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We consider functionals of the calculus of variations subjected to constraints of the form

∫

Ω
g(x, u) dx = 1.

We identify the relaxed problem and we show that, when a lack of compactness occurs, the constraint
may relax to a gap term.

1. Introduction

The term Lavrentiev phenomenon refers to a surprising result first demonstrated by
Lavrentiev in 1926 [29]. There he presented an example showing that it is possible for
the variational integral of a two-point Lagrange problem which is sequentially weakly
lower semicontinuous on the admissible class of absolutely continuous functions, to pos-

sess an infimum on the dense subclass of C1 admissible functions that strictly exceeds

its minimum value on the full admissible class. The global C1 regularity constraint on
the admissible functions was thereby shown to incur an infimum gap in comparison with
the relaxed problem in which this constraint has been removed. Since that time there
have been additional works devoted to analyzing this gap phenomenon (see References),
of which the paper [12] is most closely related to the work we present here.
The present article was stimulated by a result of Lezenina and Sobolevskii [30] in which
a gap phenomenon having some analogy to the Lavrentiev phenomenon for free problems
was encountered in an isoperimetric variational problem associated with a singular elliptic
equation. We here demonstrate that for a large class of isoperimetrically constrained
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variational problems there is such a gap phenomenon, which has a natural interpretation
as a relaxation effect, as was shown in Buttazzo and Mizel [12] to be also true of free
problems for which the Lavrentiev phenomenon occurs. We prefer here to consider only
the gap effect deriving from the lack of compactness and so, to avoid possible interactions
with the gap due to regularity of admissible functions, we consider our problems as defined
on the whole class of absolutely continuous functions. The result is that, after relaxation,
the initial constraint becomes a kind of penalization term which, in several cases, can be
explicitly computed.

2. The Relaxation Result

Let Ω be the interval ]0, 1[; we consider

W 1,1(Ω) the space of all absolutely continuous functions on Ω;

A the class of all functions u ∈ W 1,1(Ω) with u(0) = 0;

f(x, s, ζ) a nonnegative Borel function from Ω× IR× IR into IR which is lower semicon-
tinuous in (s, ζ) and convex in ζ;

g(x, s) a nonnegative Borel function from Ω×IR into IR which is lower semicontinuous
in s.

For every u ∈ A we define

F (u) =

∫

Ω
f(x, u, u′) dx

G(u) =

∫

Ω
g(x, u) dx

H(u) =
{
F (u) if G(u) = 1
+∞ otherwise

and we denote by H the greatest functional on A which is sequentially lower semicon-

tinuous with respect to weak W 1,1
loc (Ω) convergence and less than or equal to H. By the

assumptions made on the integrand f , the functional F turns out to be sequentially lower
semicontinuous, so that

H(u) ≥ F (u) ∀u ∈ A.

On the other hand, the equality H = H is possible only if the constraint G(u) = 1 is
preserved in the relaxation, which does not occur in general when the integrand g(x, s)

has singularities which prevent the compactness of embeddings. We want to write H in
the form

H(u) = F (u) + L(u)

and to characterize the gap L explicitly. It is clear that, when the compactness condition

uh → u in w −W 1,1
loc (Ω), F (uh) ≤ c ⇒ G(uh)→ G(u)

is fulfilled, then H = H, that is

L(u) =
{

0 if G(u) = 1
+∞ otherwise.
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In general, however, only the inequality G(u) ≤ 1 holds in the relaxed functional, by
Fatou’s lemma. Thus L(u) = +∞ whenever G(u) > 1, L(u) = 0 whenever G(u) = 1, but
L(u) may take finite nonzero values on functions u ∈ A such that G(u) < 1.
In order to characterize explicitly the gap functional L we introduce the following nota-
tions:

Fx(u) =

∫ x

0
f(t, u, u′) dt

Gx(u) = zu(x) =

∫ x

0
g(t, u) dt

V (x, s, z) = inf {Fx(u) : u ∈ A, u(x) = s, Gx(u) = z}

W (x, s, z) = lim inf
(ξ,η)→(s,z)

V (x, ξ, η).

The representation result for L is then the following.

