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1. Introduction

In this work we study weakly lower semicontinuous integral functionals of the form

G(u) =

∫

Ω
g(x,∇u) dx+

∫

Ω
g∞
(
x,

dDsu

d|Dsu|
)
d|Dsu|,

defined on the space BV (Ω) of (scalar-valued) functions of bounded variation on an open
set Ω of IRn when g is a discontinuous integrand in the space variable. For analogous
integrals defined on Sobolev spaces the lower semicontinuity with respect to the weak
topology is equivalent, under appropriate measurability and growth conditions, to the
convexity of the integrand (with respect to the gradient). The richer structure of the
functions of bounded variation yield that the hypotheses on g must be in general more
complex. In particular we have to take into proper care the fact that the singular part
of the derivative Dsu may charge sets of zero Lebesgue measure; hence, we have to
consider the values of g (or rather of its recession function g∞) also on sets of Hausdorff
dimension lower than n. The goal of this paper is to show that an integrand ϕ equivalent
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to the function g (that is, generating the same integrals) may be “reconstructed” from
the computation of some minimum problems for the functional G (Theorem 2.1) when g
is positively homogeneous of degree one in the second variable. The formula we obtain
for the integrand is of “derivation-type”, and it does not involve the pointwise behaviour
of g. In particular it can be used to compute the lower semicontinuous envelope with

respect to the L1(Ω)-topology of integral functionals of linear growth also in the non-
one-homogeneous case (see Theorem 2.3 and Section 4), and to obtain a homogenization
formula for positively one-homogeneous integral functionals (see Section 5) defined on

W1,1(Ω). We remark that our result utilizes only abstract properties of the functional G;
hence it can be thought of as an “integral representation” theorem (see Remark 2.2).
The paper is divided as follows. In Section 2 we recall the main definitions about functions
of bounded variation and sets of finite perimeter, and we state our main results. Section 3
is devoted to the proof of the derivation formula for positively one-homogeneous function-
als. We remark that, by the coarea formula and by a localization argument, it suffices

to prove Theorem 2.1 for characteristic functions of sets with C1-boundary. The proof
is then obtained by a direct construction. In Section 4 we apply Theorem 2.1 to give a

characterization of the integrand of the relaxation of functionals defined on W1,1(Ω), and
of functionals defined on “partitions of Ω in sets of finite perimeter”. Finally, in Section 5
we prove a homogenization formula for positively one-homogeneous functionals.
A study of the same type of functionals by duality theory methods can be found in
Bouchitté and Dal Maso [7]. For a comparison with a derivation formula for functionals

defined on Sobolev spaces W 1,p(Ω) with p > 1 we refer to Dal Maso and Modica [13].
Some results related to the present work can be found in [2], [3], [4], [5], [15], [16], where
different derivation formulas were given in the case of continuous integrands. Note that
all these formulas may not give the correct result when g is discontinuous in the first
variable.

2. Preliminaries and Statement of the Main Result

Let Ω be an open subset of IRn; we will use standard notation for the Sobolev and

Lebesgue spaces W1,p(Ω) and Lp(Ω). We denote by A(Ω) (respectively, B(Ω)) the family
of the open (respectively, Borel) subsets of Ω, and if x, y ∈ IRn then 〈x, y〉 stands for their
scalar product.
The Lebesgue measure and the Hausdorff (n−1)-dimensional measure in IRn are denoted

by Ln and Hn−1, respectively. Sometimes we use the shorter notation {u < t} for
{x ∈ IRn : u(x) < t} (and similar) when no confusion is possible. If E is a subset of
IRn then χE is its characteristic function, defined by

χE(x) =
{

1 if x ∈ E
0 if x 6∈ E.

If f : IRn → [0,+∞[ is convex, we define the recession function f∞ : IRn → [0,+∞] by

f∞(z) = lim
t→+∞

f(tz)

t
.

We remark that f∞ is a Borel function, and it is convex and positively homogeneous of
degree 1. If f : IRn → [0,+∞] is a Borel function we denote by f ∗∗ the greatest convex
and lower semicontinuous function less than or equal to f .
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Given a vector-valued measure µ on Ω, we adopt the notation |µ| for its total variation (see
Federer [14]), andM(Ω) is the set of all signed measures on Ω with bounded total varia-
tion. If µ is a (vector-valued) measure on Ω, and f is a Carathéodory function, positively

one-homogeneous in the second variable we write
∫

Ω f(x, µ) in place of
∫

Ω f(x, dµd|µ|)d|µ|.
We will use Besicovitch Covering Theorem in the following generalized form (which is a
particular case of Morse [18] Theorem 5.13): let µ be a positive Radon measure on Ω, and
let Q be a collection of closed cubes which covers finely Ω (i.e., for µ-a.e. x ∈ Ω we have
inf{|Q| : x ∈ Q ∈ Q} = 0); then there exists a (finite or) countable family (Qi)i ⊂ Q
such that µ(Ω \⋃iQi) = 0.

