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We derive partial differential inclusions of hyperbolic type solutions of which are feedbacks governing
viable (controlled invariant) solutions of a control system. We also show that the tracking property
leads to such partial differential inclusions. We state a variational principle and an existence theorem of
a (single-valued contingent) solution to such an inclusion.

1. Introduction

Let X, Y, Z denote finite dimensional vector-spaces. We studied in [14] the existence of
dynamical closed-loop controls regulating state-control solutions of a control system:

{
x′(t) = f(x(t), u(t))

u(t) ∈ U(x(t))
(1.1)

where U : X ∼>Y is a closed set-valued map and f : Graph(U) 7→ X a continuous
(single-valued) map with linear growth (in the sense that ‖f(x, u)‖ ≤ c(‖x‖+ ‖u‖+ 1)).
Consider a nonnegative continuous function ϕ : Graph(U) 7→ IR+ with linear growth
and set K := Dom(U). We address in this paper the problem of finding feedback (or
closed-loop) controls r : K 7→ Y satisfying the constraint

∀ x ∈ K, r(x) ∈ U(x)

and the regulation property: for any x0 ∈ K, there exists a solution to the differential
equation

x′(t) = f(x(t), r(x(t))) & x(0) = x0

such that u(t) := r(x(t)) ∈ U(x(t)) is absolutely continuous and fulfils the growth condi-
tion

‖u′(t)‖ ≤ ϕ(x(t), u(t))
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We observe that the graphs of such feedback controls are viability domains (whose defini-
tion is recalled in the appendix) of the system of differential inclusions

{
x′(t) = f(x(t), u(t))

u′(t) ∈ ϕ(x(t), u(t))B
(1.2)

contained in the graph of U . By the Viability Theorem such feedback controls are solutions
to the following contingent differential inclusion

∀ x ∈ K, 0 ∈ Dr(x)(f(x, r(x)))− ϕ(x, r(x))B

satisfying the constraints
∀ x ∈ K, r(x) ∈ U(x)

where Dr(x) is the contingent derivative1 of r at x. We shall study this partial differential
inclusion, provide a variational principle and an existence theorem.
We observe that the existence of a dynamical closed loop is a particular case of the tracking
problem, which is studied under several names in many fields, and specially, arises in
engineering (see for instance [18]). Indeed, consider two set-valued maps F : X ×Y ∼>X,
G : X × Y ∼>Y and the system of differential inclusions

{
x′(t) ∈ F (x(t), y(t))

y′(t) ∈ G(x(t), y(t))

We would like to characterize a set-valued map H : X ∼>Y , regarded as an observation
map satisfying the following tracking property: for every x0 ∈ Dom(H) and every y0 ∈
H(x0), there exists a solution (x(·), y(·)) to this system starting at (x0, y0) and satisfying

∀ t ≥ 0, y(t) ∈ H(x(t))

The answer to this question is again a solution to a viability problem, since we actually
look for (x(·), y(·)) which remains viable in the graph of H. By the Viability Theorem
the tracking property is equivalent to the fact that H is a solution to the contingent
differential inclusion

∀ (x, y) ∈ Graph(H), 0 ∈ DH(x, y)(F (x, y))−G(x, y)

When F and G are single-valued maps f and g and H is a differentiable single-valued map
h, the contingent differential inclusion boils down to the quasi-linear hyperbolic system of

1 The contingent derivative DH(x, y) of a set-valued map H : X ∼>Y at (x, y) ∈ Graph(H)
is defined by

Graph(DH(x, y)) := TGraph(H)(x, y)

where TGraph(H)(x, y) denotes the contingent cone to Graph(H) at (x, y) (whose definition

is recalled in the appendix). When H = h is single-valued, we set Dh(x) := Dh(x, h(x)).
See [10, Chapter 5] for more details on differential calculus of set-valued maps.
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first-order partial differential equations2:

∀ j = 1, . . . , m,
n∑

i=1

∂hj
∂xi

fi(x, h(x))− gj(x, h(x)) = 0

Knowing F and G, we have to find observation maps H satisfying the tracking property,
i.e., to solve the above contingent differential inclusion. Furthermore, we can address
other questions such as : Find single-valued solutions h to the contingent differential
inclusion which then becomes

∀ x ∈ K, 0 ∈ Dh(x)(F (x, h(x)))−G(x, h(x)) (1.3)

In this case, the tracking property states that there exists a solution to the “reduced”
differential inclusion

x′(t) ∈ F (x(t), h(x(t)))

so that (x(·), y(·) := h(x(·))) is a solution to the initial system of differential inclusions
starting at (x0, h(x0)). Knowing h allows to divide the system by half, so to speak.
Let us mention right now that looking for “weak” solutions to this contingent differen-
tial inclusion in Sobolev spaces or other spaces of distributions does not help since we
require solutions h to be defined through their graph, and thus, solutions which are defined
everywhere.
It may seem strange to accept set-valued maps as solutions to an hyperbolic system of
partial differential inclusions. But this may offer a way to describe shocks by the set-
valued character of the solution. Derivatives in the sense of distributions do not provide
the unique way to describe weak or generalized solutions. Contingent derivatives offer
another possibility to weaken the required properties of a derivative, losing the linear
character of the differential operator, but allowing a pointwise definition. It may be
useful for tackling hyperbolic problems. This has been already noticed in [16, 17, 24, 25]
for conservation laws.
Indeed, let us consider a single-valued map f : X 7→ Y and its differential quotients

∇hf(x)(v) :=
f(x+ hv)− f(x)

h
. If f is Gâteaux differentiable, then these differential

quotients converge for the pointwise convergence topology (when h → 0). This strong
requirement can be weakened in (at least) two ways, each way sacrificing different groups
of properties of the usual derivatives.

• The distributional derivative is the limit of the difference-quotients x 7→ ∇hf(x)(v) :=

f(x+ hv)− f(x)

h
(when h → 0) in the space of distributions, and the limit

is a vectorial distribution Dvf ∈ D′(X;Y ) (i.e. no longer necessarily a single-
valued function). Furthermore, one can define differential quotients of any vectorial

distribution T ∈ D′(X;Y ) and the derivative of a distribution as their limit (when
h→ 0) in the space of distributions.

2 For several special types of systems of differential equations, the graph of such a map
h (satisfying some additional properties) is called a center manifold . Existence of local
center manifolds have been widely used for the study of stability near an equilibrium and
in control theory. See [7, 8, 20, 23] for instance.
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• The contingent derivative is the upper graphical limit of the difference-quotients

v 7→ ∇hf(x)(v) :=
f(x+ hv)− f(x)

h
(when h→ 0+), and the limit is a set-valued

map Df(x) : X ∼>Y (and no longer necessarily a single-valued function). Further-
more, one can define differential quotients for any set-valued map F : X ∼>Y
at (x, y) ∈ Graph(F ) by v ∼>F (x+hv)−y

h , h > 0 and the contingent derivative of a

set-valued map as their upper graphical limit (when h→ 0+).

