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1. Introduction

It is well known that in nonlinear programming problems with qualified constraints the
standard second order sufficient condition is equivalent to the following estimate for the
cost function f0 on the feasible set:

f0(x) ≥ f0(x) + r · dist2(x, x∗), ∀x in a neighborhood of x∗

where r > 0 and x∗ is the solution (e.g. [2]). The latter property which we call the second
order growth condition can easily be extended to problems without constraint qualification
and with multiple non–isolated solutions. In either case the second order growth condition
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is instrumental in obtaining many important results of sensitivity analysis (e.g. estimates
for directional derivatives of the value function or for Hölder stability of solutions) [3, 4,
10, 15].
However, if the problem has a solution set with non-isolated points, no simple charac-
terization of the growth condition is known (see [2] for details), except in the case of
linearly independent gradients of active constraints [18]. The purpose of this paper is
to show that at least for one important class of problems, namely problems of smooth
convex programming, a simple second order characterization of the growth condition can
be given. This characterization seems to be new and of an interest.
It is well known furthermore that to get Lipschitz stability of solutions of the perturbed
problem a strengthening of the standard second order sufficient condition is needed in
the regular case (qualified constraints and an isolated solution) [5, 15]. It was shown in
[10] that this strengthened second order condition can also be expressed in terms of a
“strong” second order growth condition that can be likewise extended to non–qualified
problems with non–isolated solutions. We show further in this paper that in smooth
convex problems (with arbitrary, not necessarily convex, dependence on the parameter)
a simple second order characterization exists also for the strong growth condition.
As in [2] we start with the problem of minimizing the function

f(x) := max
1≤i≤m

fi(x),

where x ∈ IRn. Let S denote a compact set of minimum points of f : S ⊂ argmin f . We
assume that S 6= ∅ and denote by c the minimal value of f . We say that f satisfies the
quadratic growth condition on S if

∃β > 0 : f(x) ≥ c+ β dist(x, S)2, ∀x in a neighborhood of S. (QGC)

Of course, if (QGC) holds, then, at least locally, S coincides with the set of minima of f .
The main result (Theorem 2.3) gives a complete characterization of (QGC) in case when
all functions are convex and twice continuously differentiable. The theorem is stated in
section 2 and proved in section 5. In section 3 we consider problems depending on a
parameter and prove Theorem 3.4 containing a characterization for the strong growth
condition.
In section 4, on the way to the proof of Theorem 2.3, we establish an estimate to the
set of solution of a system of linear inequalities ai(x) · h ≤ 0 in case when ai(x) are

gradients of convex C1 functions. This result, for this specific case, extends the well known
Robinson’s estimate for the distance to a parametrically dependent set of solutions of
linear inequalities [13] in the sense that no regularity (Mangasarian-Fromovitz, or Slater)
assumption at the reference point is made. Finally in section 6 we consider constrained
optimization problems and state the analogues of the two main theorems in this case.

2. Characterization of quadratic growth

From now on we assume that S is a convex compact set and that fi(x), i = 1, · · · , m are

convex. We denote by ϕ′(x; d) the directional derivative of ϕ at x along the direction d
and by Sm the standard simplex of IRm, i.e.
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Sm := {λ ∈ IRm
+ ;

m∑

i=1

λi = 1}.

We start by introducing some basic notation and recalling some known facts. With each
x ∈ S, we associate the collection of active indices

I(x) := {i = 1, · · · , m : fi(x) = f(x)},

the critical cone at x

C(x) := {d ∈ Rn : f ′i(x; d) ≤ 0, ∀i ∈ I(x)},

the contingent cone to S at x (the lim sup is taken in the sense of Painlevé-Kuratowski)

TS(x) := lim sup
t↓0

t−1(S − x),

and the set of Lagrange multipliers:

Λ(x) := {λ ∈ Sm : λi = 0, i 6∈ I(x),
m∑

i=1

λif
′
i(x; d) ≥ 0, ∀d ∈ IRn}.

The Lagrangian associated with f is

L(x, λ) :=
m∑

i=1

λifi(x).

As S is convex, the set TS(x) coincides with the tangent cone to S at x in the sense of
convex analysis, which is the collection of vectors d such that dist(x+ td, S) = o(t) when
t↘ 0.
As all functions fi are convex, the condition

∑
λif
′
i(x; d) ≥ 0, ∀d ∈ IRn, is equivalent to

the fact that L(., λ) attains its minimum at x.
For any convex set D we denote by aff D and riD the affine hull and relative interior of
D, and by rbD its relative boundary : rbD := D\ riD.
The two propositions that follow contain known facts. We prove them mainly because
the proofs are short and useful for further discussions.

