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1. Introduction

Problems in elasticity, crystallography and phase transitions lead to the consideration of
energy functionals of the kind ∫

Ω
g(∇u(x))dx

where g is non negative and is zero only on potential wells described by rotations of finitely
many matrices A1, . . . , Ar, i.e.

g(F ) = 0 for F ∈
r⋃

i=1

SO(3)Ai.

In general the matrices Ai describe symmetries of the material and are connected by a
symmetry group. See, for instance [1], [2], [3], [4], [5] and [6].
Finding a minimizer of the energy satisfying the homogeneous condition at the boundary
of Ω : u|∂Ω = 0, is then equivalent to solving the differential inclusion

∇u(x) ∈
r⋃

i=1

SO(3)Ai,

with the boundary condition: u|∂Ω = 0. This needs not always be possible : from a result
of Reshetnyak, see [7] and [5], it follows that the problem

{∇u(x) ∈ SO(3)I,

u|∂Ω = 0,

admits no solution on any open and bounded Ω ⊂ IR3.
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The purpose of the present paper is to show that for any open and bounded Ω ⊂ IR3, the
problem {

∇u(x) ∈ SO(3)I ∪ SO(3)I−,

u|∂Ω = 0,

where

I− =

(−1 0 0
0 1 0
0 0 1

)
,

(or any other matrix giving a change of orientation in IR3) does indeed admit a solution,

a Lipschitz continuous map u : Ω → IR3. More precisely, the matrix ∇u(x) will belong,

for a.e x in Ω, to a subset of O(3) = SO(3)I ∪ SO(3)I−, the set R of those orthogonal

matrices having rows ±ej , where (e1, e2, e3) is the canonical basis of IR3. Notice that our
result is contrary to the intuition: when ∂Ω is smooth, in case u was smooth as well,
the three components of u would have ∂Ω as a level set, hence their gradients would all
be orthogonal to ∂Ω, i.e. parallel to each other. In particular our result shows that the
minimum of the functional ∫

Ω
g(∇u(x))dx

with homogeneous boundary condition is zero. Hence the functional is not quasicon-
vex since the (affine) boundary datum is not a solution to the minimum problem. The
boundary datum zero need not be the only case yielding a zero infimum for the mini-
mum problem. Characterizations of such boundary data under different assumptions are
presented in [2] and [8].
An unknown referee, whom we thank for the careful reading of the proof, has pointed out
that related results on the existence problem, have been announced by Muller and Sverak

for the case Ω ⊂ IR2.

2. Notation and preliminary results

For x in IR3, define the three maps x 7→ |Xs|(x), x 7→ |Xm|(x), x 7→ |Xi|(x), as follows:

|Xs|(x1, x2, x3) = sup{|xj| : j = 1, 2, 3}.

Let k ∈ {1, 2, 3} be such that |Xs|(x) = |xk| and set

|Xm|(x1, x2, x3) = sup{|xj| : j = 1, 2, 3; j 6= k}.

Remark that |Xm| is unambigously defined: in case k1 and k2 are such that |xk1| =

|Xs|(x) = |xk2|, then |Xm|(x) = |Xs|(x) independently of the choice of k. Set also

|Xi|(x1, x2, x3) = inf{|xj | : j = 1, 2, 3}.

Proposition 2.1.
a) The maps |Xs|, |Xm|, |Xi| are continuous.
b) |Xs|(x1, x2, x3) = |Xs|(|x1|, |x2|, |x3|), and the same for |Xm| and |Xi|.
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c) |Xs|(xj1, xj2 , xj3) = |Xs|(x1, x2, x3) for any permutation (xj1 , xj2 , xj3) of (x1, x2, x3),

and the same is true for |Xm| and |Xi|.

Remark 2.2. The composition of a continuous function on IR3 with (|Xs|, |Xm|, |Xi|),
is a continuous function of x, and is invariant under a permutation of (x1, x2, x3).

For x in IR3 and such that |xi| 6= |xj |, for i, j = 1, 2, 3 and i 6= j, set s(x), m(x), i(x) to
be such that

|xs(x)| = |Xs|(x), |xm(x)| = |Xm|(x), |xi(x)| = |Xi|(x).

The maps x 7→ s(x), x 7→ m(x), x 7→ i(x), are locally constant on their (open) domains.
We have the following technical proposition.