We say that u ∈ L1(Ω) is a function of bounded variation, and we write u ∈ BV (Ω), if
its distributional first derivatives Diu belong toM(Ω). We denote by Du the IRn-valued
measure whose components are D1u, . . . , Dnu. For the general exposition of the theory
of functions of bounded variation we refer to Federer [14], Giusti [17], Vol’pert [19], and
Ziemer [20]. Next we just recall some results needed in the sequel.
The space BV (Ω) is a Banach space, if endowed with the BV norm

‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω).

We say that uh ⇀ u in BV-w∗ (weakly∗ in BV (Ω)) if suph |Duh|(Ω) < +∞ and uh → u

in L1(Ω). Recall that if Ω is bounded and ∂Ω is Lipschitz, then every bounded sequence
in BV (Ω) admits a subsequence converging in BV-w∗.
We denote by ∇u the density of the absolutely continuous part of Du with respect to
the Lebesgue measure, and Dsu stands for the singular part of Du with respect to the
Lebesgue measure, so that

Du = ∇u · Ln +Dsu.

We denote by Su the complement of the Lebesgue set of u. If u ∈ BV (Ω), then the
Hausdorff dimension of Su is at most (n− 1).
We will say that a set E is of finite perimeter in Ω, or a Caccioppoli set, if χE ∈ BV (Ω).

We will set ∂∗E ∩Ω = SχE ∩Ω the reduced boundary of E in Ω. For Hn−1-a.e. x ∈ ∂∗E it

is possible to define a measure theoretical interior normal to E νE(x) ∈ Sn−1 such that

DχE(B) =

∫

B∩∂∗E
νE(x)dHn−1(x)

for every B ∈ B(Ω). Remark that |DχE|(Ω) = Hn−1(∂∗E ∩ Ω) for every E of finite
perimeter in Ω. Moreover if E is a set of finite perimeter, there is a countable sequence of

C1 hypersurfaces Γi which covers Hn−1-almost all of ∂∗E; i.e., Hn−1(∂∗E \⋃∞i=1 Γi) = 0.

The total variation of a function u ∈ BV (Ω) and its level sets are linked by the coarea
formula

|Du|(A) =

∫

IR
Hn−1(∂∗{u > t} ∩ A) dt =

∫

IR
|Dχ{u>t}|(A) dt

for all A ∈ A(Ω).
Finally, we recall the notion of relaxed functional. Let F : X → IR∪{+∞} be a functional

on a topological space (X, τ). The relaxed functional F of F , or relaxation of F (in the τ
topology), is the greatest τ lower semicontinuous functional less than or equal to F . For
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a general treatment of this subject we refer to the books by Buttazzo [10] and by Dal
Maso [12].
The letter c will denote throughout the paper a strictly positive constant, whose value
may vary from line to line, which is independent from the parameters of the problems
each time considered.

In order to state our main result we have to introduce some definitions. We say that a
function h : Ω× IRn → [0,+∞[ satisfies a growth condition of order 1 if there exist c1, C1

strictly positive constants such that

c1|ξ| − C1 ≤ h(x, ξ) ≤ C1(1 + |ξ|) for all (x, ξ) ∈ Ω× IRn. (2.1)

Let x ∈ IRn, ρ > 0, ν ∈ Sn−1. We denote by Qνρ(x) an open cube centered in x, of side

length ρ and one face orthogonal to ν. We suppose that fixed x and ν for each ρ and
σ > 0 the cube Qνσ(x) is obtained from Qνρ(x) by an homothety of center x. We also

define the function uν,x by

uν,x(y) =

{
1 if 〈y − x, ν〉 > 0
0 if 〈y − x, ν〉 ≤ 0;

(2.2)

i.e., the characteristic function of the half space {y ∈ IRn : 〈y − x, ν〉 > 0}.
Theorem 2.1. Let g : Ω× IRn → [0,+∞[ be a Borel function, positively 1-homogeneous
in the second variable, satisfying a growth condition of order 1, and let us suppose that
the integral functional defined by

G(u) =

∫

Ω
g(x,Du) u ∈ BV (Ω) (2.3)

be lower semicontinuous with respect to the L1(Ω) topology. Let us define the positively

1-homogeneous function ϕ : Ω× IRn → [0,+∞[ by setting for all x ∈ Ω and ν ∈ Sn−1

ϕ(x, ν) = lim sup
ρ→0+

1

ρn−1
Φ(x, ν, ρ), (2.4)

where

Φ(x, ν, ρ) = inf
{
G(w,Qνρ(x)) : w ∈ BV (Qνρ(x)), w = uν,x on ∂Qνρ(x)

}
, (2.5)

and G(u,A) =
∫
A g(y,Dw). Then we have

G(u) =

∫

Ω
ϕ(x,Du)

for every u ∈ BV (Ω).