In both cases, the approaches are similar: they use (different) convergencies weaker than
the pointwise convergence for increasing the possibility for the difference-quotients to
converge, at the price of losing some properties by passing to these weaker limits (the
pointwise character for distributional derivatives, the linearity of the differential operator
for graphical derivatives).
The use of contingent derivatives (for instance of the value function for optimal control
problems) is by no means new (see for instance [1], [6, Chapter 6], [28], [29]). It has been
shown in [28], [29] that “contingent solutions” are related by duality to the “viscosity
solutions” introduced in the context of Hamilton-Jacobi equations by Crandall & Lions in
[22] (see also [21] and the literature following these papers). In the context of this paper
(quasi-linear but set-valued hyperbolic differential inclusions), Proposition 4.4 makes ex-
plicit the duality relations between contingent solutions and solutions very closed in spirit
to the viscosity solutions in the case when Y = R. The variational principle we prove
below (Theorem 4.1) states that for systems of partial differential equations or inclusions,
the contingent solutions are adaptations to the vector-valued case of viscosity solutions.
Solutions to the contingent differential inclusion are defined in section 2. We then devote
section 3 to the study of the transpose of contingent derivatives, and in particular, to
a series of new convergence results, which play here as well as elsewhere a crucial role.
For instance Proposition 3.5 below implies that a functional involving such transposes of
contingent derivatives is lower semicontinuous for the ... pointwise convergence topology.
The variational principle is the topic of section 4 and the existence of solutions the object
of section 5. These results are applied to characterize and find feedback controls regulating
solutions in section 6.

2. Contingent Differential Inclusion

Consider two finite dimensional vector-spaces X and Y , two set-valued maps F : X×Y ∼
>X, G : X × Y ∼>Y and a set-valued map H : X ∼>Y . Throughout the whole paper we
assume that F, G are upper semicontinuous, have nonempty convex compact images and
the linear growth :

∃ c > 0, ∀ x ∈ X, y ∈ Y, ‖F (x, y)‖+ ‖G(x, y)‖ ≤ c(‖x‖ + ‖y‖+ 1)

where ‖F (x, y)‖ := supv∈F (x,y) ‖v‖.
We associate with these data the contingent differential inclusion

∀ (x, y) ∈ Graph(H), 0 ∈ DH(x, y)(F (x, y))−G(x, y) (2.1)

Definition 2.1. A set-valued map H : X ∼>Y satisfying (2.1) is a solution to the above
contingent differential inclusion if its graph is a closed subset of Dom(F ) ∩Dom(G).
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When H = h : Dom(h) 7→ Y is a single-valued map with closed graph contained in
Dom(F ) ∩ Dom(G), the partial contingent differential inclusion (2.1) becomes

∀ x ∈ Dom(h), 0 ∈ Dh(x)(F (x, h(x)))−G(x, h(x)) (2.2)

Actually solutions to (2.1) enjoy some stability. Recall that the graph of the graphical

upper limit H] of a sequence of set-valued maps Hn : X ∼>Y is, by definition, the graph
of the upper limit of the graphs of the maps Hn. (See [10, Chapter 7].) Then results from
[5] imply

Theorem 2.2. [Stability]
Let us consider a sequence of upper semicontinuous set-valued maps Fn : X × Y ∼>X,
Gn : X × Y ∼>Y with nonempty convex compact images and uniform linear growth in the
sense that there exists a constant c > 0 such that

sup
n≥0

(‖Fn(x, y)‖+ ‖Gn(x, y)‖) ≤ c(‖x‖+ ‖y‖+ 1)

and their graphical upper limit F ] and G]. Consider also a sequence Hn : X ∼>Y of
solutions to the contingent differential inclusions

∀ (x, y) ∈ Graph(Hn), 0 ∈ DHn(x, y)(Fn(x, y))−Gn(x, y) (2.3)

Then the graphical upper limit H ] of the solutions Hn is a solution to

∀ (x, y) ∈ Graph(H]), 0 ∈ DH](x, y)(coF ](x, y))− co(G](x, y)) (2.4)

In particular, if the set-valued maps Fn and Gn converge graphically to F and G respec-

tively, then the graphical upper limit H ] of the solutions Hn is a solution to (2.1).

Since the graphical convergence of single-valued maps is weaker than pointwise conver-
gence, the graphical limits of single-valued maps which are converging pointwise may well
be set-valued.
In the next section we provide some convergence results implying a dual characterization
of solutions to partial differential inclusions.

3. Codifferentials

A set-valued map whose graph is a closed cone is called a closed process. It is a closed
convex process if its graph is furthermore convex. They were introduced by Rockafellar
in [32, 33]. Closed convex processes enjoy most of the properties of continuous linear
operators, as it was shown in [32, 33] and [10, Chapter 2]. The transpose of a closed
process A : X ∼>Y is the closed convex process A∗ : Y ∗ ∼>X∗ defined by Rockafellar in
[32] by

p ∈ A∗(q) if and only if ∀ (x, y) ∈ Graph(A), 〈p, x〉 ≤ 〈q, y〉
We define in a symmetric way the bitranspose A∗∗ : X ∼>Y of A, the graph of which is
the closed convex cone spanned by the graph of A:

Graph(A∗∗) = (Graph(A))− −
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Definition 3.1. Let H : X ∼>Y be a set-valued map and (x, y) belong to its graph. The
transpose DH(x, y)∗ : Y ∗ ∼>X∗ of the contingent derivative DH(x, y) is called the codif-
ferential of H at (x, y). When H := h is single-valued, we set Dh(x)∗ := Dh(x, h(x))∗.

Recall that whenever h is Lipschitz around x, Dh(x)(u) 6= ∅ for every u ∈ X (see [10,
Proposition 5.1.4]).

Lemma 3.2. Let K ⊂ X and h : K 7→ Z be a single-valued map Lipschitz around
x ∈ K. Then p ∈ Dh(x)∗(q) if and only if for any ε > 0, there exists δ > 0 such that

∀ y ∈ B(x, δ) ∩K, 〈p, y − x〉 − 〈q, h(y)− h(x)〉 ≤ ε‖x− y‖ (3.1)

Proof. The sufficient condition being straightforward, let us prove the necessary one.
Assume the contrary: there exists ε > 0 and a sequence of elements xn ∈ K converging
to x such that

〈p, xn − x〉 − 〈q, h(xn)− h(x)〉 > ε‖x− xn‖
We set εn := ‖xn − x‖ which converges to 0 and un := (xn − x)/εn, a subsequence of
which converges to some u of the unit sphere. Since h is Lipschitz around x, there exists
a cluster point v ∈ Dh(x)(u) of the sequence

(h(x+ εnun)− h(x))/εn

We thus derived the following contradiction:

〈p, u〉 − 〈q, v〉 ≤ 0 & 〈p, u〉 − 〈q, v〉 ≥ ε

The contingent epiderivative of an extended function V : X 7→ R∪ {+∞} at a point x of
its domain is defined by

D↑V (x)(u) := lim inf
h→0+, u′→u

V (x+ hu′)− V (x)

h

See [10, Chapter 6] for more details on this topic.