Proposition 2.3. Let E ⊂ IR2 be defined by

E = {x : ‖ x ‖∞≤ 1, |x1|+ |x2| ≤ 1, |x2| ≤ |x1|}
∪ {x : ‖ x ‖∞≤ 1, |x1|+ |x2| ≥ 1, |x1| ≤ |x2|}.

Then, (x1, x2) belongs to E if and only if ((x1)mod 1, (x2)mod 1) belongs to E.

Proof. Set y1 = (x1)mod 1 and y2 = (x2)mod 1. Four cases are possible: (x1, x2) = (y1, y2),
(x1, x2) = (y1−1, y2), (x1, x2) = (y1, y2−1), (x1, x2) = (y1−1, y2−1). One verifies easily
the claim, separately for each case.

We wish to have indices i in {1, 2, 3}. It is convenient to set (r)3 = (r − 1)mod 3 + 1, for
any integer r.

We shall need three functions f 1, f2, f3, from IR to IR. On [0, 1] set

f1(y) = inf{y, 1− y},

and consider f 1 on IR to be its extension by periodicity. We have that f 1 is continuous

and that f1(y) = f1(|y|). Set also

f2(y) =
1

2
f1(2y); f3(y) =

1

4
f1(4y).

3. Main result

It is our purpose to define a function u : Ω → IR3, Lipschitz continuous on Ω, such that

u|∂Ω = 0 and ∇u(x) is in R ⊂ SO(3)I ∪ SO(3)I− for a.e. x in Ω.

Theorem 3.1. Let Ω be a bounded open subset of IR3. Then there exists ũ : Ω → IR3,
Lipschitz continuous with Lipschitz constant one, such that

i) ũ|∂Ω = 0;
ii) ∇ũ(x) ∈ R, for a.e. x in Ω.

Proof. The proof consists of the following steps:
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a) We define first a map u1 on the sphere ‖ x ‖∞≤ 1, satisfying the differential inclusion
ii) on ‖ x ‖∞< 1 but not the boundary condition i) at ‖ x ‖∞= 1.

b) We recursively extend this map, by defining a function un on the set of x such that∑n−2
i=0

1
2i
≤‖ x ‖∞≤

∑n−1
i=0

1
2i

, a Lipschitz continuous map satisfying condition ii) and

such that, for all j ∈ {1, 2, 3}, sup |unj (x)| ≤ 1
2n−1 .

c) We define a function u satisfying properties i) and ii) for Ω = B2, the sphere ‖ ‖∞
x ≤ 2.

d) Exploiting Vitali’s covering theorem, we define ũ on Ω, with the properties i) and ii)
of the theorem.

a) On B1, the unit ball ‖ x ‖∞≤ 1, set:

u1
1(x) =1− ‖ x ‖∞= 1− |Xs|(x);

u1
2(x) = inf{f1(|Xi|(x)), f1(|Xm|(x))};

u1
3(x) =

{
f2(|Xm|(x)) on |Xi|(x) + |Xm|(x) ≤ 1
f2(|Xi|(x)) on |Xi|(x) + |Xm|(x) ≥ 1.

Notice that on the set {x : |Xi|(x) + |Xm|(x) = 1}, one has |Xi|(x) = 1 − |Xm|(x),

hence f2(|Xi|(x)) = f2(1−|Xm|(x)) = f2(|Xm|(x)− 1) = f 2(|Xm|(x)) by the periodicity

of f2. Recalling Proposition 2.1, the map u1 is continuous, actually piecewise affine. In

particular consider u1(x1, x2, 1).

Claim 1. u1(x1, x2, 1) = u1((x1)mod 1, (x2)mod 1, 1).

Proof of claim 1. We have u1
1(x1, x2, 1) = 0. Moreover,

u1
2(x1, x2, 1) = inf{f 1(|x1|), f1(|x2|)} = inf{f 1(x1), f1(x2)}

= inf{f1((x1)mod 1), f1((x2)mod 1)}.

Finally consider u1
3(x1, x2, 1). Recalling Proposition 2.3, we have

(x1, x2) ∈ E ⇔ ((x1)mod 1, (x2)mod 1) ∈ E.

Then if (x1, x2) ∈ E we have

u1
3(x1, x2, 1) = f2(|x1|) = f2(x1)

and

u1
3((x1)mod 1, (x2)mod 1, 1) = f2(|(x1)mod 1|) = f2((x1)mod 1).