Proposition 2.1. (e.g. [12]) Let D be a convex set on which the convex function ϕ
is constant. If x ∈ riD, then ∂ϕ(x) ⊂ ∂ϕ(u) for any u ∈ D. In particular, ∂ϕ(x) is
constant over riD.

Proof. Given x ∈ riD, y ∈ ∂ϕ(x) and u ∈ D, we have ϕ(u) − ϕ(x) ≥ y · (u − x), i.e.
y · (u− x) ≤ 0. This being valid for all u ∈ D, as x ∈ riD, we must have y · u = y · x. It

follows that, for any x′ ∈ IRn

ϕ(x′)− ϕ(u) = ϕ(x′)− ϕ(x) ≥ y · (x′ − x) = y · (x′ − u),
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i.e. y ∈ ∂ϕ(u). We have proved that ∂ϕ(x) ∈ ∂ϕ(u). As x ∈ D, it follows that
∂ϕ(x) = ∩u∈D∂ϕ(u) is constant over riD.

Proposition 2.2. Let the functions fi be convex and let S be a convex set on which f
is constant. Then there are sets I, C and T such that, for all x ∈ riS:

I(x) = I, C(x) = C, TS(x) = T.

Proof. We first prove that when x ∈ riS, then I(x) = ∩x′∈SI(x′). Indeed, assume that

i ∈ I(x) and i 6∈ I(x′) for some x′ ∈ S, then f ′i(x, x
′ − x) ≤ fi(x

′)− fi(x) < 0. It follows

that f ′i(x, x−x′) > 0, in contradiction to the fact that f(x) = maxi≤1≤n fi(x) is constant

on some segment [x, x + ε(x− x′)] with ε > 0.
We prove that C(x) is constant on riS. Pick i ∈ I, it follows from Proposition 2.1 that

∂fi(x) is constant over riS. Consequently, f ′i(x; .) is constant over riS, whence C(x) is
itself constant over riS.
For TS(x) the statement is trivial: at every x ∈ riS this is the linear subspace parallel to
aff S.

It is well known (e.g. [14]) that Λ(x) does not actually depend on x, that is, there exists
Λ such that, for all x ∈ S

Λ(x) ≡ Λ.

This can be easily verified if all functions fi are continuously differentiable. Indeed, by
Propositions 2.1 and 2.2 this is true for x ∈ riS. It is clear furthermore that x 7→ Λ(x) is an
u.s.c. set-valued map, so it remains to check that λj = 0 whenever x ∈ S and j ∈ I(x)\I.

Pick x′ ∈ riS : we have f ′j(x, x
′−x) ≤ fj(x

′)−fj(x) < 0. As f ′i(x, x
′−x) = 0 for i ∈ I, we

conclude that the inequality
∑
λif
′
i(x, x

′−x) ≥ 0 may hold for a λ = (λ1, · · · , λm) ∈ Λ(x)

only if λj = 0 for j ∈ I(x)\I.

We can now formulate the main theorem. Set

ϕx(d) := max
λ∈Λ
∇2
xL(x, λ)(d, d).

This function is strongly related to the second-order variation of the cost along a critical
direction (see Section 4). Define the normal cone to S at x, which is the polar of TS(x),
and (for ε > 0) the set of approximate normal and critical directions as

NS(x) := {v : v · d ≤ 0, ∀d ∈ TS(x)},
Nε
S(x) := {v : dist(v,NS(x)) ≤ ε‖v‖},
Cε(x) := {h : dist(h, C(x)) ≤ ε‖h‖}.

Theorem 2.3. Let S be a non–empty convex compact set on which f attains its mini-
mum. Assume that all functions fi are convex and twice continuously differentiable. Then
the following properties are equivalent:
(i) (QGC) holds.
(ii) There exists β > 0 such that

ϕx(d) ≥ β dist(d, TS(x))2, ∀x ∈ S, ∀d ∈ C(x)\TS(x);
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(iii) There exists β > 0 such that, for all ε ∈ (0, 1)

ϕx(d) ≥ (1− ε)2β‖d‖2, ∀x ∈ S, ∀d ∈ C(x) ∩Nε
S(x).

(iv) There exist β > 0, ε > 0 such that

ϕx(d) ≥ β‖d‖2, ∀x ∈ S, ∀d ∈ Cε(x) ∩NS(x).