Remark 2.2. We can restate Theorem 2.1 as an integral representation result. Let us
consider a functional G : BV (Ω)× B(Ω)→ [0,+∞[ satisfying the following properties:
(H1) for every u ∈ BV (Ω) the set function B 7→ G(u,B) is a Borel measure;
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(H2) for every A ∈ A(Ω) the function G(·, A) is convex, positively 1-homogeneous and

L1(Ω)-lower semicontinuous on BV (Ω);
(H3) there exist positive constants c1, C1 such that

c1|Du|(B) ≤ G(u,B) ≤ C1|Du|(B)

for every u ∈ BV (Ω) and B ∈ B(Ω).
Then if we define the positively 1-homogeneous function ϕ : Ω × IRn → [0,+∞[ as in
(2,4), (2.5), then we have for every u ∈ BV (Ω)

G(u,B) =

∫

B
ϕ(x,Du)

for every B ∈ B(Ω). In fact, it suffices to recall that by [7] Corollary 5.5 conditions
(H1)–(H3) assure that the functional G can be represented in an integral form, and then
apply Theorem 2.1.

As a Corollary to Theorem 2.1 we will obtain in Section 4 the following relaxation result
for integral functionals defined on W1,1(Ω).

Theorem 2.3. Let f : Ω × IRn → [0,+∞[ be a Borel function, satisfying a growth
condition of order 1, and such that f(x, 0) = 0 for all x ∈ Ω, and f(x, ξ) ≥ f∞(x, ξ)−a(x)

for all x ∈ Ω and ξ ∈ IRn, with a ∈ L1(Ω). Then the relaxed functional F with respect to

the L1(Ω)-topology of the functional

F(u) =

{∫
Ω f(x,∇u(x)) dx if u ∈W1,1(Ω)

+∞ if u ∈ BV (Ω) \W1,1(Ω)
(2.6)

is given by

F(u) =

∫

Ω
h(x,∇u(x)) dx+

∫

Ω
ϕf (x,Dsu), u ∈ BV (Ω) (2.7)

where ϕf is the positively 1-homogeneous function defined by setting for all x ∈ Ω, ν ∈
Sn−1

ϕf (x, ν) = lim sup
ρ→0+

1

ρn−1
lim

t→+∞
1

t
inf
{∫

Qνρ(x)
f(y,∇w(y))dy :

: w ∈W1,1(Qνρ(x)), w = tuν,x on ∂Qνρ(x)
}
,

(2.8)

and h(x, ·) = (f(x, ·) ∧ ϕf (x, ·))∗∗. If f is positively 1-homogeneous then we can take
h = h∞ = ϕf equal to

ϕf (x, ν) = lim sup
ρ→0+

1

ρn−1
inf
{∫

Qνρ(x)
f(y,∇w(y))dy :

: w ∈W1,1(Qνρ(x)), w = uν,x on ∂Qνρ(x)
}
,

for all x ∈ Ω, ν ∈ Sn−1.
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Other relaxation results and an application to the asymptotic behaviour as ε tends to 0 of
integrals of the form

∫
Ω f(xε ,∇u(x)) dx with f positively 1-homogeneous will be obtained

in Sections 4 and 5.

3. Proof of Theorem 2.1

Let G be as in Theorem 2.1. Note first that we can write by the Fleming and Rishel
coarea formula

G(u) =

∫

IR
G(χEt) dt, (3.1)

where Et = {u > t}. Hence, Theorem 2.1 is equivalent to the following one.

Theorem 3.1. For every set of finite perimeter in Ω we have
∫

Ω∩∂∗E
g(x, νE(x)) dHn−1 =

∫

Ω∩∂∗E
ϕ(x, νE(x)) dHn−1, (3.2)

where νE(x) denotes the interior normal to E.

Remark 3.2. In the introduction we mentioned the fact that integrands of functionals
defined on BV functions are not merely defined almost everywhere. The statement of
Theorem 3.1 specifies that for every fixed E of finite perimeter the function g must be
defined Hn−1-a.e. on ∂∗E, but only “in the direction” of the normal to E. For example,

the function g : IR2 × S1 → [0,+∞[ defined by

g(x, ν) =
{

1 if x1 6= 0 or ν = ±e1
any function if x1 = 0 and ν 6= ±e1

(3.3)

gives ∫

Ω∩∂∗E
g(x, νE(x)) dH1 = H1(Ω ∩ ∂∗E). (3.4)

Note in fact that, by standard properties of the approximate tangent spaces, we have
νE = ±e1 H1-a.e. on ∂∗E ∩ {x1 = 0} for every set of finite perimeter E.