The following result characterizes the transpose of the contingent derivative of a set-valued
map H in terms of the contingent epiderivatives of its support function:

Proposition 3.3. Assume that H : X ∼>Y has compact convex values. We associate

with any q ∈ Y ∗ the functions H[
q : X 7→ IR and H]

q : X 7→ IR defined by

∀ x ∈ X, H[
q(x) := inf

y∈H(x)
〈q, y〉 & H]

q(x) := sup
y∈H(x)

〈q, y〉

Let y[q, y
]
q ∈ H(x) satisfy

〈
q, y[q

〉
= H[

q(x) and
〈
q, y]q

〉
= H]

q(x). Then

{
p ∈ X∗ | ∀ u ∈ X, 〈p, u〉 ≤ D↑H[

q(x)(u)
}
⊂ DH(x, y[q)

∗(q)
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If H is Lipschitz at x (in the sense that there exists l > 0 such that H(x) ⊂ H(y) + l‖x−
y‖B for every y in a neighborhood of x), then

DH(x, y]q)
∗(q) ⊂

{
p ∈ X∗ | ∀ u ∈ X, 〈p, u〉 ≤ D↑H

]
q(x)(u)

}

Consequently, when H = h is single-valued and Lipschitz at x, setting h∗q(x) := 〈q, h(x)〉 =

h]q(x) = h[q(x) we obtain the equality

Dh(x)∗(q) =
{
p ∈ X∗ | ∀ u ∈ X, 〈p, u〉 ≤ D↑h

∗
q(x)(u)

}

Proof. Assume first that p ∈ X∗ satisfies

∀ u ∈ X, 〈p, u〉 ≤ D↑H[
q(x)(u)

We prove that for every v ∈ DH
(
x, y[q

)
(u),

D↑H
[
q(x)(u) ≤ 〈q, v〉

Indeed, there exist sequences tn > 0, un ∈ X and vn ∈ Y converging to 0, u and v

respectively such that y[q + tnvn ∈ H(x+ tnun). Therefore,

D↑H[
q(x)(u) ≤ lim inf

n→∞
H[
q(x + tnun)−H[

q(x)

tn
≤ lim inf

n→∞
〈q, vn〉

Consequently, 〈p, u〉 ≤ 〈q, v〉 for every (u, v) ∈ Graph(DH(x, y[q)), so that

p ∈ DH(x, y[q)
∗(q).

Conversely, assume that H is Lipschitz at x, p ∈ DH
(
x, y]q

)∗
(q) and fix u ∈ X. Then

there exist sequences tn > 0 and un converging to 0 and u such that

D↑H]
q(x)(u) = lim

n→∞
H]
q(x+ tnun)−H]

q(x)

tn

Since H is Lipschitz at x, there exists l > 0 such that, for n large enough, y]q belongs to

H(x+ tnun) + ltn‖un‖B, so that it can be written y]q = yn− tnvn where yn ∈ H(x+ tnun)

and ‖vn‖ ≤ l‖un‖. Therefore a subsequence (again denoted by) vn converges to some v,

which belongs to DH(x, y]q)(u). Since 〈q, yn〉 ≤ H]
q(x + tnun) and

〈
q, y]q

〉
= H]

q(x), we

infer that
D↑H]

q(x)(u) ≥ 〈q, v〉 ≥ 〈p, u〉

When h is real-valued, we need only to know the values of Dh(x)∗ at the points 0, +1
and −1 to reconstruct the whole set-valued map Dh(x)∗.
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We observe that for q = +1, D↑h∗q(x)(u) = D↑h(x)(u) and that for q = −1, D↑h∗q(x)(u)

= D↑(−h)(x)(u) and that for q = 0, Dh(x)∗(0) = (Dom(Dh(x)))−.
Recall (see for instance [10, Definition 6.4.7 and Proposition 6.4.8] or [21]) that:

{
p ∈ X∗ | ∀ u ∈ X, 〈p, u〉 ≤ D↑h(x)(u)

}
= ∂−h(x)

is the local subdifferential and

{
p ∈ X∗ | ∀ u ∈ X, 〈p, u〉 ≤ D↑(−h)(x)(u)

}
= −∂+h(x)

is the local superdifferential of h at x. The above characterization then becomes

Proposition 3.4. Let h : X 7→ R be a continuous at x function. Then

Dh(x)∗(+1) = ∂−h(x) & Dh(x)∗(−1) = −∂+h(x)

Proof. We already know that

∂−h(x) ⊂ Dh(x)∗(+1)

Assume now that p ∈ Dh(x)∗(+1). We have to show that for all u, 〈p, u〉 ≤ D↑h(x)(u).
There is nothing to prove if D↑h(x)(u) = +∞. If D↑h(x)(u) is finite, then v := D↑h(x)(u)
belongs to Dh(x)(u), so that 〈p, u〉 ≤ D↑h(x)(u).
We finally claim that the continuity of h at x implies that D↑h(x)(u) > −∞ for any
u ∈ X, which is equivalent to D↑h(x)(0) = 0 thanks to [10, Propositions 6.1.3].
Indeed if not, by [10, Propositions 6.1.4 and Lemma 6.1.1], the pair (0,−1) belongs to
the contingent cone to the epigraph of h at (x, h(x)). Then there exist sequences tn > 0
converging to 0, un converging to 0 and a sequence of vn > 0 going to 1 such that
h(x + tnun) ≤ h(x) − tnvn. On the other hand, h being continuous at x, the continuous
function ϕ defined by ϕ(t) := h(x + tun) satisfies for all large n

ϕ(tn) ≤ h(x)− tnvn ≤ ϕ(0)

and therefore, there exist sn ∈ [0, tn] such that ϕ(sn) = h(x)− tnvn. Setting ũn := sn
tn
un,

which also converges to 0, we observe that h(x + tnũn) = h(x) − tnvn. This means that
−1 ∈ Dh(x)(0). But p ∈ Dh(x)∗(1), and thus, we derived the contradiction:

0 = 〈p, 0〉 ≤ 〈1,−1〉 = −1

Remark. The above proposition allows to reformulate the notion of viscosity solution of
a scalar Hamilton-Jacobi equation Ψ(x, h′(x)) = 0 in the following way: h is a viscosity
solution if and only if

{
i) ∀ p ∈ Dh(x)∗(+1), Ψ(x, p) ≥ 0

ii) ∀ p ∈ Dh(x)∗(−1), Ψ(x,−p) ≤ 0
(3.2)
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The variational principle given in section 4 is based on the following convergence result:

Proposition 3.5. Let K ⊂ X be a closed subset. Assume that h is the pointwise limit
of an equicontinuous family of maps hn : K 7→ Y . Let x ∈ K and p ∈ Dh(x)∗(q) be fixed.
Then there exist subsequences of elements xnk ∈ K converging to x, qnk converging to q

and pnk ∈ Dhnk(xnk)∗(qnk) converging to p.
If the functions hn are differentiable, we deduce that there exist subsequences of elements
xnk ∈ K converging to x and qnk converging to q such that h′nk(xnk)∗(qnk) converges to p.