By Theorem 2.3, the condition below is necessary for quadratic growth:

ϕx(d) > 0, ∀d ∈ C(x)\TS(x), ∀x ∈ S. (2.1)

This condition, in turn, implies a first-order geometric condition on S, which is therefore
itself a necessary condition for quadratic growth.

Proposition 2.4. Under the assumption of Theorem 2.3 except for the compactness of
S, the condition (2.1) implies
(i) C(x)\TS(x) ⊂ C\T, ∀x ∈ S.
(ii) I(x)\I 6= φ on rbS.

Proof. (i) Assuming the contrary, we find x ∈ S and d ∈ C(x)\TS(x) with d 6∈ C\T .

As C(x) ⊂ C, it follows that d must belong to T\TS(x). Take a sequence of xk ∈ riS
converging to x. As d ∈ T , we have ϕxk(d) = 0, hence ϕx(d) = limϕxk(d) = 0 in

contradiction with (2.1).
(ii) If S is a singleton, then the relation is trivially true as rbS is empty. Otherwise pick
u ∈ riS, x ∈ rbS, and set d := x − u. It is clear that d ∈ T\TS(x); hence d 6∈ C\T . If
I(x) = I, then C(x) = C ⊃ T , whence d ∈ C(x)\TS(x), in contradiction with (i).

From (ii) we deduce in particular that if f is a C2 function, and its set of minima S
satisfies the quadratic growth condition, then rbS is empty, which means that S is an
affine space.

3. Parametric problems

We consider the family of problems

min
x∈IRn

f(x, θ) (Pθ)

where x ∈ IRn, θ ∈ IR+ and f(x, θ) := max
i=1,···,m

fi(x, θ), with each fi, i = 1, · · · , m of class

C2.
We view (Pθ), for θ > 0, as a perturbation of the original problem (P0). With (Pθ) is
associated the Lagrangian

L(λ, x, θ) :=

n∑

i=1

λifi(x, θ).

We denote by v(θ), S(θ) the value function and the set of solutions of (Pθ).
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We say that a mapping θ 7→ x(θ) : IR+ → IRn, is an ε(θ)-optimal path if f(x(θ), θ) ≤
v(θ) + ε(θ). Here ε(θ) may take the value o(ε), O(ε2), etc.. Similarly, we say that a
sequence {xn} is ε(θn)-optimal, where θn ↘ 0, if f(xn, θn) ≤ v(θn) + ε(θn). Denote

µ := min
x∈S

max
λ∈Λ
Lθ(λ, x, 0),

Λ̄(x) := {λ ∈ Λ : Lθ(λ, x, 0) ≥ µ},
where Lθ is the derivative of L with respect to the parameter. Let further S̄ be the
collection of points at which the above minimum is attained, that is

S := argmin
x∈S

max
λ∈Λ
Lθ(λ, x, 0).

As S is the set of minima of a continuous function over a compact set, it is nonempty and
compact.

Proposition 3.1. (Gol’stein [6]) Assume that S(θ) is non empty and uniformly bounded
for θ close to 0. Then the value function v(θ) := infx∈IRn f(x, θ) has a right derivative at
0 that is equal to µ. In addition, every ε(θn)-optimal sequence {xn} is bounded and all its

limit points belong to S.

The following standard estimate will be useful later.

{
There exists a > 0 such that, if θ > 0 is small enough

v(θ) ≤ v(0) + µθ + aθ2.
(3.2)

We say (cf. [10]) that the strong quadratic growth condition is satisfied if





There exists β > 0, γ > 0 such that, if (x, θ)

is sufficiently close to S × {0}, θ ≥ 0, then

f(x, θ) ≥ v(0) + µθ + β dist2(x, S)− γ

2
θ2.

(SQG)

Proposition 3.2. [10] If the strong quadratic growth condition holds, then any O(θ2)-
optimal path xθ satisfies dist(xθ, S) = O(θ).

Proof. Combining (SQG) and (3.2), we get

β dist2(xθ, S) ≤ (a + γ)θ2 +O(θ2) = O(θ2),

from which the conclusion follows.

We observe that (SQG) can be interpreted as a quadratic growth condition for an auxiliary
problem. Indeed, (SQG) is obviously equivalent to

f(x, θ)− µθ + γθ2 − v(0) ≥ βdist2(x, S) +
γ

2
θ2.
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It follows that S := S×{0} is the set of local minima of the quantity at the left-hand-side
of the above inequality over IRn × [0,∞[ or, equivalently, S is the set of local minima of

f(x, θ) := max(f(x, θ)− µθ + γθ2 − v(0),−θ).