Since f2(x1) = f2((x1)mod 1) the claim follows in this case. Analogously when (x1, x2)
belongs to the complement of E. This proves claim 1.
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Moreover, we have: sup{|u1
j(x)| : x ∈ B1, j = 1, 2, 3} = 1.

Whenever the gradients exist, we have:

∇u1
1(x) =− sign(xs(x))es(x)

∇u1
2(x) =

{
sign(xi(x))ei(x) on |xi(x)|+ |xm(x)| < 1
−sign(xm(x))em(x) on |xi(x)|+ |xm(x)| > 1

∇u1
3(x) =

{
f2′(xm(x))em(x) on |xi(x)|+ |xm(x)| < 1

f2′(xi(x))ei(x) on |xi(x)|+ |xm(x)| > 1.

Since |f2′(t)| = 1, for t /∈ {(1/4)z : z integer}, we have that, a.e. on B1, ∇u1(x) ∈ R.

b) We begin by defining two auxiliary functions v and `1. The function `1 will, in turn,

extend u1 as u2 on the layer 1 ≤‖ x ‖∞≤ 1 + 1
2 . To do so, we have to carefully consider

the continuity of u2 at {x : ‖ x ‖∞= 1}. An induction argument carries this construction
to un.
We begin by defining the subsets Q3

s, Q
3
m, Q3

i of B 1
2

= {x : ‖ x ‖∞≤ 1
2} as

Q3
s = {x ∈ B 1

2
: |x3| = |Xs|(x)};

Q3
m = {x ∈ B 1

2
: |x3| = |Xm|(x)};

Q3
i = {x ∈ B 1

2
: |x3| = |Xi|(x)}.

Set v : B 1
2
→ IR3 to be:

v2(x) =
1

2
− ‖ x ‖∞=

1

2
− |Xs|(x);

and, for x in Q3
s ∪Q3

m,

v1(x) =

{
f3(|Xm|(x)) on |Xi|(x) + |Xm|(x) ≤ 1

2

f3(|Xi|(x)) on |Xi|(x) + |Xm|(x) ≥ 1
2 ;

v3(x) = inf{f2(|Xi|(x)), f2(|Xm|(x))};

for x in Q3
i ,

v1(x) =

{
f3(|Xi|(x)) on |Xi|(x) + |Xm|(x) ≤ 1

2

f3(|Xm|(x)) on |Xi|(x) + |Xm|(x) ≥ 1
2 ;

v3(x) = sup{f 2(|Xi|(x)), f2(|Xm|(x))}.
The same arguments as used for u1 show that v is lipschitzean on B 1

2
and that

sup{|vj(x)| : x ∈ B 1
2
, j = 1, 2, 3} =

1

2
.

Notice, for future use, the following properties of v:
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α) v(x1, x2, x3) = v(|x1|, |x2|, |x3|);
β) v(x1, x2, x3) = v(x2, x1, x3).

To prove β) above, remark that when (x1, x2, x3) belongs to one of the set Q3
s, Q

3
m, Q3

i ,

so does (x2, x1, x3). Then v is defined through the maps |Xs|, |Xm|, |Xi| that assume the
same values on (x1, x2, x3) and any of its permutations.
The map v is differentiable a.e. on B 1

2
and, whenever ∇v exists, has the form, for x in

Q3
s ∪Q3

m:

∇v1(x) =

{
f3′(xm(x))em(x) on |xi(x)|+ |xm(x)| < 1

2

f3′(xi(x))ei(x) on |xi(x)|+ |xm(x)| > 1
2

∇v2(x) =− sign(xs(x))es(x)

∇v3(x) =

{
f2′(xi(x))ei(x) on |xi(x)|+ |xm(x)| < 1

2

f2′(xm(x))em(x) on |xi(x)|+ |xm(x)| > 1
2 .

For x in Q3
i :

∇v1(x) =

{
f3′(xi(x))ei(x) on |xi(x)|+ |xm(x)| < 1

2

f3′(xm(x))em(x) on |xi(x)|+ |xm(x)| > 1
2

∇v2(x) =− sign(xs(x))es(x)

∇v3(x) =

{
f2′(xm(x))em(x) on |xi(x)|+ |xm(x)| < 1

2

f2′(xi(x))ei(x) on |xi(x)|+ |xm(x)| > 1
2 .

Hence, a.e. on B 1
2
, ∇v(x) ∈ R.

The following properties will be essential to show the continuity of the extension of the

map u1.