Proof. We have to prove that there exist subsequences xnk ∈ K and

(pnk ,−qnk) ∈
(
TGraph(hnk )(xnk , hnk(xnk))

)−

converging to x and (p,−q) respectively. So our proposition follows from

Theorem 3.6. Let us consider a sequence of closed subsets Kn and an element x ∈
Liminfn→∞Kn. Set K] := Limsupn→∞Kn.

Then, for any p ∈ (TK](x))−, there exist subsequences of elements xnk ∈ Knk and pnk ∈(
TKnk (xnk)

)−
converging to p and x respectively, i.e.

(TK](x))− ⊂ Limsupn→∞, xn→Kn x
(TKn(xn))−

Proof. It is sufficient to consider the case when x ∈ ⋂∞n=1Kn. If not, we set K̂n :=

Kn+x−un where un ∈ Kn converges to x and observe that x ∈ ⋂∞n=1 K̂n and T
K̂n

(xn) =

TKn(xn − x + un).

Let p ∈ (TK](x))− be given with norm 1. We associate with any positive λ the projection

xλn of x+ λp onto Kn:
∥∥∥x + λp− xλn

∥∥∥ = min
xn∈Kn

‖x+ λp− xn‖ (3.3)

and set

vλn :=
xλn − x
λ

& pλn := p− vλn ∈
(
TKn(xλn)

)−

Let us fix for the time λ > 0. By taking xn = x ∈ Kn in (3.3), we infer that ‖vλn‖ ≤ 2.

Therefore some subsequences xλn′ and vλn′ converge to elements xλ ∈ K] and vλ = xλ−x
λ

respectively. Furthermore, there exists a sequence λi → 0+ such that vλi converge to

some v ∈ TK](x) because ‖vλ‖ ≤ 2 and xλ = x + λvλ ∈ K]. Therefore 〈p, v〉 ≤ 0.

On the other hand, we deduce from (3.3) the inequalities

∥∥∥p− vλn
∥∥∥

2
= ‖p‖2 + ‖vλn‖2 − 2〈p, vλn〉 ≤ ‖p‖2

which imply, by passing to the limit, that ‖v‖2 ≤ 2〈p, v〉 ≤ 0. Thus v = 0. We deduce

that a subsequence vλknk = p− pλknk converges also to 0. The lemma ensues.
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We shall need stronger convergence results, where in the conclusion of Proposition 3.5 we
require that qn and/or xn remain constant. We have to pay some price for that: stronger
convergence assumptions and the use of graphical derivatives Dδh(x) contained in the
graph of Dh(x) which are closed convex processes.
For instance, the circatangent derivative Ch(x), defined in the following way from the
Clarke tangent cone:

Graph(Ch(x)) := CGraph(h)(x, h(x))

is a closed convex process contained in the contingent derivative Dh(x). They coincide
whenever h is sleek at x. We can also use the asymptotic derivative D∞h(x), whose graph
is the asymptotic cone to the graph of h at (x, h(x)). (See [10, Chapters 4,5] for further
details.)
We prove for instance the following

Proposition 3.7. Let K ⊂ X be a closed subset. Assume that h is Lipschitz around
x on K and consider a sequence of continuous maps hn converging to h uniformly on
compact subsets of K. Let x ∈ K and p ∈ Dh(x)∗(q) be fixed. Then there exist a sequence
xn ∈ K converging to x and a sequence pn ∈ Dδhn(xn)∗(q) converging to p.
If the functions hn are differentiable, we infer that there exists a sequence xn ∈ K con-
verging to x such that h′n(xn)∗(q) converges to p.

Proof. Let µ > 0, L := K ∩ B(x, µ) be a compact neighborhood of x on which the
maps hn converge uniformly to h. We apply Ekeland’s Theorem to the functions y 7→
〈q, hn(y)〉−〈p, y〉 defined on this subset. Fix ε ∈]0, µ[. Then there exists xn ∈ L satisfying





〈q, hn(xn)〉 − 〈p, xn〉+ ε‖xn − x‖ ≤ 〈q, hn(x)〉 − 〈p, x〉

∀ y ∈ L, 〈q, hn(xn)〉 − 〈p, xn〉 ≤ 〈q, hn(y)〉 − 〈p, y〉+ ε‖y − xn‖

The first inequality implies that

ε‖x− xn‖ ≤ 〈q, hn(x)− h(x)〉+ 〈q, h(xn)− hn(xn)〉+ 〈p, xn − x〉

−〈q, h(xn)− h(x)〉 ≤ 2‖q‖‖hn − h‖+ 〈p, xn − x〉 − 〈q, h(xn)− h(x)〉

By Lemma 3.2, there exists 0 < δ ≤ µ such that

∀ y ∈ B(x, δ) ∩K, 〈p, xn − x〉 − 〈q, h(xn)− h(x)〉 ≤ ε‖xn − x‖/2

Hence, ‖xn − x‖ ≤ 4‖q‖‖hn − h‖/ε < µ for n large enough.
On the other hand, consider any v ∈ Dhn(xn)(u): There exist εp > 0 converging to 0, up
converging to u and vp converging to v such that hn(xn + εpup) = hn(xn) + εpvp for all p.
Taking y = xn + εpup for p large enough in the second inequality, we infer that

0 ≤ 〈q, vp〉 − 〈p, up〉+ ε‖up‖

and thus, by passing to the limit,

∀ (u, v) ∈ Graph(Dhn(x)), 0 ≤ 〈q, v〉 − 〈p, u〉+ ε‖u‖
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In particular, taking the restriction to Graph(Dδhn(xn)) and noticing that
‖u‖ = supe∈B∗〈u, e〉, this inequality can be written in the form:

0 ≤ inf
(u,v)∈Graph(Dδhn(x))

sup
e∈B∗

(〈q, v〉 − 〈p, u〉+ ε〈e, u〉)

Since B∗ is convex compact and since the graph of Dδhn(x) is convex, the lop-sided
minimax theorem (see for instance [9]) implies the existence of e0 ∈ B∗ such that

0 ≤ inf
(u,v)∈Graph(Dδhn(x))

(〈q, v〉 − 〈p, u〉+ ε〈e0, u〉)

Consequently, (p− εe0,−q) belongs to the polar cone to Graph(Dδhn(xn)), so that pn :=
p− εe0 ∈ Dδhn(xn)∗(q). Summarizing, for any ε > 0 and for any n such that ‖hn− h‖ ≤
ε2/4‖q‖, we have proved the existence of xn ∈ K and pn ∈ Dδhn(xn)∗(q) such that
‖xn − x‖ ≤ ε, ‖pn − p‖ ≤ ε.