In order to state second order conditions we compute the critical cone and set of Lagrange
multipliers associated with the problem of minimizing f.

Lemma 3.3. The set S := S ×{0} is a set of local minima of the function f(x, θ) with
common value zero. The critical cone associated with (x, 0) ∈ S is is defined by

C(x) = {(d, η); f ′(x, 0)(d, η)− µη = 0; η ≥ 0}, (3.3)

and the set of Lagrange multipliers Λ(x) is defined by

Λ(x) = {(αλ̂, 1− α) : λ̂ ∈ Λ̄(x) ; α = (Lθ(λ̂, x)− µ+ 1)−1 ∈ (0, 1]}.

Proof. The critical cone is the set of directions in which the directional derivative of the
cost is null, and is easily checked to be characterized by (3.3). Writing the optimality
system, we find that the Lagrange multipliers satisfy





Σm
i=1λi∇xfi(x, 0) = 0,

Σm
i=1λi

(
∂fi
∂θ (x, 0)− µ

)
− ξ = 0,

Σm
i=1λi + ξ = 1,

λ ≥ 0, ξ ≥ 0, λi(fi(xi, 0)− v0) = 0,

(3.4)

where ξ is the multiplier associated with the constraint −θ ≤ 0. Set α := Σm
i=1λi. It

follows from the second and third relations above that 0 < α ≤ 1. Rewrite the three first
relation as





∇xL(λ, x) = 0,

Lθ(λ, x)− µα = ξ,

α + ξ = 1.

(3.5)

Then ξ = 1− α and

λ̂ := λ/α ∈ Λ and α(Lθ(λ̂, x)− µ) = ξ ≥ 0,

i.e. in fact λ̂ ∈ Λ̄(x); the result follows.
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Note that for all x ∈ S, C(x) ⊃ C(x)× {0} and

x ∈ S ⇒Λ(x) = Λ̄(x)× {0},
x ∈ S\S ⇒C(x) = C(x)× {0}.

Our next result gives a characterization of (SQG) in terms of the second-order expansion
of the data, even if the data are not jointly convex with respect to x and θ. Define

ϕ̄x(d) := max
λ∈Λ̄(x)

∇2
xL(λ, §, ′)(d, d).

We say that the strong second-order condition is satisfied if

{
There exist β > 0, ε > 0 such that

ϕ̄x(d) ≥ β‖d‖2, ∀x ∈ S̄ε, ∀d ∈ Cε(x) ∩NS(x),
(SSOC)

where S
ε

= {x ∈ S : d(x, S) ≤ ε}.
We observe that, as ϕ̄x(d) ≤ ϕx(d), (SSOC) implies (QGC). If S is a singleton, then
(SSOC) reduces to the strong second-order condition of Shapiro [15].

Theorem 3.4. Conditions (SSOC) and (SGQ) are equivalent.

Proof. We prove first that (SSOC) implies (SGQ). If (SQG) does not hold, then there

exists xn → x ∈ S, θn ↓ 0 with

f(xn, θn) < v(0) + µθn +
1

n
dist(xn, S)2 − nθ2

n. (3.6)

Let un be the projection of xn onto S and dn := θn
−1(xn − un).

Case 1. θn = o(dist(xn, S)), for a subsequence. Extracting this subsequence if necessary
we may assume that this relation holds for the entire sequence so that ‖dn‖ → ∞. From
Theorem 4.1 we deduce that given any ε > 0, dn ∈ Cε(un), un ∈ Sε for n large. As

‖dn‖ → ∞ we have for all λ ∈ Λ̄(un)

f(xn, θn) ≥ L(λ, xn, θn)

= L(λ, un, 0) + θnLθ(λ, un, 0)

+
θ2
n

2
∇2
xL(λ, un, 0)dndn + o(θ2

n‖dn‖2).

As λ ∈ Λ̄(un) we have Lθ(λ, un, 0) ≥ µ, so that

f(xn, θn) ≥ v(0) + θnµ+
θ2
n

2
∇2
xL(λ, un, 0)dndn + o(θ2

n‖dn‖2).

