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1. Introduction

In this note we give a self-contained account of the relationship between the sequential
and topological constructions of bornological limit derivatives for locally Lipschitzian real-
valued functions on Banach spaces. We make some comments on the constructions for
lower semicontinuous functions without providing many details.

In the first section we give conditions under which the sequential and topological con-
structions give essentially the same object. The second section provides examples to show
what can happen when those conditions do not hold. The growing interest in infinite
dimensional nonsmooth analysis (see for example [3], [4], [5], [14], [15], [16], [19], [20],
[25]) seems to warrant careful discussion of these issues.
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2. Positive results.

In this section we prove a result about intersections of sequences of weak* closures of
nested bounded sets and deduce some relationships between various bornological limit
derivatives. We denote the closed unit ball of E∗ by B∗ and the weak* closed convex hull
of a set A by conv∗A.
Recall that a Banach space E is weakly compactly generated (WCG) provided there is a
weakly compact subset K such that E = spanK. Clearly reflexive Banach spaces are
weakly compactly generated by their balls. Separable Banach spaces are weakly compactly
generated and in fact norm compactly generated (take a dense sequence (xn) in the unit
sphere and consider {0} ∪ {xn/n : n ∈ IN}).
We need the following characterization of WCG spaces.

Proposition 2.1. [8] A Banach space E is WCG if and only if there is a reflexive
Banach space X and an injective continuous linear T : X → E with dense range.

We will use Banach spaces which are subspaces of WCG spaces. There are some of these
which are not themselves WCG.

Example 2.2. (Rosenthal [24]). A finite measure µ and a non-WCG subspace of the
WCG space L1(µ).

Let R := {s ∈ L1[0, 1] : ‖s‖ = 1,
∫ 1

0 s = 0} and let µ be the product Lebesgue measure

on [0, 1]R. For each r ∈ R let fr(x) := r(x(r)) for all x ∈ [0, 1]R. Then X := span{fr :
r ∈ R} is not WCG although L1(µ) is ([24],[6]).

If µ is a σ-finite measure then L1(µ) is WCG (see [23], page 36.) The converse is not
quite true, but if L1(µ) is WCG and µ is not σ-finite then µ is rather pathological, for
example µ could be any measure which only takes the values 0 and ∞.

Our basic tool is the following result.

Theorem 2.3. Let E be a Banach space and An a sequence of bounded subsets of E∗

such that An+1 ⊆ An for each n ∈ IN. Define

Lt :=

∞⋂

n=1

An
weak∗

and Lσ := {weak∗ lim x∗n : x∗n ∈ An for n ∈ IN}.

(a) If B∗ is weak* sequentially compact then Lt is the weak* closure of Lσ.
(b) If E is a subspace of a WCG space then Lσ is weak* closed and so Lt = Lσ.

Proof. (a) Clearly Lσ is contained in the weak* compact set Lt. Let x∗ ∈ Lt and let W
be a weak* closed weak* neighbourhood of x∗. Then we can choose x∗n ∈ W ∩An for each
n ∈ IN. By weak* sequential compactness, there is a subsequence x∗nj which converges

weak* to some y∗ ∈ W . Let y∗k := x∗nj for nj−1 < k ≤ nj . Then y∗n ∈ An and y∗n converges

weak* to y∗. Thus y∗ ∈ Lσ ∩W .
(b) If E is a subspace of a WCG space then there is a Banach space Y containing E, a
reflexive Banach space X and an injective continuous linear T : X → Y with dense range,
by Proposition 2.1. Let R denote the restriction mapping from Y ∗ onto E∗. We may and

do suppose that A1 ⊆ B∗. Let Hn := R−1(An) ∩ BY ∗ and K :=
⋂∞
n=1 weak cl T

∗(Hn).