Proof of Theorem 3.1
We localize the functional G by setting

G(u,A) =

∫

A
g(x,Du), (3.5)

for every A ∈ A(Ω) and u ∈ BV (Ω), in particular

G(χE , A) =

∫

A∩∂∗E
g(x, νE(x)) dHn−1 (3.6)

for every A ∈ A(Ω) and E set of finite perimeter. Since the set function A 7→ G(χE, A)

is a measure for every E, and ∂∗E can be expressed, up to a Hn−1-negligible set, as the
union of C1 hypersurfaces, it will suffice to prove the equality

G(χE, A) =

∫

A∩∂∗E
ϕ(x, νE(x)) dHn−1 (3.7)

when ∂∗E ∩ A is a C1 hypersurface (see [1] Lemma 4.2).
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Fix E and A such that ∂∗E∩A is a C1 hypersurface. Note that if x ∈ A∩∂∗E, ν = νE(x),
and we set

w =

{
χE in Qν

(ρ−ρ2)
(x)

uν,x in Qνρ(x) \Qν
(ρ−ρ2)

(x),
(3.8)

then w satisfies the boundary condition w = uν,x in Qνρ(x), and we have

∫

Qνρ(x)
g(y,Dw) ≤

∫

Qνρ(x)∩∂∗E
g(y, νE(y))dHn−1 + ρn−2o(ρ), (3.9)

so that by (2.4)

ϕ(x, νE(x)) ≤ lim sup
ρ→0+

1

ρn−1

∫

Qνρ(x)∩∂∗E
g(y, νE(y))dHn−1. (3.10)

By Lebesgue derivation theorem applied to the measure

µ(A) =

∫

A∩∂∗E
g(y, νE(y))dHn−1

(note that limρ→0+ ρ
1−nHn−1(Qνρ(x)∩∂∗E) = 1) we obtain that forHn−1-a.e. x ∈ ∂∗E∩A

the right hand side of (3.10) equals g(x, νE(x)). Hence, we deduce the inequality

∫

A∩∂∗E
ϕ(x, νE(x)) dHn−1 ≤ G(χE, A). (3.11)

The converse inequality will be proven with the aid of formula (2.4) and of the lower

semicontinuity of G. We will exhibit a sequence uh converging to χE in L1(A) such that

lim inf
h
G(uh, A) ≤

∫

A∩∂∗E
ϕ(x, νE(x)) dHn−1. (3.12)

The construction of such uh will be obtained via a proper combination of minimizers for
(2.5).
Let us denote by

Γ =
{
x ∈ ∂∗E : lim

ρ→0+

1

ρn−1

∫

Qνρ(x)∩∂∗E
ϕ(y, νE(y))dHn−1 = ϕ(x, νE(x))

}
.

By Lebesgue derivation theorem we have Hn−1(∂∗E \ Γ) = 0.
Fix h ∈ IN. Let u(x, ρ, ν) ∈ BV (Qνρ(x)), with u(x, ρ, ν) = uν,x on ∂Qνρ(x), satisfy

∫

Qνρ(x)
g(y,Du(x, ρ, ν)) ≤ Φ(x, νE(x), ρ) +

ρn−1

2h
.

We extend u(x, ρ, ν) to all A setting

u(x, ρ, ν) = χE
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on A \Qνρ(x).

Let us choose for each h the family Qh of all closed cubes Qνρ(x) such that ρ ≤ 1/h,

x ∈ Γ, ν = νE(x), Qνρ(x) ⊂ A, the orthogonal projection of Qν
ρ(x) ∩ ∂∗E covers the faces

of Qνρ(x) orthogonal to ν (so that, in particular, ρn−1 ≤ Hn−1(Qνρ(x) ∩ ∂∗E)),

|Du(x, ρ, ν)|(∂Qνρ(x)) ≤ 1

h
ρn−1, (3.13)

ϕ(x, νE(x)) ≤ 1

ρn−1

∫

Qνρ(x)∩∂∗E
ϕ(y, νE(y))dHn−1 +

1

h
, (3.14)

and
1

ρn−1
Φ(x, νE(x), ρ) ≤ ϕ(x, νE(x)) +

1

2h
. (3.15)

The family Qh covers finely Hn−1-almost all ∂∗E ∩ A; hence, by the (generalized) Besi-

covitch covering theorem there exists a countable sub-family of disjoint cubes {Qνi
ρi(xi) :

i ∈ IN} still covering Hn−1-almost all ∂∗E ∩ A. We define then

uh(y) =





u(xi, ρi, νi)(y) if y ∈ Qνiρi(xi),

1 if y ∈ (E \⋃iQ
νi
ρi(xi)) ∩ A

0 if y ∈ (A \ E) \⋃iQ
νi
ρi(xi).