Theorem 2.1. Assume the following conditions are fulfilled:

(2.1) for every δ > 0 there exists a function aδ ∈ L1(Ω) and a function θδ : IR→ IR with
θδ(r)/r→ +∞ as r → +∞ such that

f(x, s, ζ) ≥ θδ(|ζ|)− aδ(x) ∀x ∈]δ, 1[, ∀s ∈ IR, ∀ζ ∈ IR;

(2.2) g(x, s) is continuous in s, and for every δ > 0 there exists a function γδ(x, t) in-
creasing in t and integrable in x such that

g(x, s) ≤ γδ(x, |s|) ∀x ∈]δ, 1[, ∀s ∈ IR.

Then for every u ∈ A with G(u) ≤ 1 we have

L(u) ≥ lim sup
x→0

W

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)
(2.3)

L(u) ≤ lim inf
x→0

V

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)
. (2.4)

Hence

L(u) = lim
x→0

V

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)

if V (x, ·, ·) is lower semicontinuous on IR× IR.

Proof. Consider any sequence (uh) in A with G(uh) = 1 and uh → u weakly in W 1,1
loc (Ω);

then for every δ > 0 we have

F (uh) =

∫ δ

0
f(x, uh, u

′
h) dx+

∫ 1

δ
f(x, uh, u

′
h) dx ≥

≥ V

(
δ, uh(δ), 1−

∫ 1

δ
g(x, uh) dx

)
+

∫ 1

δ
f(x, uh, u

′
h) dx ≥

≥ W

(
δ, uh(δ), 1−

∫ 1

δ
g(x, uh) dx

)
+

∫ 1

δ
f(x, uh, u

′
h) dx.
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Passing to the limit as h→ +∞ gives, by using (2.1) and (2.2)

H(u) ≥ W

(
δ, u(δ), 1−

∫ 1

δ
g(x, u) dx

)
+

∫ 1

δ
f(x, u, u′) dx

and, as δ → 0,

H(u) ≥ lim sup
δ→0

W

(
δ, u(δ), 1−

∫ 1

δ
g(x, u) dx

)
+ F (u)

so that inequality (2.3) is proved.
In order to prove inequality (2.4) let xh → 0 be such that

lim inf
x→0

V

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)
= lim

h→+∞
V

(
xh, u(xh), 1−

∫ 1

xh

g(t, u) dt

)
< +∞

(2.5)
and let vh ∈ A be such that

vh(xh) = u(xh),

∫ xh

0
g(t, vh) dt = 1−

∫ 1

xh

g(t, u) dt (2.6)

∫ xh

0
f(t, vh, v

′
h) dt ≤ 1

h
+ V

(
xh, u(xh), 1−

∫ 1

xh

g(t, u) dt

)
. (2.7)

Define

uh(x) =

{
vh(x) if x ∈]0, xh[

u(x) if x ∈ [xh, 1[;

we have uh ∈ A, G(uh) = 1 by (2.6), and uh → u weakly in W 1,1
loc (Ω) by (2.1). Further-

more, by (2.5) and (2.7)

H(u) ≤ lim inf
h→+∞

F (uh) =

= lim inf
h→+∞

[∫ xh

0
f(t, vh, v

′
h) dt+

∫ 1

xh

f(t, u, u′) dt
]
≤

≤ lim inf
h→+∞

[
1

h
+ V

(
xh, u(xh), 1−

∫ 1

xh

g(t, u) dt

)
+ F (u)

]
=

= lim inf
x→0

V

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)
+ F (u).

Hence inequality (2.4) is also proved.

Remark 2.2. Similar results with similar proofs hold if we replace the class A with

W 1,1(Ω) or W 1,1
0 (Ω).

Remark 2.3. The assumptions of Theorem 2.1 ensure that the lack of compactness
may occur only at the origin. In a similar way we can treat problems in which the lack
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of compactness occurs at a finite number of points, but we do not know the form of the

relaxed functional H when the function g(x, s) may allow more general “singular sets”.

3. The Hamilton-Jacobi Approach

In order to provide an explicit computation, in some cases, of the gap L(u), it is useful
to present a dynamic programming type of result by studying the link between the value
function V (x, s, z) and the solutions of the associated Hamilton-Jacobi equation. In the
following we denote by f ∗(x, s, ·) the Fenchel conjugate of f(x, s, ·). We will also suppose
that

g(x, s) > 0 for a. e. x ∈ Ω and for all s 6= 0; (3.1)

this implies that for every x ∈ Ω and s 6= 0

V (x, s, 0+) = +∞.