Let K ⊂ X be a closed subset and CΛ(K,Z) denote the space of Lipschitz (single-valued)
bounded maps from K to a finite dimensional vector-space Z,

‖h‖Λ := sup
x6=y∈K

‖h(x)− h(y)‖
‖x− y‖ & ‖h‖∞ := sup

x∈K
‖h(x)‖

denote the Lipschitz semi-norm and the sup-norm. Define the norm of the Banach space
CΛ(K,Z) by ‖h‖ = ‖h‖Λ + ‖h‖∞.
We observe the following continuity properties of the contingent derivative:

Lemma 3.8. Let x ∈ K be fixed. Then the map

(h, u) ∈ CΛ(K, Y )×X ∼> Dh(x)(u)

is Lipschitz:

∀ h, g ∈ CΛ(K, Y ), Dh(x)(u) ⊂ Dg(x)(v) + ‖h− g‖Λ‖u‖+ ‖g‖Λ‖u− v‖

Proof. The proof is straightforward from the inequality

∥∥∥∥
h(x+ tu)− h(x)

t
− g(x+ tv)− g(x)

t

∥∥∥∥ ≤ ‖h− g‖Λ‖u‖+ ‖g‖Λ‖u− v‖

We shall need the following stronger statement than Proposition 3.7 :

Proposition 3.9. Let K ⊂ X be a closed subset. Assume that h is Lipschitz and
consider a sequence of Lipschitz maps hn converging to h in CΛ(K, Y ). Let x ∈ K and
p ∈ Dh(x)∗(q) be fixed. Then there exists a sequence pn ∈ Dδhn(x)∗(q) converging to p.

In particular, if the maps hn are differentiable, h′n(x)∗q converges to p.

Proof. Set εn := 2‖q‖‖hn − h‖Λ. By Lemma 3.2 , there exists µ > 0 such that

〈p, y − x〉 − 〈q, h(y)− h(x)〉 ≤ εn‖y − x‖/2
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whenever y ∈ K ∩ B(x, µ). Therefore

〈p, y − x〉 − 〈q, hn(y)− hn(x)〉

≤ εn‖y − x‖/2 + ‖q‖‖(hn − h)(y)− (hn − h)(x)‖

≤ (εn/2 + ‖q‖‖hn − h‖Λ)‖y − x‖ ≤ εn‖y − x‖

On the other hand, consider any v ∈ Dhn(x)(u) and tp → 0+, up → u and vp → v be

such that hn(x+ tpup) = hn(x) + tpvp for all p. Taking y = x+ tpup ∈ K ∩B(x, µ) for n
large enough, we infer that

0 ≤ 〈q, vp〉 − 〈p, up〉+ εn‖up‖

and thus, by letting up and vp converge to u and v,

∀ (u, v) ∈ Graph(Dhn(x)), 0 ≤ 〈q, v〉 − 〈p, u〉+ εn‖u‖

In particular, taking the restriction to Graph(Dδhn(x)) which is convex,

0 ≤ inf
(u,v)∈Graph(Dδhn(x))

sup
e∈B∗

(〈q, v〉 − 〈p, u〉+ εn〈e, u〉)

The lop-sided minimax theorem implies the existence of en ∈ B∗ such that (p− εnen,−q)
belongs to the negative polar cone to Graph(Dδhn(x)), i.e., pn := p−εnen ∈ Dδhn(x)∗(q)

4. The Variational Principle

We characterize in this section solutions to the contingent differential inclusion (2.2)
through a variational principle. For that purpose, we denote by

σ(M, p) := sup
z∈M
〈p, z〉 & σ[(M, p) := inf

z∈M
〈p, z〉

the support functions of M ⊂ X and by B∗ the unit ball of Y ∗.
Consider a closed subset K ⊂ X. We introduce the nonnegative functional Φ defined on
the space C(K, Y ) of continuous maps by

Φ(h) = inf{c ≥ 0 | ∀ x, q, sup
p∈Dh(x)∗(q)

(σ[(F (x, h(x)), p)− σ(G(x, h(x)), q)) ≤ c ‖q‖}

Observe that c is finite if and only if

sup
p∈Dh(x)∗(0)

σ[(F (x, h(x)), p) ≤ 0

and

Φ(h) = sup
q∈B∗

sup
x∈K

sup
p∈Dh(x)∗(q)

(
σ[(F (x, h(x)), p)− σ(G(x, h(x)), q)

)
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Theorem 4.1. [Variational Principle] Let c ≥ 0. Then a single-valued map h : K 7→ Y
is a solution to the contingent differential inclusion

∀ x ∈ K, 0 ∈ Dh(x)(F (x, h(x)))−G(x, h(x)) + cB

if and only if Φ(h) ≤ c.
Consequently, h is a solution to the contingent differential inclusion (2.2) if and only if
Φ(h) = 0.

Proof. Let u ∈ F (x, h(x)), v ∈ G(x, h(x)) and e ∈ cB be such that v − e ∈ Dh(x)(u).
Then, for any q ∈ Y ∗ and p ∈ Dh(x)∗(q),

〈p, u〉 − 〈q, v − e〉 ≤ 0

so that

σ[(F (x, h(x)), p)− σ(G(x, h(x)), q) ≤ 〈p, u〉 − 〈q, v〉 ≤ 〈q, e〉 ≤ c ‖q‖

Taking the supremum with respect to p ∈ Dh(x)∗(q), we infer that Φ(h) ≤ c.
Conversely, we can write inequality Φ(h) ≤ c in the form of the minimax inequality: for
any x ∈ K, q ∈ Y ∗,

sup
p∈Dh(x)∗(q)

inf
u∈F (x,h(x))

inf
v∈G(x,h(x))

(〈p, u〉 − 〈q, v〉) ≤ c‖q‖

Setting
β(p, q; u, v, e) := 〈p, u〉 − 〈q, v − e〉

this inequality can be written in the form: for every x ∈ K,

sup
(p,−q)∈Graph(Dh(x))−

inf
(u,v,e)∈F (x,h(x))×G(x,h(x))×cB

β(p, q; u, v, e) ≤ 0

The lop-sided minimax theorem (see for instance [9]) implies the existence of u0 ∈
F (x, h(x)), v0 ∈ G(x, h(x)) and e0 ∈ cB such that

sup
(p,−q)∈Graph(Dh(x))−

(〈p, u0〉 − 〈q, v0 − e0〉) =

sup
(p,−q)∈Graph(Dh(x))−

inf
(u,v,e)∈F (x,h(x))×G(x,h(x))×cB

β(p, q; u, v, e) ≤ 0

This means that (u0, v0 − e0) belongs to co(Graph(Dh(x))). In other words, we have
proved that