(3.16)

We have by (3.13)–(3.15) and the definition of u(x, ρ, ν)

G(uh, A) =
∑

i

∫

Q
νi
ρi

(xi)
g(y,Du(xi, ρi, νi))

=
∑

i

∫

Q
νi
ρi

(xi)
g(y,Du(xi, ρi, νi)) +

∑

i

∫

∂Q
νi
ρi

(xi)
g(y,Du(xi, ρi, νi))

≤
∑

i

ρi
n−1
(
ϕ(xi, νE(xi)) +

1

h

)
+ C1

∑

i

|Du(xi, ρi, νi)|(∂Qνiρi(xi)) (3.17)

≤
∑

i

ρi
n−1ϕ(xi, νE(xi)) +

1

h
(1 + C1)

∑

i

ρn−1
i

≤
∑

i

∫

Q
νi
ρi

(xi)∩∂∗E
ϕ(y, νE(y))dHn−1 +

1

h
(2 + C1)

∑

i

ρn−1
i

≤
∫

A∩∂∗E
ϕ(y, νE(y))dHn−1 +

1

h
(2 + C1)Hn−1(A ∩ ∂∗E).

Letting h→ +∞ we obtain then

lim inf
h
G(uh, A) ≤

∫

A∩∂∗E
ϕ(y, νE(y))dHn−1.
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Since it is clear that uh → χE in L1(A), we have proven (3.12). Due to the lower
semicontinuity of G we have

G(χE, A) ≤
∫

A∩∂∗E
ϕ(y, νE(y))dHn−1, (3.18)

and we conclude the converse inequality of (3.11).

Remark 3.3. We recall that if g satisfies a growth condition of order 1, and the

functional G(u,Ω) =
∫

Ω g(x,Du) is L1(Ω)-lower semicontinuous, then the direct methods

of the calculus of variations yield the existence for minimum problems of the form

min
{∫

A
g(x,Du) : u = Φ on Ω \ A

}

if A is an open set with A ⊂⊂ Ω and Φ ∈ BVloc(Ω). Using this fact, it is easy to see,
proceeding exactly as in Theorem 3.1, that the function ϕ can also be given by

ϕ(x, ν) = lim sup
ρ→0+

1

ρn−1
min

{∫

Qνρ(x)
g(y,Dw) :

: w ∈ BV (Ω), w = uν,x on Ω \Qνρ(x)
}
.

(3.19)

Note however that for some x, ρ, ν, the minimum problem in (3.19) may be different from
Φ(x, ν, ρ): take for example n = 2,

g(x, ξ) =

{ |ξ| if |ξ1| ∨ |ξ2| = 1

4|ξ| otherwise.

x = 0, ν = e1, and ρ = 1.

4. Relaxation

In this section we prove Theorem 2.3, and we give a relaxation result for functionals
defined on “partitions of Ω into sets of finite perimeter”.

We recall that if f, g satisfy a growth condition of order 1, for every open subset A of Ω

the functional G(u,A) =
∫
A g(x,Du) (u ∈ BV (Ω)) is the relaxation (in the L1-topology)

of the functional

F (u,A) =

{∫
A f(x,∇u) dx if u ∈W1,1(A)

+∞ otherwise,

and φ ∈ L1(∂A), then by a standard cut-off argument near ∂A we have

inf
{
G(u,Ω) : u− = φ on ∂Ω

}
= inf

{
F (u,Ω) : u = φ on ∂Ω

}
, (4.1)

where u− denotes the inner trace of u on ∂A.
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Proof of Theorem 2.3
Let us localize the functional F setting

F(u,A) =

{∫
A f(x,∇u(x)) dx if u ∈W1,1(A)

+∞ otherwise,

if A is a open subset of Ω. By Theorems 4.1 and 5.1 in [7] we obtain the representation

F(u,A) =

∫

A
h(x,∇u(x)) dx+

∫

A
ϕf (x,Dsu), u ∈ BV (A)

for every open subset A of Ω, for suitable functions h and ϕf with h(x, ·) convex, and

h∞(x, ·) = ϕf (x, ·) for almost every x ∈ Ω. We have to prove that h and ϕf can be

represented as in (2.8) and (2.9).
We can suppose, up to changing h on a Lebesgue negligible set, that ϕf (x, ξ) = h∞(x, ξ)

and h(x, ξ) ≤ f(x, ξ) for every x ∈ Ω, ξ ∈ IRn. Note that from f(x, 0) = 0 we obtain also
h(x, 0) = 0, and that the sequence of functions

ht(x, ξ) =
1

t
h(x, tξ)

converges increasingly to h∞ as t→ +∞. Notice also that for all A open subset of Ω

Ht(u,A) =

∫

A
ht(x,∇u)dx+

∫

A
h∞(x,Dsu)

is the relaxed functional of

F t(u,A) =

∫

A

1

t
f(x, t∇u)dx.