Claim 2. For (x1, x2, 1) in B1 we have

u1(x1, x2, 1) = v

(
(x1)mod 1 −

1

2
, (x2)mod 1 −

1

2
, 0

)
.

Proof of claim 2. We have already proved that

u1(x1, x2, 1) = u1((x1)mod 1, (x2)mod 1, 1),

hence, without loss of generality, we can assume x1, x2 ≥ 0. Set y in B 1
2

to be y =

(x1 − 1
2 , x2 − 1

2 , 0). Since y3 = 0, y is in Q3
i , and |Xi|(y) + |Xm|(y) = |Xm|(y) ≤ 1/2, so

that v1(y) = f3(0) = 0. Moreover, by the very definition, u1
1(x1, x2, 1) = 0.

In order to prove the claim for the second and third components, consider the sets

A = {x1 + x2 ≤ 1} ∩ {x2 ≤ x1},
B = {x1 + x2 ≥ 1} ∩ {x2 ≥ x1},
C = {x1 + x2 ≤ 1} ∩ {x2 ≥ x1},
D = {x1 + x2 ≥ 1} ∩ {x2 ≤ x1}.
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Since v2(x1 − 1
2 , x2 − 1

2 , 0) = 1
2 − sup{|x1 − 1

2 |, |x2 − 1
2 |}, we have

v2

(
x1 −

1

2
, x2 −

1

2
, 0

)

= x2χA(x1, x2) + (1− x2)χB(x1, x2) + x1χC(x1, x2) + (1− x1)χD(x1, x2).

On the other hand,

u1
2(x1, x2, 1) = inf{f 1(x1), f1(x2)} = inf{x1, 1− x1, x2, 1− x2}.

On A we have x2 ≤ x1, 1− x1 ≥ x2, x2 ≤ 1− x2, so that u1
2(x1, x2, 1) = x2. Analogously

one verifies that u1
2(x1, x2, 1) = v2(x1 − 1

2 , x2 − 1
2 , 0), for (x1, x2) ∈ B ∪ C ∪D.

Consider now the third component. Notice that

|Xi|(x1 −
1

2
, x2 −

1

2
, 0) = 0

and that

|Xm|(x1 −
1

2
, x2 −

1

2
, 0) = inf{|x1 −

1

2
|, |x2 −

1

2
|},

hence, by definition, v3(x1 − 1
2 , x2 − 1

2 , 0) = f2(inf{|x1 − 1
2 |, |x2 − 1

2 |}). We have

inf

{∣∣∣∣x1 −
1

2

∣∣∣∣ ,
∣∣∣∣x2 −

1

2

∣∣∣∣
}

=

{ ∣∣x1 − 1
2

∣∣ on A ∪ B
∣∣x2 − 1

2

∣∣ on C ∪D

so that

v3

(
x1 −

1

2
, x2 −

1

2
, 0

)
= f2

(∣∣∣∣x1 −
1

2

∣∣∣∣
)
χA∪B(x1, x2) + f2

(∣∣∣∣x2 −
1

2

∣∣∣∣
)
χC∪D(x1, x2)

= f2

(
x1 −

1

2

)
χA∪B(x1, x2) + f2

(
x2 −

1

2

)
χC∪D(x1, x2)

= f2(x1)χA∪B(x1, x2) + f2(x2)χC∪D(x1, x2).

On the other hand, by definition,

u1
3(x1, x2, 1) = f2(|Xm|(x1, x2, 1))χA∪C(x1, x2) + f2(|Xi|(x1, x2, 1))χB∪D(x1, x2)

= f2(x1)χA + f2(x2)χC + f2(x1)χB + f2(x2)χD.

This proves claim 2.

Claim 3. For ξ1, ξ2: −1
2 ≤ ξ1 ≤ 1

2 , −1
2 ≤ ξ2 ≤ 1

2 , and for r = 1, 2, 3, we have:

v(r−1)3
(ξ1, ξ2, 0) = 2vr

(
1

2
ξ1 +

1

4
,

1

2
ξ2 +

1

4
,

1

2

)
.
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Proof of claim 3. Consider r = 2. By definition, since (ξ1, ξ2, 0) is in Q3
i , we have

v1(ξ1, ξ2, 0) = f3(0) = 0. On the other hand, since v2 is zero at the boundary of B 1
2
, the

claim holds for r = 2.
Consider r = 3. We have

v2(ξ1, ξ2, 0) =
1

2
− sup{|ξ1|, |ξ2|},

while, since
(

1
2ξ1 + 1

4 ,
1
2ξ2 + 1

4 ,
1
2

)
is in Q3

s,

v3

(
1

2
ξ1 +

1

4
,
1

2
ξ2 +

1

4
,
1

2

)
= inf

{
f2

(
1

2
ξ1 +

1

4

)
, f2

(
1

2
ξ2 +

1

4

)}

= inf

{
1

2
f1

(
ξ1 +

1

2

)
,
1

2
f1

(
ξ2 +

1

2

)}
.