(F (x, h(x))× (G(x, h(x)) + cB)) ∩ co
(
TGraph(h)(x, h(x))

)
6= ∅

But by Proposition 7.1 of the Appendix, this is equivalent to the condition

(F (x, h(x))× (G(x, h(x)) + cB)) ∩ TGraph(h)(x, h(x)) 6= ∅

i.e., h is a solution to our contingent differential inclusion.
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Remark. Since the bipolar cone of Graph(Dh(x)) is the graph of the bitranspose
Dh(x)∗∗, we have actually proved that h is a solution to the contingent differential inclu-
sion if and only if it is a solution to the “relaxed” contingent differential inclusion

0 ∈ Dh(x)∗∗(F (x, h(x)))−G(x, h(x)) + cB

Theorem 4.2. Let H ⊂ C(K, Y ) be a compact subset for the compact convergence
topology. Assume that c := infh∈H Φ(h) < +∞. Then there exists a solution h ∈ H to
the contingent differential inclusion

0 ∈ Dh(x)(F (x, h(x)))−G(x, h(x)) + cB

Thanks to Theorem 4.1 it is sufficient to prove that the functional Φ is lower semicontin-
uous on the space C(K, Y ) for the compact convergence topology.

Proposition 4.3. The functional Φ is lower semicontinuous on equicontinuous subsets
of the space C(K, Y ) for the compact convergence topology.

Proof. We may assume that Φ is proper. Let hn be a sequence of equicontinuous maps
satisfying for any n, Φ(hn) ≤ c and converging uniformly to some h. We have to show
that Φ(h) ≤ c. Indeed, fix x ∈ K, q ∈ B∗ and p ∈ Dh(x)∗(q). By Proposition 3.5, there
exist subsequences (again denoted by) xn ∈ K converging to x, qn converging to q and
pn ∈ Dhn(xn)∗(qn) converging to p such that hn(xn) converges to h(x).
Since F and G are upper semicontinuous with compact values, we know that for any (p, q)
and ε > 0, we have

{
σ[(F (x, h(x)), p)− σ(G(x, h(x)), q) ≤

σ[(F (xn, hn(xn)), pn)− σ(G(xn, hn(xn)), qn) + ε ≤ (Φ(hn) + ε) ‖qn‖+ ε

for n large enough. Hence, by letting n go to ∞, we infer that for any ε > 0,

σ[(F (x, h(x)), p)− σ(G(x, h(x)), q) ≤ (c+ ε) ‖q‖+ ε

Letting ε converge to 0 and taking the supremum on p ∈ Dh(x)∗(q), we infer that Φ(h) ≤
c.

In the case when Y = R, the contingent solutions are very closed in spirit to the viscosity
solutions:

Proposition 4.4. Assume that Y = R. Then a continuous function h : X 7→ R is a
solution to (2.2) on a closed set K ⊂ X if and only if for every x ∈ K,





i) sup
p∈∂−h(x)

(
σ[(F (x, h(x)), p)− sup(G(x, h(x)))

)
≤ 0

ii) inf
p∈∂+h(x)

(σ(F (x, h(x)), p)− inf(G(x, h(x)))) ≥ 0
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Proof. Set




Φ+(h, x) = sup
p∈Dh(x)∗(+1)

(
σ[(F (x, h(x)), p)− σ(G(x, h(x)),+1)

)

Φ−(h, x) = sup
p∈Dh(x)∗(−1)

(
σ[(F (x, h(x)), p)− σ(G(x, h(x)),−1)

)

Φ0(h, x) = sup
p∈Dh(x)∗(0)

(
σ[(F (x, h(x)), p)

)

If h is a solution, then properties i), ii) follow from Proposition 3.4 and Theorem 4.1 with
c = 0.
Conversely if i), ii) hold true, then supx∈K max (Φ+(h, x),Φ−(h, x)) ≤ 0. It remains

to show that Φ0(h, x) ≤ 0. Fix any p ∈ Dh(x)∗(0). Then (p, 0) ∈
(
TEp(h)(x, h(x))

)−
.

By Rockafellar’s result from [35] there exist xn → x, (pn, qn) → (p, 0) such that qn 6=
0, pn
|qn| ∈ ∂−h(xn). Hence, by i),

σ[(F (xn, h(xn)), pn)− ‖qn‖σ(G(xn, h(xn)),+1) ≤ 0

Taking the limit we get σ[(F (x, h(x)), p) ≤ 0.

We can relate solutions to the contingent differential inclusion (2.2) to viscosity solutions
when the set-valued map F : X ∼>X does not depend on y and when G is equal to
0. The above proposition implies that both h and −h are viscosity subsolutions to the
Hamilton-Jacobi equation

−σ(F (x), h′(x)) = 0

The apparent discrepancy comes from the fact that solutions h of the contingent partial
differential inclusion are energy functions and not the value function of an optimal control
problem.

5. Single-Valued Solutions to Partial Differential Inclusions

We shall look for solutions in a compact convex subsetH of the space CΛ(K, Y ) of Lipschitz
maps from K to Y .

Theorem 5.1. Let K be a closed subset of X. Consider a compact convex subset H of
CΛ(K, Y ). When h ∈ H, we denote by TH(h(·)) ⊂ C(K, Y ) the tangent cone to H at h
for the pointwise convergence topology. Let Dδh(x) be a family of closed convex processes
satisfying Dδh(x) ⊂ Dh(x) and assume that for every h ∈ H, there exist v, w ∈ C(K, Y )
such that ∀ x ∈ K,

w(x) ∈ Dδh(x)(F (x, h(x))), v(x) ∈ G(x, h(x)) & w(·)− v(·) ∈ TH(h(·))

Then there exists a solution h ∈ H to the contingent differential inclusion

∀ x ∈ K, 0 ∈ Dh(x)(F (x, h(x)))−G(x, h(x))
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Proof. We assume that there is no solution to the contingent differential inclusion and
we shall derive a contradiction.
Indeed, thanks to Proposition 7.1, this amounts to assume that for any h ∈ H, there
exists x ∈ K such that

0 /∈ co
(
TGraph(h)(x, h(x))

)
− F (x, h(x))×G(x, h(x))

Since the images of F and G are compact and convex, the separation theorem implies
that there exists also (p,−q) ∈ X∗ × Y ∗ such that

0 < σ[(F (x, h(x)), p)− σ(G(x, h(x)), q) & p ∈ Dh(x)∗(q)

Set
a(h; x, q) := sup

p∈Dδh(x)∗(q)
σ[(F (x, h(x)), p)− σ(G(x, h(x)), q)