Moreover, by the Lebesgue monotone convergence theorem

sup
t
Ht(u) =

∫

Ω
h∞(x,∇u) dx+

∫

Ω
h∞(x,Dsu),

and we conclude that the functionals u 7→
∫
A h
∞(x,Du) are lower semicontinuous since

they are the supremum of a family of lower semicontinuous functionals. Hence, for every
Qνρ(x) we have

inf
{∫

Qνρ(x)
h∞(y,Dw) : w ∈ BV (Qνρ(x)), w = uν,x on ∂Qνρ(x)

}

= lim
t→+∞

inf
{∫

Qνρ(x)
ht(y,∇w) +

∫

Qνρ(x)
h∞(y,Dsw) :

: w ∈ BV (Qνρ(x)), w = uν,x on ∂Qνρ(x)
}

(4.2)

= lim
t→+∞

inf
{∫

Qνρ(x)

1

t
f(y, t∇w)dy : w ∈W1,1(Qνρ(x)), w = uν,x on ∂Qνρ(x)

}

= lim
t→+∞

inf
{∫

Qνρ(x)

1

t
f(y,∇w)dy : w ∈W1,1(Qνρ(x)), w = tuν,x on ∂Qνρ(x)

}
.
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We can apply Theorem 2.1 with g = h∞(= ϕf ), and obtain formula (2.8).

As h(x, 0) = 0 we have h ≤ h∞ = ϕf . Since h ≤ f , the convexity of h(x, ·) yields

h(x, ·) ≤ (f(x, ·) ∧ ϕf (x, ·))∗∗ (4.3)

for a.e. x ∈ Ω.
From the hypothesis f(x, ·) ≥ f∞(x, ·)− a(x) we deduce

(h∞(x, ·))∗ ≤ f∗(x, ·) ∨ ϕ∗f (x, ·) ≤ (h∞(x, ·))∗ + a(x),

hence, in particular, domg∗ = domϕ∗f = dom(h∞)∗. Since h∞ gives a lower semicontinu-

ous functional on BV (Ω), this condition yields, from [7] Theorem 4.4, that the functionals

G(u,A) =

∫

A
g(x,∇u)dx,

where

g(x, ξ) = (f(x, ·) ∧ ϕf (x, ·))∗∗(ξ),

are L1(A)-lower semicontinuous on W1,1(A) for every open subset A of Ω. As g ≤ f , we
deduce also, by definition of relaxation, that

∫

A
g(x,∇u)dx = G(u,A) ≤ F(u,A) =

∫

A
h(x,∇u)dx

for every open subset A of Ω, and u ∈W1,1(A). Hence, we must have

g(x, ξ) ≤ h(x, ξ), (4.4)

for a.e. x ∈ Ω and every ξ ∈ IRn, and (2.9) is proven.

If T is a finite subset of IR then we denote by BV (Ω;T ) the set of BV (Ω) functions u
such that u ∈ T a.e. on Ω. Note that if u ∈ BV (Ω;T ) then it can be written as

u =
∑

t∈T
tχEt, (4.5)

where (Et) is a partition of Ω; hence, these functions can be thought of as finite partitions
of Ω into Caccioppoli sets indexed by T . We denote by P (Ω) the set of all possible finite
Caccioppoli partitions, namely

P (Ω) =
⋃
{BV (Ω;T ) : T ⊂ IR finite }. (4.6)

For the properties of these spaces we refer the reader to Ambrosio and Braides [1], [2],
Congedo and Tamanini [11].
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Theorem 4.1. Let f : Ω × IRn → [0,+∞[ be a positively 1-homogeneous Borel func-
tion satisfying a growth condition of order 1, and let ϕf be the positively 1-homogeneous

function defined by

ϕf (x, ν) = lim sup
ρ→0+

1

ρn−1
inf
{∫

Qνρ(x)
f(y,∇u(y))dy :

: w ∈W1,1(Qνρ(x)), w = uν,x on ∂Qνρ(x)
} (4.7)

for all x ∈ Ω, ν ∈ Sn−1. Then the relaxation of the functional F defined in (2.6) coincides
with the relaxation of the functional J defined by

J (u) =

{∫
Ω ϕf (x,Du) if u ∈ P (Ω)

+∞ otherwise.
(4.8)

Proof. By Theorem 2.3 the relaxed functional F of F can be represented on BV (Ω) by

F(u) =

∫

Ω
ϕf (x,Du). (4.9)

Hence, we have F ≤ J , so that F ≤ J . On the other hand, since it is not difficult to
prove hypotheses (H1)–(H3) of Remark 2.2 (see [1] or [9] for a proof of (H1)), we can

represent J in an integral form

J (u) =

∫

Ω
ϕJ (x,Du), (4.10)

where ϕJ is given by

ϕJ (x, ν) =

= lim sup
ρ→0+

1

ρn−1
inf
{∫

Qνρ(x)
ϕJ (x,Dw) : w ∈ BV (Ω), w = uν,x on ∂Qνρ(x)