Suppose x∗ ∈ Lt. Then the sets Vn := R−1x∗∩weak∗cl Hn are weak* compact, nonempty
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and nested so there is y∗ ∈ ⋂∞n=1 Vn. Choose y∗n,j ∈ Hn such that T ∗y∗n,j converges weakly

to T ∗y∗ as j → ∞, for each n, using weak compactness of K (see [13], page 148). Then
{T ∗y∗, T ∗y∗n,j : j, n = 1, 2, . . .} is weakly metrizable and so we can find jn such that

T ∗y∗n,jn converges weakly to T ∗y∗. Since T ∗ is a weak* to weak homeomorphism on BY ∗

it follows that y∗n,jn converges weak* to y∗ and so Ry∗n,jn converges weak* to Ry∗ = x∗.
Since Ry∗n,jn ∈ An that shows x∗ ∈ Lσ.

Remark 2.4. The converse to (a) is also true, in the sense that for a bounded sequence
x∗n ∈ E∗ with no weak* convergent subsequence we can take An := {x∗n, x∗n+1, . . .} and

note that Lσ = ∅ 6= Lt. A topological space T is angelic provided for each relatively

countably compact subset A of T , (i) A is relatively compact, and (ii) every t ∈ Ā is the
limit of a sequence from A. Thus a compact space is angelic if (ii) holds. The proof of
(b) above uses the fact that weakly compact subsets are weak angelic. We do not know
if the converse to (b) holds, nor whether Lt = Lσ follows from B∗ being weak* angelic.
It is clear that if Lt always equals Lσ then B∗ is weak* angelic. Dr. Jon Vanderwerff
(personal communication) has shown that if E has an M -basis and B∗ is weak* angelic
then Lt = Lσ, so those of our following results which assume that E is a subspace of
a WCG space also hold under the weaker assumption that E has an M -basis and B∗ is
weak* angelic. We give the definition of an M -basis later. If B∗ is weak* angelic and the
weak* closure of any countable subset of B∗ is metrizable then (b) holds, so it will work
for the so-called WLD spaces. (In the context of non-smooth analysis one will rarely if
ever encounter WLD spaces that are not WCG subspaces.)

Definition 2.5. Let E be a Banach space. Then a bornology on E is a collection β of
bounded subsets of E such that E =

⋃
β and −A ∈ β if A ∈ β. In particular, we have the

Gateaux bornology G consisting of all finite sets, the Hadamard bornology H consisting of
all relatively compact sets, the weak Hadamard bornology WH consisting of all relatively
weakly compact sets and the Fréchet bornology F consisting of all bounded sets.
We say ∇βf(x) ∈ E∗ is the β-derivative of f at x provided

lim
t→0+

sup
y∈A
|(f(x+ ty)− f(x))/t− 〈∇βf(x), y〉| = 0

for each A ∈ β.
The β-subderivative is

∂βf(x) := {x∗ ∈ ∂βf(x) : lim inf
t→0+

sup
y∈A

(f(x+ ty)− f(x))/t− 〈x∗, y〉 ≥ 0, x∗ ∈ E∗}

for each A ∈ β.
The Clarke subgradient is defined by

∂f(x) := {x∗ ∈ E∗ : 〈x∗, y〉 ≤ f◦(x; y) for all y}

where

f◦(x; y) := lim sup
t→0+
z→x

(f(z + ty)− f(z))

t
.
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Next we define some limit derivatives by

Dβ
σf(x) := {weak∗ lim∇βf(xn) : xn → x}

(the sequential β derivative),

Dβ
t f(x) :=

∞⋂

n=1

weak∗ cl {∇βf(y) : ‖x− y‖ < 1/n}

(the topological β derivative),

∂βσf(x) := {weak∗ lim x∗n ∈ ∂βf(xn) : xn → x}
(the sequential β subderivative) and

∂βt f(x) :=
∞⋂

n=1

weak∗ cl {∂βf(y) : ‖x− y‖ < 1/n}

(the topological β subderivative).
A Banach space E is a Gateaux differentiability space (GDS) if every continuous convex
function on E is Gateaux differentiable at a dense set of points, and E is an Asplund
space if every continuous convex function on E is Fréchet differentiable at a dense set of
points. We recommend [28] as an informative introduction to Asplund space theory rich
with examples.

Every Banach space with separable dual and every reflexive space is Asplund; more gener-
ally every space with an equivalent Fréchet smooth renorm is Asplund. There are however
Asplund spaces which fail to have even a Gateaux smooth renorm [11]. Asplund spaces
are characterized as those spaces all of whose separable subspaces have separable duals.
We refer to [23] and [9] for details.