Theorem 3.1. Suppose that U(t, s, z) is a positive C1 solution on D = IR+× IR+× IR+

of the Hamilton-Jacobi equation

{
Ut + g(t, s)Uz + f∗(t, s, Us) = 0

U(t, s, 0+) = +∞
(3.2)

such that
lim

(t,s,z)→(0,0,0)
(t,s,z)∈Dj

U(t, s, z) = 0 ∀j ∈ IN (3.3)

where (Dj) is an expanding sequence of bounded subdomains of D such that (0, 0, 0) ∈ Dj ,

U is C1-bounded on Dj , and ∪jDj = D.
Putting

B =

{
u ∈ A : lim inf

x→0
U(x, u(x), zu(x)) = 0

}
,

one has the following inequality for every u ∈ B

Fx(u) ≥ U(x, u(x), zu(x)) ∀x ∈ [0, 1]. (3.4)

Furthermore, if for some (x, s, z) ∈ D there is a u ∈ B such that u(x) = s, zu(x) = z,
and (3.4) holds with equality, then u is a minimizer for the problem

min {Fx(u) : u ∈ B, u(x) = s, zu(x) = z}. (Px,s,z)

Proof. Fix u ∈ B; then for every x, y with 0 < y < x ≤ 1 the graph (t, u(t), zu(t)),
t ∈ [y, x] lies in Dj for some j ∈ IN. Then by the chain rule for the function U on

Dj ∩ ([y, x]× IR+ × IR+) we get

U(x, u(x), zu(x))− U(y, u(y), zu(y)) =

∫ x

y
[Ut + g(t, u(t))Uz + u′(t)Us] dt.
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Hence, by approaching the liminf as y → 0+ and using the definition of B and property
(3.3) we can write

U(x, u(x), zu(x))− Fx(u) =

∫ x

0
[Ut + g(t, u)Uz + u′Us − f(t, u, u′)] dt.

Now, by the Hamilton-Jacobi equation (3.2), the integrand is nonpositive everywhere on
]0, x], whence (3.4) follows. The conclusion that u is a minimizer of problem (Px,s,z) when

equality holds in (3.4) is now immediate.

Remark 3.2. When problem (3.2) has multiple solutions the above result applies to
the maximal solution, in particular, as the only candidate for the value function of the
problem.

4. Some Examples

In this section we present some examples of isoperimetrically constrained one-dimensional
variational problems possessing a gap. We start by proving a homogeneity property of

the value functions Y of (Px,s,z) and V of (P̂x,s,z), the analogue of (Px,s,z) on the full
admissible class A.

Theorem 4.1. Suppose that the integrands f and g satisfying (2.1) and (2.2) have the
form

f(t, s, ζ) = tα|s|γh
(
tζ

s

)
∀s 6= 0

g(t, s) = tβ|s|δ

with α, β ∈ IR and γ, δ > 0. Then the value function V associated with the problems

(P̂x,s,z) satisfies

V (x, s, z) = xα+1|s|γV (1, 1, zx−β−1|s|−δ) ∀s 6= 0. (4.1)

Likewise, the value function Y associated with (Px,s,z) satisfies

Y (x, s, z) = xα+1|s|γY (1, 1, zx−β−1|s|−δ) ∀s 6= 0.

Proof. Given u ∈ A with u(x) = s and zu(x) = z define v(t) = u(tx) so that

v′(t) = xu′(tx), zv(1) = x−β−1zu(x), F1(v) = x−α−1Fx(u).

It follows from these relations that

V (x, s, z) = xα+1V (1, s, zx−β−1). (4.2)

On the other hand, given λ ∈ IR define w(t) = λu(t) so that

w′(t) = λu′(t), zw(x) = |λ|δzu(x), Fx(w) = |λ|γFx(u).
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These relations yield

V (x, s, z) = |λ|−γV (x, λs, z|λ|δ). (4.3)

The validity of (4.1) now follows from (4.2) and (4.3). The proof for Y is similar.

As a consequence of Theorems 3.1 and 4.1 we obtain the following result.

Theorem 4.2. Let f and g be as in Theorem 4.1. Then every solution U of (3.2) having
the form

U(t, s, z) = tα+1sγR(zt−β−1s−δ)

for some positive function R ∈ C1(IR+), is such that R is a positive solution of the
ordinary differential equation

{
(α+ 1)R(w)− (β + 1)wR′(w) +R′(w) + h∗(γR(w)− δwR′(w)) = 0
R(0+) = +∞. (4.4)

In particular, for every u ∈ B satisfying u(x) = s and zu(x) = z one has

Fx(u) ≥ xα+1|s|γR(zx−β−1|s|−δ),

and equality ensures that u is a minimizer for (Px,s,z).