Maximizing over λ ∈ Λ̄(un) we get with (3.6), as dist(xn, S)/θn = ‖dn‖,

ϕ̄un(dn) ≤ 1

n
‖dn‖2 − n + o(‖dn‖2),

a contradiction with (SSOC).
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Case 2. θn = O(dist(xn, S)). Then

fi(xn, θn) = fi(un, 0) + θn
∂fi
∂θ

(un, 0)(dn, 1) +O(θ2
n),

hence
f(xn, θn) ≥ max

λ∈Λ
L(x, λ, θn),

≥ v(0) + θn max
λ∈Λ
L′(un, λ, 0)(dn, 1) +O(θ2

n),

≥ v(0) + θnµ+O(θ2
n),

in contradiction with (3.6) (in which we use dist(xn, S) = O(θn)).

This proves the implication. To prove the inverse implication (SGQ) ⇒ (SSOC) we
apply the second order necessary condition for quadratic growth (Theorem 3 of [2]) to
the problem of minimizing f . As C(x) ⊃ C(x) × {0} for all x ∈ S, we deduce, using

Lemma 3.3, that whenever x ∈ S is sufficiently close to S, then for small ε > 0

∃β > 0; max
λ∈Λ̄(x)

∇2
xL(λ, x, 0)dd ≥ β‖d‖2, ∀d ∈ C(x) ∩Nε

S(x),

which is equivalent to (SSOC).

We end this section by some remarks.
The strong quadratic growth condition is sufficient for Lipschitz stability of solutions by
Proposition 3.2. On the other hand, a necessary condition for Lipschitz stability is

ϕ̄x(d) ≥ 0, ∀x ∈ S, d ∈ C(x),

as observed by [17] (in the case of an isolated solutions, but the argument is obviously
valid for nonisolated solutions). This means that (SQG) is, up to a second order analysis,
the weakest possible sufficient condition for Lipschitz stability of solutions.

When the set of solutions is a singleton, it is possible to deduce from the Lipschitz stability
of solutions the second-order expansion of the cost and the first-order expansion of pathes
of approximate solutions ([1, 3, 4, 15]). In the case of nonisolated solutions, no similar
theory has been developed yet.

The above necessary condition for Lipschitz stability is contingent in the sense that it
depends of the perturbation also. A simple (though rather rough) structural (depending
on unperturbed data only) sufficient condition for Lipschitz stability is the following.
Define

ϕ
x
(d) := min

λ∈Λ
Lxx(λ, x, 0)(d, d).

Then, as an easy consequence of Theorem 3.4, we obtain

Theorem 3.5. A sufficient condition for Lipschitz stability is

∃ε > 0; ∃β > 0; ϕ
x
(d) ≥ β‖d‖2 ; d ∈ Cε(x) ∩NS(x) ; x ∈ S.
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We end by a remark on the case when the data are jointly convex with respect to (x, u).

Then, because of Proposition 2.1, Lθ(λ, x, 0) is constant over S. It follows that S = S

and Λ̄(x) = Λ for all x ∈ S. As a consequence, condition (SSOC) coincide with condition
(iv) of Theorem 2.3. It follows by Theorems 2.3 and 3.4 that (QGC) and (SQG) coincide
in that case.

4. Studying the critical cone

Our purpose in this section is to prove the following fact closely related to the celebrated

Hoffmann’s lemma [7] and Robinson’s stability theorem [13]. We denote α+ := max(0, α).

Theorem 4.1. Under the assumptions of Theorem 2.3, there exists γ > 0 such that

dist(d, C(x)) ≤ γf ′(x; d)+, ∀x ∈ S, ∀d ∈ IRn.

The novelty of this result lies primarily in the fact that neither f ′(x; d) nor the set-valued
map C(x) are, in general, continuous.

Proof. We shall prove the theorem in several steps.
Step 1. We analyse the set C. Denote ai := ∇fi(x) for x ∈ riS. By Proposition 2.1, ai
does not depend on the choice of x ∈ riS. Define A := (ai)i∈I . Given d ∈ IRn, by A·d we
mean (ai ·d)i∈I . Then

C = {d ∈ IRn : A·d ≤ 0}.
Let us look closer into the inequalities defining C. Set

I0 := {i ∈ I : ai ·d = 0, ∀d ∈ C}, and I1 := I\I0.

Define similarly A0 := (ai)i∈I0, and A1 := (ai)i∈I1 , so that A = A0 ∪ A1. We claim that

there exists d0 ∈ C such that A1 ·d0 < 0. Indeed, with each i ∈ I1 is associated di ∈ C
such that ai ·di < 0, so that d0 :=

∑
i∈I1 d

i is the desired vector.