We say E is a β-Preiss space provided every locally Lipschitzian f : E → IR is densely

β-differentiable and ∂f(x) = conv∗Dβ
t f(x). Preiss [22] showed that every Banach space

with a β-smooth norm is a β-Preiss space and that Asplund spaces are Fréchet-Preiss
spaces. Every subspace of a WCG Banach space has a smooth renorming (see [9]) so
is a Gateaux-Preiss space. If µ is a σ-finite measure then L1(µ) is WCG and has an
equivalent WH-smooth norm [1], so each subspace of L1(µ) is a WH-Preiss space. If E is
a Gateaux differentiability space then B∗ is weak* sequentially compact [18]. Since every
β-Preiss space is a Gateaux differentiability space, β-Preiss spaces have weak* sequentially
compact dual balls.

Theorem 2.6. Let f be a locally Lipschitzian real-valued function on a Banach space
E and β a bornology on E.

(a) If B∗ is weak* sequentially compact then Dβ
t f(x) = weak∗clDβ

σf(x).

(a′) If B∗ is weak* sequentially compact then ∂βt f(x) = weak∗cl∂βσf(x).

(b) If E is a subspace of a WCG space then Dβ
t f(x) = Dβ

σf(x).

(b′) If E is a subspace of a WCG space then ∂βt f(x) = ∂βσf(x).
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Proof. For (a) and (b) use Theorem 2.3(a) and (b) respectively putting

An :=
⋃
{∇β f(y) : ‖x− y‖ < 1/n}.

To get (a′) and (b′) put An := {∂βf(y) : ‖x− y‖ < 1/n} instead.

Corollary 2.7. If E is a Banach space with B∗ weak* sequentially compact and f is a
locally Lipschitzian real-valued function on E and x ∈ E then:

(i) If ∂f(x) = conv∗Dβ
t f(x) then ∂f(x) = conv∗Dβ

σf(x).

(ii) If ∂f(x) = conv∗∂βt f(x) then ∂f(x) = conv∗∂βσf(x).

Remark 2.8. If f is a convex or concave function or more generally if ∂f is a minimal

weak* cusco (see [2]) then one can deduce ∂f(x) = conv∗Dβ
t f(x) as soon as one knows

Dβ
t f(x) 6= ∅ for all x.

Corollary 2.9. If E is a Banach space and f is a locally Lipschitzian real-valued
function on E then

(a) If E is a subspace of a WCG space then DH
t f(x) = DG

t f(x) = DG
σ f(x) = DH

σ f(x)

(which is weak* closed) and ∂f(x) = conv∗DG
σ f(x).

(b) If E is an Asplund space then DF
t f(x) = weak∗clDF

σ f(x) and ∂f(x) = conv∗DF
σ f(x).

(c) If µ is a σ-finite measure and E is a subspace of L1(µ) then DWH
t f(x) = DWH

σ f(x)

and ∂f(x) = conv∗DWH
σ f(x).

(d) If E is a β-Preiss space then Dβ
t f(x) = weak∗clDβ

σf(x) and ∂f(x) = conv∗Dβ
σf(x).

Proof. (a) If E is a subspace of a WCG space then f is densely Gateaux differentiable
and Hadamard differentiability is equivalent to Gateaux differentiability for locally Lips-
chitzian functions so Theorem 2.3(b) applies.
(b) If E is an Asplund space then B∗ is weak* sequentially compact and f is densely
Fréchet differentiable so Theorem 2.3(a) applies.
(c) In this case E is a subspace of a WCG space and f is densely WH differentiable so
Theorem 2.3(b) applies.
(d) Since E is a β-Preiss space it is a GDS and so B∗ is weak* sequentially compact and
Theorem 2.3(a) applies.

Remark 2.10. Corresponding results hold for the subdifferentials of Lipschitzian func-
tions but to apply Theorem 2.3 to subdifferentials of lower semicontinuous functions we
would need to deal with unbounded sets An and the conclusions of Theorem 2.3 need
not follow. The appropriate thing to do seems to be to intersect the An with a large ball
before closing when constructing Lt. However the resulting Lt can fail to be weak* closed.