Corollary 4.3. Let f and g be as in Theorem 4.1 with α = β, γ = δ and assume that

h ∈ C1(IR), is strictly convex, and satisfies h(ζ)/ζ → +∞ as |ζ| → +∞. Then equation
(4.4) becomes

{
h∗
(
γ(R(w)− wR′(w))

)
+ (α + 1)(R(w)− wR′(w)) +R′(w) = 0

R(0+) = +∞.
(4.5)

The maximal solution of (4.5) on ]0,+∞[ is given by the convex function

R(w) = wh

(
1

γw
− α + 1

γ

)
.

corresponding to the C1 solution of (3.2)

U(x, s, z) = zh

(
sγxα+1

γz
− α + 1

γ

)
. (4.6)

Moreover, the unique B-optimal trajectory (u, zu) for (P1,s,z) corresponding to the above
solution is given by

u(t) = st(|s|
γ/z−α−1)/γ , zu(t) = zt|s|

γ/z . (4.7)

Finally, if for some a > 0
1

th−1(t)
∈ L1(a,+∞) (4.8)
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where h−1 denotes the inverse of the restriction of h to some interval [A,+∞[ on which
it is strictly monotone, then

V (x, s, z) = Y (x, s, z) = U(x, s, z)

and the trajectory in (4.7) is (P̂1,s,z) optimal.

Proof. By virtue of superlinearity and strict convexity of h, we have for every ζ

h∗(h′(ζ)) = ζh′(ζ)− h(ζ) and (h∗)′(ζ) = (h′)−1(ζ) (4.9)

so that the supremum yielding h∗
(
γ(R(w)− wR′(w))

)
in (4.5) is attained at (assuming

existence of a minimizer u for problem (P1,s,z))

tu′(t)
u(t)

= (h′)−1
(
γ(R(w)− wR′(w))

)
= (h∗)′

(
γ(R(w)− wR′(w))

)
. (4.10)

On the other hand, by formally differentiating the implicit Clairaut type equation (4.5)

one obtains (we recall that, by Rockafellar [36], Theorem 26.5, h∗ is C1)

R′′(w)
[
1− (α + 1)w − γw(h∗)′

(
γ(R(w)− wR′(w))

)]
= 0.

Since R′′ = 0 is inconsistent with R(0+) = +∞, we have

(h∗)′
(
γ(R(w)− wR′(w))

)
=

1

γw
− α + 1

γ
. (4.11)

Then, from (4.10) and (4.11) we obtain

u′(t) =
u(t)

γt

(
1

w
− α− 1

)
. (4.12)

Moreover, inserting (4.11) into (4.5), and taking into account (4.9) gives as singular solu-
tion the convex function

R(w) = wh

(
1

γw
− α + 1

γ

)

which proves (4.6) by Theorem 4.2. Now, recalling that w = zt−1−α|s|−γ, while z′u(t) =
g(t, u(t)) = tα|u(t)|γ, we obtain by (4.12)

w′(t) = z′ut
−α−1|u|−γ − (α+ 1)zut

−α−2|u|−γ − γzut−α−1|u|−γ−1 sgn(u)u′ =

=
1

t
− α + 1

t
w − γw

t

(
1

γw
− α+ 1

γ

)
= 0.

That is, w is constant along an optimal trajectory. In particular, w(t) = w(1) = z|s|−γ,
so that (4.7) follows from (4.12).
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Finally, we show that when (4.8) is satisfied, then Y = V by proving that for each
u ∈ A \ B we have zu(x) = +∞ for every x ∈ Ω. By definition of B it follows that for
some positive b, σ one has

U(x, u(x), zu(x)) = zu(x)h

(
xα+1|u(x)|γ
γzu(x)

− α + 1

γ

)
≥ b ∀x ∈]0, σ[.

If we suppose zu(1) < +∞, then by taking σ sufficiently small, we can ensure that the

argument of h lies in the semi-axis [A,+∞[ where h is invertible. Thus, since z′u(x) =
xα|u(x)|γ, we have the relation

xz′u(x)

zu(x)
≥ γh−1

(
b

zu(x)

)
+ α+ 1 ∀x ∈]0, σ[.