We observe that I0 cannot be empty. Otherwise d0 would satisfy A·d0 < 0, which means

that f ′(x; d0) < 0 whenever x ∈ riS: a contradiction to the optimality of x.
By Hoffmann’s lemma [7] there exists γ0 > 0 such that

dist(d, C) ≤ γ0‖(A·d)+‖. (4.1)

Step 2. We now analyse C(x) when x ∈ rbS. Define

J(x) := I(x)\I, B(x) := (∇fi(x))i∈J(x).

As in the proof of Proposition 2.1, we conclude that ∇fi(x)·(x′ − x) < 0 if x′ ∈ riS and

i ∈ J(x). The vector d := x′− x belongs to TS(x), and hence to C(x). Thus, if J(x) 6= ∅,
then

C(x) = {d : A·d ≤ 0, B(x)·d ≤ 0}
and there exists d1 ∈ C(x) such that B(x)·d1 < 0.
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By Step 1 and the relation C(x) ⊂ C, there exists ε > 0 such that d2 := d1 + εd0 satisfies

both A1 ·d2 < 0 and B(x)·d2 < 0. For any J ⊂ J(x), set BJ (x) := (∇fi(x))i∈J and

HJ(x) := {d : A0 ·d = 0, A1 ·d ≤ 0, BJ (x)·d ≤ 0}.

We know that d2 ∈ HJ (x) satisfies A1 ·d2 < 0 and BJ (x)·d2 < 0. We may assume that
A0 is a set of independent vectors, for dropping linear dependent ones will not change its
kernel. We observe that BJ (u) depends continuously on u.
It follows now from Robinson’s stability theorem [13] that there exist a neighborhood U
of x and a δ > 0 such that

dist(d,HJ(u)) ≤ δ(‖A0 ·d‖+ ‖(A1 ·d)+‖+ ‖(BJ (u)·d)+‖), (4.2)

for all d ∈ Rn and all u in a neighbourhood u of x.

We observe further that ‖A0·d‖ ≤ γ′dist(d, kerA0) for some γ′ > 0, and (4.7), (4.3) imply
together with the obvious inclusion C ⊂ kerA0 that, for a certain γ = γ(x, J):

dist(d,HJ(u)) ≤ γ(‖(A·d)+‖+ ‖(BJ (u)·d)+‖), ∀d, ∀u ∈ U. (4.3)

Step 3. To conclude the proof we first recall that f ′(x; d) = max{∇fi(x) · d ; i ∈ I(x)}.
Assuming that the theorem is wrong, we shall find a sequence of xk ∈ S and a sequence

of vectors dk ∈ Rn such that

dist(dk, C(xk)) ≥ kf ′(xk; dk)+. (4.4)

Extracting if necessary a subsequence,we may assume that xk converges to a certain

x ∈ S and that J(xk) is equal to some J . Furthermore, as all C(x) are cones and f(x; ·) is

homogeneous of degree one, we may likewise assume that ‖dk‖ = 1 for all k and dk → d.
It follows from (4.3) that there is a γ > 0 such that for sufficiently big k we have

dist(dk, HJ(xk)) ≤ γ(‖A·d)+‖+ ‖(BJ (xk)·dk)+‖).

But as J = J(xk), we have I ∪ J = I(xk), HJ(xk) = C(xk), and (4.3) implies that for
some γ1 > 0

dist(dk, C(xk)) ≤ γ1 max
i∈I(xk)

(∇f(xk) · dk)+

in contradiction with (4.4). This completes the proof of Theorem 3.4.

5. Proof of Theorem 2.3

The implication (i)⇒ (ii) is valid even for the non-convex case, see [2]. For the implication
(ii) ⇒ (iii) we note that any d ∈ IRn can be decomposed as d = dT + dN , where dT (resp.

dN ) is the projection onto Ts(x) (resp. Ns(x)), and ‖d‖2 = ‖dT‖2 + ‖dN‖2. It follows
that

dist(d, TS(x)) = ‖dN‖ ≥ (1− ε)‖d‖ if d ∈ N ε
S(x),
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so that (ii) implies (iii) with the same parameter β. To prove that (iii) ⇒ (iv), we only

have to note that if d ∈ Cε(x)∩NS(x), there exists d̂ ∈ C(x) with ‖d− d̂‖ ≤ ε‖d‖ so that

‖d̂‖ ≥ (1− ε)‖d‖ and

dist(d̂, NS(x)) ≤ ‖d− d̂‖ ≤ ε‖d‖ ≤ ε

1− ε‖d̂‖,

whence d ∈ Nε′
S (x) with ε′ := ε/(1− ε). We may take ε so small that

|ϕx(d)− ϕx(d̂)| ≤ β

8
‖d̂‖2, if ‖d− d̂‖ ≤ ε‖d̂‖.