}

= lim sup
ρ→0+

1

ρn−1
inf
{∫

Qνρ(x)
ϕf (x,Dw) : w ∈ P (Ω), w = uν,x on ∂Qνρ(x)

}
,

where the second equality follows as in (4.1) by a standard use of the coarea formula (see
[1], [9]). Proceeding then as in the proof of (3.11) (see (3.8)–(3.11)) we obtain

ϕJ (x, νE(x)) ≤ ϕf (x, νE(x)),

for every E of finite perimeter and Hn−1-a.e. x ∈ ∂∗E, and then J ≤ F by the coarea
formula.

We end this section with a lemma that will be needed in the sequel.
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Lemma 4.2. Let Ω be a Lipschitz open set. If g : Ω × IRn → [0,+∞[ be a positively

1-homogeneous Borel function, x ∈ Ω, ν ∈ Sn−1, then we have

inf
{∫

Ω
g(x,Dw) : w ∈ P (Ω), w = uν,x on ∂Ω

}
(4.11)

= inf
{∫

Ω∩∂∗E
g(x, νE)dHn−1 : E is a Caccioppoli set, χE = uν,x on ∂Ω

}
.

Proof. It suffices to prove that for every finite set T ⊃ {0, 1} we have the inequality

inf
{∫

Ω
g(x,Dw) : w ∈ BV (Ω;T ), w = uν,x on ∂Ω

}
(4.12)

≥ inf
{∫

Ω∩∂∗E
g(x, νE)dHn−1 : E is a Caccioppoli set, χE = uν,x on ∂Ω

}
.

Let us take w ∈ BV (Ω;T ) satisfying the boundary condition in (4.12); we have to show
then that there exists a set E of finite perimeter, with the same trace on ∂Ω, such that

∫

Ω∩∂∗E
g(x, νE)dHn−1 ≤

∫

Ω
g(x,Dw). (4.13)

We prove it by induction on #(T ). If #(T ) = 2 then we must have T = {0, 1} and there
is nothing to prove. Let us suppose that #(T ) = N + 1. Since |D((w ∧ 1) ∨ 0)| ≤ |Dw|
and g(x, ·) is positively 1-homogeneous, the second integral in (4.13) clearly decreases
substituting w by (w ∧ 1)∨ 0, we can suppose that T ⊂ [0, 1], and we can write T = {ai :

i = 0, 1, . . . , N}, with 0 = a0 < a1 < . . . < aN = 1. If w =
∑N

i=1 aiχEi , let us define

w′ =
N∑

i=2

aiχEi, w′′ = a2χE1 +

N∑

i=2

aiχEi

(w′ and w′′ are obtained from w by changing a1 into a0 = 0, and a1 into a2, respectively).
We have then

∫

Ω
g(x,Dw′) =

∫

Ω
g(x,Dw)

+ a1

( N∑

i=2

∫

∂∗Ei∩∂∗E1∩Ω
g(x, νEi)dHn−1 −

∫

∂∗E0∩∂∗E1∩Ω
g(x, νE1)dHn−1

)
,

∫

Ω
g(x,Dw′′) =

∫

Ω
g(x,Dw)

+ (a1 − a2)
( N∑

i=2

∫

∂∗Ei∩∂∗E1∩Ω
g(x, νEi)dHn−1 −

∫

∂∗E0∩∂∗E1∩Ω
g(x, νE1)dHn−1

)
.
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Hence, either
∫

Ω g(x,Dw′) ≤
∫

Ω g(x,Dw) or
∫

Ω g(x,Dw′′) ≤
∫

Ω g(x,Dw). Since w′, w′′ ∈
BV (Ω, T \ {a1}) the inequality (4.13) is true by induction.

5. Homogenization

In this section we use the previous relaxation and integral representation results to obtain
a homogenization formula for positively 1-homogeneous functionals.
Let f = f(x, ξ) : IRn × IRn → [0,+∞[ be a periodic (in x), positively 1-homogeneous
(in ξ) Borel function satisfying a growth condition of order 1. It is well-known (see for
example Bouchitté [6]) that the functionals

Fε(u,Ω) =

∫

Ω
f(
x

ε
,∇u(x))dx u ∈W1,1(Ω) (5.1)

Γ-converge, with respect to the L1(Ω)-topology, as ε→ 0+ to a functional

F0(u,Ω) =

∫

Ω
ψ(Du) u ∈ BV (Ω), (5.2)

where ψ is a positively 1-homogeneous convex function. We refer to [12] for an introduc-
tion to Γ-convergence and to its applications to the theory of homogenization.
The function ψ can be characterized by a minimum value problem on a space of periodic

W1,1-functions. In this section we are going to prove an alternative formula and express
ψ as a minimum value problem on sets of finite perimeter.