Since zu(0+) = 0 and h is superlinear, we may deduce from this (by decreasing σ) that

z′u(x)

zu(x)h−1(b/zu(x))
≥ γ

2x
∀x ∈ [0, σ[. (4.13)

Denoting by k(zu) the coefficient of z′u in (4.13) we have by (4.8) that k ∈ L1(0, ε) for ε

sufficiently small. Letting K(t) =
∫ t

0 k(s) ds, it follows from the local absolute continuity

of zu by the chain rule (cf. e.g. [34]) and from (4.13) that

K(zu(x))−K(zu(y)) ≥ γ

2
log(x/y) 0 < y < x < σ

which gives, as y → 0+, zu(x) = +∞ for every x small enough.

We now examine a special subclass of the integrands discussed in Corollary 4.3 for which
an explicit estimate is available.

Corollary 4.4. Let p > n and let, with the notation of Corollary 4.3, h(ζ) = |ζ|p,
α = n− 1− p, γ = p, so that

f(t, ζ) = tn−1|ζ|p, g(t, s) = tn−p−1|s|p.

Consider the variational problem

min {F1(u) : u ∈ B, u(1) = s, zu(1) = z}. (P1,s,z)

Then an optimal trajectory is given by

u(t) = st(|s|
p/z−n+p)/p, zu(t) = zt|s|

p/z

corresponding to a minimal cost given by

V (x, s, z) = Y (x, s, z) =
z

pp

∣∣∣∣
|s|p
zxp−n

− n + p

∣∣∣∣
p

, (x, s, z) ∈ D. (4.14)
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In particular,

L(u) =

(
1− n

p

)p
(1−G(u)).

Proof. The expression of L(u) follows from (4.14) by noticing that, thanks to the impli-
cation

w/x ∈ L1(0, 1), w′ ∈ L1(0, 1) ⇒ lim
x→0

w(x) = 0,

we have, with w(x) = xn−p|u(x)|p,

lim
x→0

|u(x)|p
xp−n

= 0.

Corollary 4.5. Let d(t) = dist(t, ∂Ω) and consider the problem

min

{∫ 1

0
|u′|p dt : u ∈ W 1,1

0 (0, 1),

∫ 1

0

|u(t)|p
|d(t)|p dt = z

}
. (P1,z)

Then, if V is the value function of Corollary 4.4 with n = 1, the infimum m is given

by m = 2V (1/2, 0+, z/2) and there is a minimizing sequence which converges to u0 ≡ 0.
Therefore

L(u) =

(
1− 1

p

)p
(1−G(u)).

Proof. By the symmetry in t the infimum m can be obtained as

m = inf
s,u,v

{∫ 1/2

0
|u′|p dt+

∫ 1/2

0
|v′|p dt : u, v ∈ Γs

}
=

= inf
s,z1,z2

{V (1/2, s, z1) + V (1/2, s, z2) : z1 + z2 = z}

where Γs is the class of functions such that u(0) = v(0) = 0, u(1/2) = v(1/2) = s,
zu(1/2) + zv(1/2) = z. By the convexity of V (x, s, ·) we get z1 = z2 = z/2 so that

m = inf
s

2V (1/2, s, z/2) = 2V (1/2, 0+, z/2) = (1− 1/p)pz

and a minimizing sequence (as s→ 0+) is

us(x) =

{
s(2x)(2−psp/z+p−1)/p if 0 ≤ x ≤ 1/2

s(2− 2x)(2−psp/z+p−1)/p if 1/2 ≤ x ≤ 1.
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Theorem 4.6. Let f and f̃ be integrands satisfying (2.1), and let g and g̃ be integrands

satisfying (2.2). Suppose furthermore that as t→ 0 we have f ≈ f̃ and g ≈ g̃ in the sense
that for every ε > 0 there exists δ > 0 such that (putting aε = 1 + ε)

f̃(t, s, ζ)

f(t, s, ζ)
,
g̃(t, s)

g(t, s)
∈ ]a−1

ε , aε[ (4.14)

for every x ∈]0, δ[ and every s, ζ ∈ IR \ {0}. Suppose in addition that the value function
V corresponding to f and g is lower semicontinuous in (s, ζ) and satisfies

|V (x, s, z1)− V (x, s, z2)| ≤ ω(|z1 − z2|)k(x, s) (4.15)

where ω is a continuity modulus and k(x, u(x)) is bounded for every u such that F (u) <
+∞. Then for every u ∈ A satisfying

G̃(u) = G(u) < 1

we have that the gap terms relative to f, g and to f̃ , g̃ verify

L̃(u) ≥ L(u) ∀u ∈ A.

