps

M+(µf ) into Γ and so into Γ (f). Therefore the map r : M+(µf ) → Γ (f) is bijective,

and so M+(µf ) being a lattice, Γ (f) is a lattice.

Remark 5.17. If Γ (f) is a lattice one can write instead of (5.15) :

µf (ϕ) = lim
∑

i

ϕ(fi) (5.19)

equivalently :

µf = lim
∑

i

εfi (5.20)

the limit being taken with respect to the directed set of finite partitions of f , i.e. the
finite families (fi)i∈I in Γ such that

∑
i∈I

fi = f , ordered by the relation “finer than”. This

will be useful in applications to direct integrals.
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[19] A. Goullet de Rugy : Sur les cônes engendrés par une famille de convexes compacts, Bull.

Soc. Math. de France 97 (1973), 241–252.

[20] A. Grothendieck : Produits tensoriels topologiques et espaces nucléaires, Amer. Math, Soc.
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