By the convexity of ψ it is easy to see that uν = uν,0 is a local minimum on BV (Ω;T ) for
each T finite (see [2]), so that we have

ψ(ν) = min
{∫

Qν1(0)
ψ(Dw) : w ∈ P(Qν1(0)), w = uν on ∂Qν1(0)

}
. (5.3)

Hence, by Theorem 4.1

ψ(ν) = min
{∫

Qν1(0)
ψ(Dw) : w ∈ BV (Qν1(0)), w = uν on Qν1(0)

}
. (5.4)

Recall that the Γ-convergence of a sequence of equicoercive functionals (which is the case)
implies the convergence of minima. By standard cut-off arguments it is easy to see that
Γ-convergence is maintained also after addition of boundary conditions (see [12]); hence,

ψ(ν) = lim
ε→0+

inf
{∫

Qν1(0)
f(
x

ε
,∇w)dx : w ∈W1,1(Qν1(0)), w = uν on ∂Qν1(0)

}
(5.5)

= lim
T→+∞

1

T n−1
inf
{∫

QνT (0)
f(x,∇w)dx : w ∈W1,1(QνT (0)), w = uν on ∂QνT (0)

}
.

By Theorem 4.1 we get then

ψ(ν) = lim
T→+∞

1

T n−1
inf
{∫

Qν
T

(0)
ϕf (x,Dw) :

: w ∈ P (QνT (0)), w = uν on ∂QνT (0)
}
.

(5.6)
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By Lemma 4.2, given w ∈ P (QνT (0)) such that w = uν on ∂QνT (0), there exists a set of

finite perimeter E such that χE = uν on ∂QνT (0) and

∫

Qν
T

(0)
ϕf (x,DχE) ≤

∫

Qν
T

(0)
ϕf (x,Dw). (5.7)

Hence, we have proven the following representation result.

Theorem 5.1. Let f = f(x, ξ) : IRn × IRn → [0,+∞[ be a periodic (in x), positively
1-homogeneous (in ξ) Borel function satisfying a growth condition of order 1, and let ψ
be the integrand of the homogenized functional given by (5.1), (5.2). Then we have

ψ(ν) = lim
T→+∞

1

T n−1
inf
{∫

Qν
T

(0)∩∂∗E
ϕf (x, νE(x))dHn−1 :

: E is a set of finite perimeter, χE = uν on ∂QνT (0)
}
,

(5.8)

where ϕf is given by (4.7), and uν = uν,0 is given by (2.2).

Remark 5.2. We remark that in order to characterize ψ it is sufficient to compute

this formula for rational directions ν (we call ν ∈ Sn−1 a rational direction if there exists

t ∈ IR such that tν ∈ Zn), since ψ is continuous and rational directions are dense in Sn−1.

Example 5.3. Let n = 2. We can apply Theorem 5.1 to obtain the characterization of
the homogenized functional of

Fε(u,Ω) =

∫

Ω
a(
x

ε
)|∇u|dx, (5.9)

where a is defined by

a(x, y) =

{
1 if [x] + [y] is even

2 otherwise,

and [t] denotes the integer part of t ∈ IR. The relaxation of functional Fε can be expressed,
by Theorem 2.1 and taking into account Remark 3.2, by changing the coefficient a into

a(x, y) =





1 if [x] + [y] is even

1 if x ∈ Z or y ∈ Z

2 otherwise.

(5.10)

We can apply then formula (5.8) to compute ψ. In this case it is immediate to see
(by Pythagoras’ Theorem) that the boundary of the minimal set E in (5.8) “avoids”

the set {a = 2} as much as possible. If ξ = Tν ∈ Z2 then the minimum problem
in (5.8) is reduced to finding the path of minimal length through {a = 1} from the
point (0, 0) to the point (ξ2,−ξ1). By a symmetry argument we can suppose that 0 ≤
ξ2 ≤ −ξ1, so that the minimal path is the union of the two segments [(0, 0), (ξ2, ξ2)]
and [(ξ2, ξ2), (ξ2,−ξ1)]). We infer then that the minimum value in (5.8) is given by
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(
√

2 − 1) min{|ξ1|, |ξ2|} + max{|ξ1|, |ξ2|}, whenever ξ = Tν ∈ Z2. Letting T → +∞ we
obtain that

ψ(ν) = (
√

2− 1) min{|ν1|, |ν2|}+ max{|ν1|, |ν2|} (5.11)

when ν is a rational direction. By Remark 5.2 this formula determines ψ.

Remark 5.4. In the case n = 1 formula (5.8) reduces to ψ(ν) = minϕf (·, ν) =

essinf f(·, ν).
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