Proof. Given ε > 0 it follows from (4.14) that for any sequence (uh) in A one has

{
a−1
ε Fx(uh) ≤ F̃x(uh) ≤ aεFx(uh)

a−1
ε Gx(uh) ≤ G̃x(uh) ≤ aεGx(uh)

(4.16)

for every x < δ. Now, given (x, s, z) select uh ∈ A with uh(x) = s, G̃x(uh) = z, and

F̃x(uh) → Ṽ (x, s, z). Possibly passing to subsequences we may assume that Gx(uh) =

zh → z′ and that Fx(uh) converges as well. By use of (4.16) we obtain easily a−1
ε z ≤ z′ ≤

aεz and
V (x, s, z′) ≤ aεṼ (x, s, z). (4.17)

Now, consider a sequence (sh, zh)→ (s, z) for which Ṽ (x, sh, zh)→ W̃ (x, s, z) and let us
denote by z′h the associated points for the first term of (4.17). We can suppose, by passing

to subsequences, that z′h → z′′. Then we obtain a−1
ε z ≤ z′′ ≤ aεz and

W̃ (x, s, z) ≥ a−1
ε V (x, s, z′′).

By Theorem 2.1 and (4.15) we obtain finally

L̃(u) ≥ lim sup
x→0

W̃

(
x, u(x), 1−

∫ 1

x
g̃(t, u) dt

)
≥

≥ lim inf
x→0

a−1
ε

[
V

(
x, u(x), 1−

∫ 1

x
g(t, u) dt

)
− ω(ε)k(x, u(x))

]
≥

≥ a−1
ε [L(u)−Kω(ε)].

The conclusion now follows by taking ε→ 0.
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As an application consider the following generalized version of the Lezenina and Sobolev-
skii problem on the unit ball B of IRn, where p > 1 and

F (u) =

∫

B
|Du|p dx, G(u) =

∫

B
(1− |x|)−p|u|p dx.

This leads in the radially symmetric case to

F (u) =

∫ 1

0
rn−1|u′|p dr, G(u) =

∫ 1

0

rn−1

(1− r)p |u|
p dr.

On putting t = 1− r and considering u as a function of t we are led to

F (u) =

∫ 1

0
(1− t)n−1|u′|p dt, G(u) =

∫ 1

0
(1− t)n−1t−p|u|p dt.

Here the integrands

f̃(t, s, ζ) = (1− t)n−1|ζ|p, g̃(t, s) = (1− t)n−1t−p|s|p

are asymptotically equivalent to the integrands

f(t, s, ζ) = |ζ|p, g(t, s) = t−p|s|p

corresponding to the case n = 1 of Corollary 4.4. Consequently, we deduce by Theorem 4.6

L̃(0) ≥ L(0) =

(
1− 1

p

)p
.

In the present case one can actually show that equality holds. Namely, we must estimate

Ṽ (x, 0, 1); to do so we modify a sequence (uh) of optimizers for V (x, sh, 1) where sh → 0.
By Corollary 4.4 (with n = 1) such a sequence is given by

uh(t) = sh(t/x)(|sh|px1−p+p−1)/p.

The modified sequence vh is defined as follows:

vh(t) =




λhuh(t) if 0 ≤ t ≤ x/2

2λhuh(x/2)

(
1− t

x

)
if x/2 ≤ t ≤ x.

Note that for λh = 1 we have vh ≤ uh. Moreover, by direct calculation

G̃x(vh) = λph

[∫ x/2

0
(1− t)n−1t−p|uh(t)|p dt+ 2p

∫ x

x/2
(1− t)n−1t−p|uh(x/2)|p

(
1− t

x

)p
dt

]

The first integral has the value (1 − ξ)n−12−|sh|
px1−p

with ξ ∈ (0, x/2), whereas the

second integral tends to zero as sh → 0. It then follows that there is a choice of λph ≤
2|sh|

px1−p
(1− x/2)1−n such that G̃x(vh) = 1. Moreover, by direct computation

F̃x(vh) ≤
(

1− x

2

)1−n( |sh|px1−p + p− 1

p

)p
+ o(1) as h→ +∞
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and, passing to the limit first as h→ +∞ and then as x→ 0, the right hand side goes to(
p−1
p

)p
= L(0).
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