We may also assume ε < 1
2 . Then with (iii), using ‖d‖ ≥ (1− ε)‖d̂‖ ≥ 1

2
‖d̂‖, we obtain

ϕx(d̂) ≥ ϕx(d)− β

8
‖d̂‖2 ≥ β

8
‖d̂‖2.

It remains to prove that (iv)⇒ (i). Assuming that the implication does not hold, we find

a sequence uk 6∈ S converging to a certain x ∈ Sand such that

f(uk) ≤ f(xk) +
1

k
‖uk − xk‖2, (5.1)

where xk is the projection of uk onto S, i.e. xk ∈ S and ‖xk − uk‖ = dist(uk, S). Set

dk := (uk − xk)/‖uk − xk‖. Then ‖dk‖ = 1 and dk ∈ NS(xk). As f is convex, we have

f(uk) ≥ f(xk) + ‖uk − xk‖f ′(xk; dk). So with (5.1)

f ′(xk; dk) ≤ k−1‖uk − xk‖ → 0.

Theorem 4.1 now implies that εk := dist(xk, C(xk))→ 0. Using (iv), we get for sufficiently
large k

ϕx(dk) ≥ β

2
> 0. (5.2)

Setting tk := ‖uk − xk‖ we have

f(uk) ≥ max
λ∈Λ
L(uk, λ),

= f(xk) + max
λ∈Λ

(
m∑

i=1

λi∇fi(xk) · dk +
t2k
2
∇2fi(x

k)(dk, dk)) + rk(tk)),

= f(xk) + t2kϕx(dk) + rk(tk) ≥ f(xk) +
t2k
4
β′ + rk(tk),

where, as xk → x and Λ is bounded, the functions rk(t) are o(t2) uniformly in k, so for
sufficiently large k we have with (5.2)

f(uk) ≥ f(xk) +
β

8
‖uk − xk‖2,

in contradiction with (5.1). The proof is completed.
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6. Constrained optimization

We now consider an optimization problem of the form

min f0(x); fi(x) ≤ 0, i = 1, · · · , m. (P )

with fi(x), i = 0, · · · , m convex and C2. We say that x ∈ IRn is feasible if fi(x) ≤ 0, i =
1, · · · , m.
Assume that (P ) has solutions and let c be the value of f0(x) over the set of solutions.
Changing f0 into f0− c if necessary, we may assume that this optimal value is null. Then
x is solution of (P ) iff it minimizes the function

f(x) := max
0≤i≤m

fi(x).

We now define two concepts of quadratic growth, and study the relations between them.
First, we define quadratic growth for (P ) as

∃β > 0 : f0(x) ≥ β dist(x, S)2, for all feasible x in a neighborhood of S. (QGC)

Taking in account a penalization of unfeasibilities, we define generalized quadratic growth
for (P ) as

∃β > 0 : f(x) ≥ β dist(x, S)2, for all x in a neighborhood of S. (GQGC)

It is obvious that (GQGC) implies (QGC). The converse is not true, as shown by the

following example: min x4; x4 ≤ 0. The Slater qualification hypothesis is:

∃x∗ ∈ IRn; fi(x
∗) < 0, i = 1, · · · , m.

If the set of solutions of (P ) is nonempty, and the Slater hypothesis holds, we know (see
e.g. [8]) that there exists r > 0 such that the set of solutions of (P ) coincides with the
set of points that minimize the so-called exact penalty function

θr(x) := f0(x) + r

m∑

i=1

max(0, fi(x)).

Define
f̂i(x) := f0(x) + rfi(x), i = 1, · · · , m.
f̂0(x) := f0(x).

Then θr can be written as

θr(x) := max
i=0,···,m

f̂i(x).

Define the collection of active indices

Ī(x) := {i = 1, · · · , m : fi(x) = 0},

the critical cone at x

C(x) := {d ∈ IRn : f0(x; d) ≤ 0, f ′i(x; d) ≤ 0, ∀i ∈ Ī(x)},
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the set of Lagrange and generalized multipliers (the components of z ∈ IRm+1 are denoted
z0, · · · , zm ) :

Λ0(x) :={λ ∈ Sm+1 ; λi = 0, i 6∈ Ī(x) ;

m∑

i=0

λi∇fi(x) = 0},

Λ1(x) :={λ ∈ IRm
+ ; λi = 0, i 6∈ Ī(x) ; ∇f0(x) +

m∑

i=1

λi∇fi(x) = 0},

the ordinary and the generalized Lagrangian

L(x, λ) := f0(x) +
m∑

i=1

λifi(x) ; L̂(x, λ) :=
m∑

i=0

λifi(x),

and the associated functions

ϕx(d) := max
λ∈Λ1

∇2
xL(x, λ)(d, d) ; ϕ̂x(d) := max

λ∈Λ0

∇2
xL̂(x, λ)(d, d).