Since Dh(x)∗(q) ⊂ Dδh(x)∗(q), we observe that

0 < a(h; x, q)

On the other hand, the function (y, p) 7→ σ[(F (x, y), p)− σ(G(x, y), q) being lower semi-
continuous (because F and G are upper semicontinuous with compact values), there exist
neighborhoods N1(h(x)) and N2(p) such that

∀ y ∈ N1(h(x)), ∀ p′ ∈ N2(p), 0 < σ[(F (x, y), p′)− σ(G(x, y), q)

By Proposition 3.9, there exists η(x) > 0 such that whenever ‖l−h‖Λ ≤ η(x), there exists
p′ ∈ Dδl(x)∗(q) satisfying l(x) ∈ N1(h(x)) and p′ ∈ N2(p). Hence

0 < σ[(F (x, l(x)), p′)− σ(G(x, l(x)), q) ≤ a(l; x, q)

Consequently, h belongs to the subset N(x, q) defined by

N(x, q) := {l ∈ CΛ(K, Y ) | 0 < a(l; x, q)}

which is open in CΛ(K, Y ) by Proposition 3.9.
Summing up, we just have proved that if there is no solution to the contingent differential
inclusion, then H can be covered by the open subsets N(x, q). Being compact, it can be
covered by a finite number m of such neighborhoods N(xi, qi). Let αi(·) be a continuous
partition of unity associated with this covering.
We introduce now the function ϕ : H×H 7→ R defined by

ϕ(h, l) :=

m∑

i=1

αi(h)〈qi, l(xi)− h(xi)〉

It is continuous with respect to h on CΛ(K, Y ) (because the αi’s are so and h 7→ 〈qi, h(xi)〉
are continuous for the pointwise topology), affine with respect to l and satisfies ϕ(l, l) = 0.
Hence, H being convex and compact, Ky Fan Inequality (see [10, Theorem 3.1.1]) implies
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the existence of h̄ ∈ H such that for every l ∈ H, ϕ(h̄, l) ≤ 0. This means that the discrete
measure

∑m
i=1 αi(h̄)qi⊗ δ(xi) belongs to the normal cone to H at h̄ since for every l ∈ H,

〈
m∑

i=1

αi(h̄)qi ⊗ δ(xi), l − h̄〉 =

m∑

i=1

αi(h̄)〈qi, l(xi)− h̄(xi)〉 ≤ 0

We then deduce from the assumption of theorem that
∑m

i=1 αi(h̄)a(h̄; xi, qi) ≤ 0. Indeed,
there exist continuous functions v(·) and w(·) such that

∀ x ∈ K, v(x) ∈ G(x, h̄(x)) & w(x) ∈ Dδh̄(x)(F (x, h̄(x)))

and w(·) − v(·) ∈ TH(h̄(·)). Therefore, for any pi ∈ Dδh̄(xi)
∗(qi), there exists ui ∈

F (xi, h̄(xi)) such that





σ[(F (xi, h̄(xi)), pi)− σ(G(xi, h̄(xi)), qi)

≤ 〈pi, ui〉 − 〈qi, v(xi)〉 ≤ 〈qi, w(xi)− v(xi)〉

So that, by taking the supremum on pi ∈ Dδh̄(xi)
∗(qi), we obtain

a(h̄; xi, qi) ≤ 〈qi, w(xi)− v(xi)〉

Multiplying by αi(h̄) ≥ 0 and summing from i = 1 to m, we obtain

m∑

i=1

αi(h̄)a(h̄; xi, qi) ≤
〈

m∑

i=1

αi(h̄)qi ⊗ δ(xi), w(·)− v(·)
〉
≤ 0

because w(·) − v(·) ∈ TH(h̄(·)) and
∑m

i=1 αi(h̄)qi ⊗ δ(xi) belongs to the normal cone to

H at h̄. We claim that in the same time
∑m

i=1 αi(h̄)a(h̄; xi, qi) > 0. Indeed, whenever

αi(h̄) > 0, then h̄ belongs to N(xi, qi), which implies that 0 < a(h̄, xi, qi). We have
therefore obtained a contradiction.

Lemma 5.2. Let H : K ∼>Y be a set-valued map and let H be a subset of continuous
selections of H. Then

TH(h(·)) ⊂ {v ∈ C(K, Y ) | ∀ x ∈ K, v(x) ∈ TH(x)(h(x))}

If in addition for any finite sequence (xi, yi) ∈ Graph(H) (i = 1, . . . , m) such that xi 6= xj
when i 6= j, there exists a selection s ∈ H interpolating it:

∀ i = 1, . . . , m, s(xi) = yi

then equality holds true:

TH(h(·)) = {v ∈ C(K, Y ) | ∀ x ∈ K, v(x) ∈ TH(x)(h(x))}

Proof. Indeed, let v ∈ C(K, Y ) such that v(x) ∈ TH(x)(h(x)) for all x ∈ K. Then

there exists ελ(·) converging to 0 with λ for the pointwise convergence topology such that
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h(x) + λv(x) + λελ(x) ∈ H(x). Let us consider any neighborhood of 0 for the pointwise
topology

V := {l ∈ C(K, Y ) | sup
i=1,...,n

‖l(xi)‖ ≤ ε}

associated with a finite subset {x1, . . . , xn} and λ small enough for ελ(·) to belong to it.
By the interpolation assumption there exists lλ ∈ H such that

∀ xi, lλ(xi) = h(xi) + λv(xi) + λελ(xi) ∈ H(xi)

Thus the continuous function uλ := (lλ − h)/λ is such that h + λuλ ∈ H and belongs
to the neighborhood v + V of v for the topology of the pointwise convergence. In other
words, v belongs to the tangent cone to H at h for the pointwise topology.

6. Feedback Controls Regulating Smooth Evolutions

Consider a control system (U, f):

{
x′(t) = f(x(t), u(t))

u(t) ∈ U(x(t))
(6.1)

Let (x, u)→ ϕ(x, u) be a non negative continuous function with linear growth.
We have proved in [14] that there exists a closed regulation map Rϕ ⊂ U larger than
any closed regulation map R : K ∼>Z contained in U and enjoying the following viability
property: For any initial state x0 ∈ Dom(R) and any initial control u0 ∈ R(x0), there
exists a solution (x(·), u(·)) to the control system (6.1) starting at (x0, u0) such that

∀ t ≥ 0, u(t) ∈ R(x(t))

and
for almost all t ≥ 0, ‖u′(t)‖ ≤ ϕ(x(t), u(t))

Let K ⊂ Dom(U) be a closed subset. We recall that a closed set-valued map R : K ∼>Z
is a feedback control regulating viable solutions to the control problem satisfying the above
growth condition if and only if R is a solution to the contingent differential inclusion

∀ x ∈ K, 0 ∈ DR(x, u)(f(x, u))− ϕ(x, u)B

satisfying the constraint
∀ x ∈ K, R(x) ⊂ U(x)