Since f1, for t ∈ [0, 1], can be written as f 1(t) = 1
2 − |t− 1

2 |,

inf

{
1

2
f1

(
ξ1 +

1

2

)
,
1

2
f1

(
ξ2 +

1

2

)}
=

1

2
inf

{
1

2
− |ξ1|,

1

2
− |ξ2|

}

=
1

2

(
1

2
− sup{|ξ1|, |ξ2|}

)
,

and the claim holds in this case as well.
Consider r = 1. Since (ξ1, ξ2, 0) is in Q3

i ,

v3(ξ1, ξ2, 0) = f2(inf{|ξ1|, |ξ2|}).
On the other hand,

v1

(
1

2
ξ1 +

1

4
,
1

2
ξ2 +

1

4
,
1

2

)

=

{
f3
(
sup

{∣∣1
2ξ1 + 1

4

∣∣ ,
∣∣1

2ξ2 + 1
4

∣∣}) on
∣∣1

2ξ1 + 1
4

∣∣ +
∣∣1

2ξ2 + 1
4

∣∣ ≤ 1
2

f3
(
inf
{∣∣1

2ξ1 + 1
4

∣∣ ,
∣∣1
2ξ2 + 1

4

∣∣}) on
∣∣1

2ξ1 + 1
4

∣∣ +
∣∣1

2ξ2 + 1
4

∣∣ ≥ 1
2

=

{
f3
(

1
4 + 1

2 sup{ξ1, ξ2}
)

on ξ1 + ξ2 ≤ 0

f3
(

1
4 + 1

2 inf{ξ1, ξ2}
)

on ξ1 + ξ2 ≥ 0

=

{
f3
(

1
2 sup{ξ1, ξ2}

)
on ξ1 + ξ2 ≤ 0

f3
(

1
2 inf{ξ1, ξ2}

)
on ξ1 + ξ2 ≥ 0

=

{
1
2f

2(sup{ξ1, ξ2}) on ξ1 + ξ2 ≤ 0
1
2f

2(inf{ξ1, ξ2}) on ξ1 + ξ2 ≥ 0.

Consider the four sets:

A = {(ξ1, ξ2) : ξ1 + ξ2 ≤ 0 and ξ2 ≥ ξ1},
B = {(ξ1, ξ2) : ξ1 + ξ2 ≤ 0 and ξ2 ≤ ξ1},
C = {(ξ1, ξ2) : ξ1 + ξ2 ≥ 0 and ξ2 ≤ ξ1},
D = {(ξ1, ξ2) : ξ1 + ξ2 ≥ 0 and ξ2 ≥ ξ1},
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so that
B ∪D = {(ξ1, ξ2) : |ξ2| ≥ |ξ1|}

and
A ∪ C = {(ξ1, ξ2) : |ξ1| ≥ |ξ2|}.

We have

v1

(
1

2
ξ1 +

1

4
,
1

2
ξ2 +

1

4
,
1

2

)
=

1

2
f2(ξ2)χA +

1

2
f2(ξ1)χB +

1

2
f2(ξ2)χC +

1

2
f2(ξ1)χD

=
1

2
f2(|ξ1|)χB∪D +

1

2
f2(|ξ2|)χA∪C =

1

2
f2(inf{|ξ1|, |ξ2|}).

Thus claim 3 is fully proved.

Having proved the properties of the map v described in claims 2 and 3, we introduce the

“layer” function `1, that will be used to extend the map u1. On the set IR2 × [−1
2 ,

1
2 ], we

define `1 as

`1(x1, x2, x3) = v

(
(x1)mod 1 −

1

2
, (x2)mod 1 −

1

2
, x3

)
.

We shall use the following property of `1:

Claim 4.
`1(x1, x2, x3) = `1(|x1|, |x2|, |x3|).