Theorem 2.11. Let E be a Banach space and An a sequence of subsets of E∗ such that
An+1 ⊆ An for each n ∈ IN. Define

Lt :=

∞⋃

m=1

∞⋂

n=1

An ∩mB∗weak
∗

and Lσ := {weak∗ lim x∗n : x∗n ∈ An for n ∈ IN}.
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(a) If B∗ is weak* sequentially compact then Lt has the same weak* closure as Lσ.
(b) If E is a subspace of a WCG space then Lt = Lσ.

Proof. This follows from Theorem 2.3 because any weak* convergent sequence in E∗ is
bounded.

One can be quite precise about when an Asplund space is WCG. Recall that an M-basis
for E is a system (xi, x

∗
i )i∈I for an arbitrary index set I, such that 〈x∗i , xj〉 is 1 if i = j

and 0 otherwise, and furthermore E = span{xi : i ∈ I} and E∗ = span∗{x∗i : i ∈ I}.
Proposition 2.12. (Valdivia [26], Corollary 3). If E is an Asplund space then E is
WCG if and only if E has an M-basis and B∗ is weak* angelic.

There are Asplund spaces with weak* angelic dual balls which are not WCG. An example
is the space JT ∗ (see [27]).

We say a Banach space E has the Schur property provided every weakly convergent
sequence in E is norm convergent. A Banach space E has the Dunford-Pettis property if
given weakly null sequences (xn) and (x∗n) in E and E∗ respectively then limn〈x∗n, xn〉 = 0.
If either E or E∗ has the Schur property then E enjoys the Dunford-Pettis property.
A compact Hausdorff space is scattered or dispersed provided it contains no nonempty
perfect subsets. We may now gather up a striking set of equivalences for continuous
function spaces.

Theorem 2.13. Let K be a compact Hausdorff topological space. The following are
equivalent:
(a) K is scattered.
(b) C(K) is Asplund.
(c) C(K) contains no isomorphic copy of `1.
(d) C(K) contains no isometric copy of C[0, 1].
(e) C(K)∗ has the Schur property.

Proof. By [21], (a) implies (b). Also [21] show that subspaces of Asplund spaces are
Asplund spaces so (b) implies (c) as `1 is not an Asplund space. Now [7] (page 212) shows
that E∗ has the Schur property if and only if E has the Dunford-Pettis property and E
contains no copy of `1. Since each C(K) has the Dunford-Pettis property (a consequence
of Egoroff’s theorem also discussed in [7]) it follows that (c) implies (e) and (e) implies
(d), as C[0, 1] contains a copy of `1. Now if K is not scattered, [17] (page 29) shows there
is a continuous surjection s : K → [0, 1]. Then F (f)(r) := f(s(r)) defines an isometry of
C[0, 1] into C[K] so (d) implies (a).

Remark 2.14. This provides a large selection of Schur spaces and shows that C[0, 1] is
universally present in non-Asplund C(K) spaces. While Haydon’s examples (see [9]) have
shown how much can be illustrated in C(K) these equivalences emphasize how special
C(K) is among Banach spaces in that four usually distinct properties coincide there.

There is also a version of the equivalence of (a) through (d) for C∗ algebras [10].

3. Limiting examples

These examples are continuous concave functions. This gives examples for the derivative
case and the subderivative case simultaneously because for a continuous concave function
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f there is x∗ ∈ ∂βf(x) if and only if x∗ = ∇βf(x). The first two examples show that the

sets of Theorem 2.6 can be empty, while the third example shows that equality can fail
even when both limit derivatives are nonempty.

Example 3.1. A continuous concave function on `∞ which is nowhere Gateaux sub-
differentiable.
The function f(x) := − lim sup xn is nowhere Gateaux differentiable: see [23], page 13.

Example 3.2. A continuous concave function on `1 which is nowhere Fréchet subdif-
ferentiable.
If f(x) := −‖x‖1 then f is nowhere Fréchet differentiable: see [23], page 8.