In particular, a closed graph single-valued regulation map r : K 7→ Z is a solution to the
contingent differential inclusion

∀ x ∈ K, 0 ∈ Dr(x)(f(x, r(x)))− ϕ(x, r(x))B (6.2)

satisfying the constraint
∀ x ∈ K, r(x) ∈ U(x)

Such solution can be obtained by a variational principle. We introduce the functional Φ
defined by

Φ(r) := inf{c ≥ 0 | ∀ x, q, sup
p∈Dr(x)∗(q)

(〈p, f(x, r(x))〉 ≤ (ϕ(x, r(x)) + c)‖q‖)}
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Theorem 6.1. Let R ⊂ C(K, Y ) be a nonempty compact subset of selections of the
set-valued map U (for the compact convergence topology). Suppose that the functions f
and ϕ are continuous and that c := infr∈R Φ(r) < +∞. Then there exists a solution
r(·) ∈ R to the contingent differential inclusion

∀ x ∈ K, 0 ∈ Dr(x)(f(x, r(x)))− (ϕ(x, r(x)) + c)B

As for the existence of such a feedback, we deduce from Theorem 5.1 the following con-
sequence:

Theorem 6.2. Consider a nonempty convex subset R ⊂ CΛ(K,Z) of selections of the
set-valued map U which is compact in CΛ(K,Z). Suppose that the functions f and ϕ are
continuous and fix any family of closed convex processes Dδr(x) ⊂ Dr(x). If for every
r ∈ R, there exist v, w ∈ C(K, Y ) such that ∀ x ∈ K,

w(x) ∈ Dδr(x)(f(x, r(x))), v(x) ∈ ϕ(x, r(x))B & w(·)− v(·) ∈ TR(r(·))

then there exists a solution r ∈ R to the contingent differential inclusion (6.2).

7. Appendix: Dual Characterization of the Viability Domain

Let F : X ∼>X be a set-valued map and K ⊂ Dom(F ) be a nonempty subset. We denote
by

TK(x) :=

{
v ∈ X | lim inf

h→0+

d(x+ hv;K)

h
= 0

}

the contingent cone to K at x ∈ K. The set K is called a viability domain of F if

∀ x ∈ K, F (x) ∩ TK(x) 6= ∅
For every x ∈ K denote by

NP
K(x) := {y − x | dist(y,K) = ‖y − x‖}

The following result provides a very useful duality characterization of viability domains:

Proposition 7.1. Assume that the set-valued map F : K ∼>X is upper semicontinuous
with convex compact values. Then the four following properties are equivalent:





i) ∀ x ∈ K, F (x) ∩ TK(x) 6= ∅

ii) ∀ x ∈ K, F (x) ∩ co (TK(x)) 6= ∅

iii) ∀ x ∈ K, ∀ p ∈ (TK(x))− , σ(F (x),−p) ≥ 0

iv) ∀ x ∈ K, ∀ p ∈ NP
K(x), σ(F (x),−p) ≥ 0

Remark. The equivalence between i) and ii) was first noticed in a different context in
[26]. A more simple proof of this fact was given in [13]. The equivalence of i) and iv) was
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proved in [36] and [19]. However the proof from [13] also implied that i) ⇐⇒ iv). We
provide it below for the reader convenience.

Proof. Clearly i) yields ii). The equivalence between ii) and iii) follows obviously from

the Separation Theorem. Since y − x ∈ NP
K(x) implies that y − x ∈ (TK(x))− we have

iii) =⇒ iv).
Assume that iv) holds true and fix x ∈ K. Let u ∈ F (x) and v ∈ TK(x) achieve the
distance between F (x) and TK(x):

‖u− v‖ = inf
y∈F (x), z∈TK(x)

‖y − z‖

and set w := u+v
2 . We have to prove that u = v. Assume the contrary.

Since v is contingent to K at x, there exist sequences hn > 0 converging to 0 and vn
converging to v such that x + hnvn belongs to K for every n ≥ 0. We also introduce a
projection of best approximation

xn ∈ ΠK(x+ hnw) of x + hnw onto K and we set zn :=
xn − x
hn

so that hn(w − zn) ∈ NP
K(xn). By assumption iv),

∃ yn ∈ F (xn), such that 〈w − zn, yn〉 ≤ 0 (7.1)

Since xn converges to x, the upper semicontinuity of F implies that for any ε > 0,
there exists Nε such that for n ≥ Nε, yn belongs to the neighborhood F (x)+εB, which is
compact. Thus a subsequence (again denoted by) yn converges to some element y ∈ F (x).
We shall now prove that zn converges to v. Indeed, inequality

‖w − zn‖ =
1

hn
‖x+ hnw − xn‖ ≤

1

hn
‖x + hnw − x− hnvn‖ = ‖w − vn‖

implies that the sequence zn has a cluster point and that every cluster point z of the
sequence zn belongs to TK(x). Furthermore, every such z satisfies ‖w − z‖ ≤ ‖w − v‖.
We now observe that v is the unique best approximation of w by elements of TK(x).
If not, there would exist p ∈ TK(x) satisfying either ‖w − p‖ < ‖w − v‖ or p 6= v and
‖w−p‖ = ‖w−v‖ = ‖w−u‖. In the latter case, we have 〈u−w,w−p〉 < ‖u−w‖‖w−p‖,
since the equality holds true only for p = v. Each of these conditions together with the
estimates

‖u− p‖2 = ‖u− w‖2 + ‖w − p‖2 + 2〈u− w,w − p〉 ≤ ‖u− v‖2

imply the strict inequality ‖u−p‖ < ‖u−v‖, which is impossible since v is the projection
of u onto TK(x). Hence z = v.
Consequently, all the cluster points being equal to v, we conclude that zn converges to
v. Therefore, we can pass to the limit in inequalities (7.1) and obtain, observing that
w − v = (u− v)/2,

〈u− v, y〉 = 2〈w − v, y〉 ≤ 0 where y ∈ F (x) (7.2)
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Since F (x) is closed and convex and since u ∈ F (x) is the projection of v onto F (x), we
infer that

〈u− v, u− y〉 ≤ 0 (7.3)

Finally, TK(x) being a cone and v ∈ TK(x) being the projection of u onto this cone, and
in particular, onto the half-line vR+, we deduce that

〈u− v, v〉 = 0 (7.4)

Therefore, properties (7.2, 7.3, 7.4) imply that

‖u− v‖2 = 〈u− v,−v〉+ 〈u− v, u− y〉+ 〈u− v, y〉 ≤ 0

and thus, that u = v.
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[6] J.-P. Aubin, A. Cellina : Differential Inclusions, Springer-Verlag, Grundlehren der math.
Wiss., 1984

[7] J.-P. Aubin, G. Da Prato : Solutions contingentes de l’équation de la variété centrale,
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