Proof of claim 4. We have

`1(x1, x2, x3) = v

(
(x1)mod 1 −

1

2
, (x2)mod 1 −

1

2
, x3

)

= v

(∣∣∣∣(x1)mod 1 −
1

2

∣∣∣∣ ,
∣∣∣∣(x2)mod 1 −

1

2

∣∣∣∣ , |x3|
)
.

By inspection, one verifies that
∣∣(|t|)mod 1 − 1

2

∣∣ =
∣∣(t)mod 1 − 1

2

∣∣, so that

`1(x1, x2, x3) = v

(
(|x1|)mod 1 −

1

2
, (|x2|)mod 1 −

1

2
, |x3|

)

= `1(|x1|, |x2|, |x3|).

Claim 4 is proved.

Having introduced `1, define , for n ∈ IN+, `n : IR2 × [− 1
2n ,

1
2n ] as

`n(x1, x2, x3) =
1

2n−1
`1(2n−1x1, 2

n−1x2, 2
n−1x3).

Notice that, by claim 4, `n(x1, x2, x3) = `n(|x1|, |x2|, |x3|).
The analogue of the property expressed by claim 3 is given by the following claim 5.
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Claim 5. For m ∈ IN+ and r = 1, 2, 3,

`m+1
(r−1)3

(x1, x2, 0) = `mr

(
x1, x2,

1

2m

)
.

Proof of claim 5.

`mr

(
x1, x2,

1

2m

)
=

1

2m−1
`1r

(
2m−1x1, 2

m−1x2,
1

2

)

=
1

2m−1
vr

(
(2m−1x1)mod 1 −

1

2
, (2m−1x2)mod 1 −

1

2
,
1

2

)
.

On the other hand

`m+1
(r−1)3

(x1, x2, 0) =
1

2m
`1(r−1)3

(2mx1, 2
mx2, 0)

=
1

2m
v(r−1)3

(
(2mx1)mod 1 −

1

2
, (2mx2)mod 1 −

1

2
, 0

)
.

At this point notice that, by inspection, for t in IR, (2t)mod 1−[2(t)mod 1−1] ∈ {0, 1}. Hence

((2mx1)mod 1− 1
2 , (2

mx2)mod 1− 1
2 , 0)− (2(2m−1x1)mod 1− 1− 1

2 , 2(2m−1x2)mod 1− 1− 1
2 , 0)

has 0 or 1 at the two first components; so that, by the periodicity of v when x3 = 0,

v(r−1)3

(
(2mx1)mod 1 −

1

2
, (2mx2)mod 1 −

1

2
, 0

)

= v(r−1)3

(
2(2m−1x1)mod 1 − 1− 1

2
, 2(2m−1x2)mod 1 − 1− 1

2
, 0

)
,

and applying claim 3,

v(r−1)3

(
(2mx1)mod 1 −

1

2
, (2mx2)mod 1 −

1

2
, 0

)

= 2vr

(
(2m−1x1)mod 1 −

1

2
− 1

4
+

1

4
, (2m−1x2)mod 1 −

1

2
− 1

4
+

1

4
,
1

2

)

= 2vr

(
(2m−1x1)mod 1 −

1

2
, (2m−1x2)mod 1 −

1

2
,

1

2

)
,

proving claim 5.

Set
L1 = {(x1, x2, x3) : |x3| ≤ 1 and sup{|x1|, |x2|} ≤ |x3|},

and, for n ≥ 2,

Ln =

{
(x1, x2, x3) :

n−2∑

i=0

1

2i
≤ |x3| ≤

n−1∑

i=0

1

2i
and sup{|x1|, |x2|} ≤ |x3|

}
.
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On L1 the map u1 is already defined. For n ≥ 2 and (x1, x2, x3) in Ln, set

unj (x1, x2, x3) = `n−1
(j−(n+1))3

(
x1, x2, |x3| −

n−2∑

i=0

1

2i

)
.

Remark that, from property β) of the map v and claim 4, we have, for the map un, the
analogous properties
α′) un(x1, x2, x3) = un(|x1|, |x2|, |x3|);
β′) un(x1, x2, x3) = un(x2, x1, x3).

Notice that it follows that the map u1χL1 + u2χL2 is continuous. To prove this fact, we
have to show that

u1
j(x1, x2, 1) = `1j (x1, x2, 0),

and the validity of this statement is supplied by claim 2 and by the definition of `1.

Claim 6.

unj

(
x1, x2,

n−2∑

i=0

1

2i

)
= un−1

j

(
x1, x2,

n−2∑

i=0

1

2i

)
.