Example 3.3. A continuous concave function f on `∞ which is densely Fréchet differ-

entiable but has points where Dβ
t f(x) 6= weak∗clDβ

σf(x) 6= ∅ and ∂f(x) 6= conv∗Dβ
σf(x),

for each bornology β with G ⊆ β ⊆ F .
Define f(x) := −‖x‖∞; by [9] (page 5) the β-derivative of the norm at y exists if and only
if |yn| > supm6=n |ym| for some n, and then the derivative is sgn(yn)en ∈ `1.

Now at x := (1, 1/2, 2/3, 3/4, . . .) we have Dβ
σf(x) = {−e1} and Dβ

t f(x) = {−e1} ∪ Z
for a nonempty set Z not containing e1. In fact the derivatives at nearby points can

only be −en for large n which gives Z =
⋂∞
n=1 weak

∗ cl{−en,−en+1, . . .}. Also ∂f(x) =

conv∗Dβ
t f(x) 6= conv∗Dβ

σf(x).

This shows the Corollary 2.7 needs the weak* sequential compactness hypothesis; also
see Remark 2.8. Note that `∗∞ is far from having a weak* sequentially compact unit
ball: a sequence in `∗∞ converges weak* if and only if it converges weakly ([7], page 103).
Contrast this with Theorem 2.13(e). Of course by the Josefson-Nissenzweig Theorem
(see [7], page 219) the norm and weak* sequential convergences can never coincide in an
infinite dimensional Banach space.

Our final example shows the need for of our WCG hypothesis in Theorem 2.6, even in an
Asplund space.

Example 3.4. A compact Hausdorff scattered space K and a continuous concave

function f on C(K) such that ∂f(x) 6= DF
t f(x) 6= DF

σ f(x) for some x.

Let ω1 be the first uncountable ordinal and let K be the compact topological space [0, ω1].
Define f(x) := −‖x‖ for x ∈ C(K). Let µω be the point mass at ω ∈ K. By [9] (page 5)
the norm is Fréchet differentiable at x ∈ C(K) if and only if there is ω, an isolated point
of K (that is, not a limit ordinal) such that |x(ω)| > |x(t)| for t 6= ω. In that case the
derivative is µω. By considering for ω any non-limit ordinal

yω(t) :=
{

1 + ε , t = ω
1 , otherwise

at x ≡ 1 we get

DF
t f(x) = {−µω : ω ∈ K} 6= DF

σ f(x) = {−µω : ω < ω1}
because ω1 is not the limit of a sequence of countable ordinals, while other w ∈ K are limits
of sequences of non-limit ordinals. On the other hand ∂f(x) = {µ : µ ≤ 0, µ(K) = −1}.
Remark 3.5. This C(K) is Asplund but not WCG, it has an M -basis and B∗ is not
weak* angelic. By Theorem 2.13, C([0, ω1])∗ has the Schur property. Also C([0, ω1]) has
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a C∞ renorm [12] but nonetheless Theorem 2.3(b) and Corollary 2.9(b) have failed in this
setting.

Acknowledgment. We thank Dr Jon Vanderwerff for useful discussions about this material,

especially about weak* angelic sets and M -bases.
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[22] D. Preiss : Fréchet derivatives of Lipschitzian functions, J. Funct. Analysis 91, (1990),
312–345.

[23] R. R. Phelps : Monotone Operators, Convex Functions and Differentiability, 2nd edition,
Lecture Notes in Mathematics 1364, Springer-Verlag 1993.

[24] H. P. Rosenthal : The hereditary problem for weakly compactly generated Banach spaces,

Comp. Math. 28, (1974), 83–111.

[25] J. S. Treiman : Clarke’s gradients and epsilon-subgradients in Banach spaces, Trans. Amer.

Math. Soc. 294, (1986), 65–78.

[26] M. Valdivia : Resolutions of identity in certain Banach spaces, Collect. Math. 39, (1988),
127–140.

[27] D. van Dulst : Characterizations of Banach Spaces not Containing l1, CWI Tract 59, Centre
for Mathematics and Computer Science, Amsterdam 1989.

[28] D. Yost : Asplund spaces for beginners, preprint, 1993.



68 J. Borwein, S. Fitzpatrick / Weak* sequential compactness

HIER :

Leere Seite
68