Theorem 6.1. Assume that all functions fi, i = 0, · · · , m are convex and twice contin-
uously differentiable. Let S be a non empty convex compact set of solutions of (P ). Then
the following properties are equivalent:
(i) (GQGC) holds.
(ii) There exists β > 0 such that

ϕ̂x(d) ≥ β dist(d, TS(x))2, ∀x ∈ S, ∀d ∈ C(x)\TS(x);

(iii) There exists β > 0, such that for all ε ∈ (0, 1)

ϕ̂x(d) ≥ (1− ε)2β‖d‖2, ∀x ∈ S, ∀d ∈ C(x) ∩Nε
S(x).

(iv) There exist β ′ > 0, ε > 0 such that

ϕ̂x(d) ≥ β′‖d‖2, ∀x ∈ S, ∀d ∈ Cε(x) ∩NS(x).

If, in addition, the Slater qualification hypothesis holds, the following properties are equiv-
alent:
(v) (QGC) holds.
(vi) There exists β > 0 such that

ϕx(d) ≥ β dist(d, TS(x))2, ∀x ∈ S, ∀d ∈ C(x)\TS(x);

(vii) There exists β > 0, such that for all ε ∈ (0, 1)

ϕx(d) ≥ (1− ε)2β‖d‖2, ∀x ∈ S, ∀d ∈ C(x) ∩Nε
S(x).

(viii) There exists β ′ > 0, ε > 0 such that

ϕx(d) ≥ β′‖d‖2, ∀x ∈ S, ∀d ∈ Cε(x) ∩NS(x).
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Proof. The equivalence between conditions (i) to (iv) is an immediate consequence of
Theorem 2.3 applied to f(x). Applying now Theorem 2.3 to θr(x), we find that after
some simple computations that properties (vi) to (viii) are equivalent to

∃β > 0 ; θr(x) ≥ β dist(x, S)2, in a neighborhood of S. (6.1)

To end the proof it suffices to check that, thanks to the Slater hypothesis, that (6.1) is
equivalent to (QGC) when r is large enough. That (6.1) implies (QGC) is obvious. We
now prove that the converse holds.

Given x ∈ IRn, α ∈ [0, 1], we consider

x(α) := αx∗ + (1− α)x

where x∗ is given by the Slater condition. Set γ∗ := − max
1≤i≤m

fi(x
∗) > 0, and γ(x) :=

max(0, max
1≤i≤m

fi(x)). By convexity

fi(x(α)) ≤ αfi(x
∗) + (1− α)fi(x)

≤ − αγ∗ + (1− α)γ(x)

≤ − αγ∗ + γ(x).

We deduce that for

α(x) := min(1, γ(x)/γ∗),

the point y(x) := α(x)x∗ + (1− α(x))x is feasible, and

‖y(x)− x‖ = α(x)‖x∗ − x‖ ≤ γ(x)

γ∗
‖x∗ − x‖.

Let U be a compact convex neighborhood of S containing x∗ and L the Lipschitz constant
of f0 on U . Set

r := max
x∈U

{‖x∗ − x‖
γ∗

(L+ 2β dist(x, S))γ(x))

}
.

Then

θr(x) =f0(y(x)) + f0(x)− f0(y(x)) + rγ(x),

≥β dist(y(x), S)2 − L‖y(x)− x‖+ rγ(x),

≥β dist(y(x), S)2 +
(
r − L‖x

∗−x‖
γ∗

)
γ(x).

On the other hand,

dist(y(x), S) ≥ dist(x, S)− ‖y(x)− x‖ ≥ dist(x, S)− ‖x
∗ − x‖
γ∗

γ(x),

so that
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θr(x) ≥β dist(x, S)2

+

[
r − L‖x

∗ − x‖
γ∗

− 2β
‖x∗ − x‖

γ∗
dist(x, S) + β

‖x∗ − x‖2
(γ∗)2

γ(x)

]
γ(x),

≥β dist(x, S)2 +

[
r − ‖x

∗ − x‖
γ∗

(L + 2β dist(x, S)

]
γ(x),

≥β dist(x, S)2,

as was to be proved.
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