Proof of claim 6. We have to show that

`n−1
(j−(n+1))3

(x1, x2, 0) = `n−2
(j−n)3

(
x1, x2,

1

2n−2

)
,

and this follows from claim 5 setting m = n− 2 and r = (j−n)3. Thus claim 6 is proved.

We wish to extend each map un to the set {x :
∑n−2

i=0
1
2i
≤‖ x ‖∞≤

∑n−1
i=0

1
2i
}. Set

un(x) = un(|Xi|(x), |Xm|(x), |Xs|(x)).

It is a true extension: let x be in Ln. Then |x3| = |Xs|(x), and

(|Xi|(x), |Xm|(x), |Xs|(x)) ∈ {(|x1|, |x2|, |x3|), (|x2|, |x1|, |x3|)}.

From α′) and β′) it follows then that

un(x1, x2, x3) = un(|Xi|(x), |Xm|(x), |Xs|(x)),

so that the new definition coincides with the old. Moreover each un is a composition of
continuous maps, hence continuous.

We have in addition that, for j = 1, 2, 3 and n ∈ IN+,

sup

{
|unj (x)| :

n−2∑

i=0

1

2i
≤‖ x ‖∞≤

n−1∑

i=0

1

2i

}
≤ 1

2n−1
.
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Consider now ∇un(x). Recalling that the maps i(·), m(·) and s(·) are defined on an open
set of full measure and are locally constant on it, we see that, given x, there exist integer
values, say ι, m, s, which are the values of i(·), m(·), s(·) respectively on a neighborhood
of x. For x in this neighborhood

un(x) = un(xι, xm, xs).

If we consider the gradient with respect to the variables xι, xm, xs, we have

∇ι,m,sunj (xι, xm, xs) = ∇ι,m,s`n−1
(j−(n+1))3

(
xι, xm, |xs| −

n−2∑

i=0

1

2i

)

= ∇ι,m,s
1

2n−2
`1(j−(n+1))3

(
2n−2xι, 2

n−2xm, 2
n−2

(
|xs| −

n−2∑

i=0

1

2i

))

= ∇ι,m,s
1

2n−2
v(j−(n+1))3

(
(2n−2xι)mod 1 −

1

2
, (2n−2xm)mod 1 −

1

2
, 2n−2

(
|xs| −

n−2∑

i=0

1

2i

))
.

Except on a set of measure zero, this gradient equals

∇ι,m,sv(j−(n+1))3
(ξι, ξm, ξs)

computed at

(ξι, ξm, ξs) =

(
(2n−2xι)mod 1 −

1

2
, (2n−2xm)mod 1 −

1

2
, 2n−2

(
|xs| −

n−2∑

i=0

1

2i

))

Since, a.e.,
∇ι,m,sv (ξι, ξm, ξs) ∈ R

and ∇ι,m,sun(xι, xm, xs) is obtained from it by a permutation of the rows, then it fol-

lows that ∇ι,m,sun(xι, xm, xs) belongs to R as well. Since the columns of ∇un(x) are a

permutation of the columns of ∇ι,m,sun(xι, xm, xs),we have

∇un(x) ∈ R.

c) For x such that ‖ x ‖∞< 2, set:

u(x) = uν(x), when x ∈ Lν .

By claim 6, the map u is unambigously defined and continuous, actually Lipschitz con-
tinuous, a.e. ∇u(x) is in R and, by the estimate on |uνj (x)|, one has

lim
‖x‖∞→2

u(x) = (0, 0, 0)

i.e. u satisfies i) and ii) with Ω = B2.
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d) The collection {z + rB2 : z ∈ Ω, r ∈ IR+, r < 1
2 dist(z, ∂Ω)} is a Vitali covering of Ω.

Let zj and rj , j ∈ IN, be such that:

(1) (zj + rjB2) are mutually disjoint;

(2) Ω = N ∪
(⋃

j∈IN(zj + rjB2)
)

, with N a subset of Ω of zero measure.

For each j ∈ IN, define the vector function ũj on Ω, by setting

ũj(x) = rju

(
x− zj
rj

)
χzj+rjB2(x),

so that ∇ũj(x) ∈ R for a.e. x in zj + rjB2.
Finally set, for x in Ω,

ũ(x) =
∑

j∈IN

ũj(x).

Then ũ is the required function: ũ is Lipschitz continuous and satisfies i) and ii) of the
Theorem.
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