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A subset X of a real Hilbert space H is said to be proximally smooth provided that the function dX :
H → R (the distance to X) is continuously differentiable on an open tube U around X . It is proven that
this property is equivalent to dX having a nonempty proximal subgradient at every point of U , and that
the (Gâteaux = Fréchet) derivative is locally Lipschitz on U . The Lipschitz behavior of the derivative is
a consequence of the fact that under proximal smoothness, the metric projection onto X is single valued
and Lipschitz on U . Alternate characterizations of proximal smoothness are given as well, in terms of
properties of the proximal normal cone multifunction on X and on nearby closed neighborhoods of X .
In case X is weakly closed, the list of equivalences is extended to include each point of U admitting a
unique closest point in X . Further specializations are given in finite dimensions. In that setting, we
discuss properties of locally Lipschitz real valued functions whose epigraphs are proximally smooth in a

local sense. It is demonstrated that this function class coincides with the lower–C2 functions studied by
Rockafellar.
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1. Introduction

In the core theory of nonsmooth analysis, the major analytic concepts for functions (vari-
ous generalized notions of directional derivative and gradient) have geometric counterparts
for sets (corresponding generalizations of the classical ideas of tangency and normality).
This duality, which has always played an important role in the development of the subject,
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is generally achieved by rephrasing analytic properties of a function f in terms of geo-
metric properties of epi(f), the epigraph of f . An indispensible tool employed in forging
this link has been the distance function. The present article proceeds in this vein. In a
general Hilbert space setting, we shall employ proximal analysis in order to characterize
proximal smoothness of a general closed set X, where this connotes continuous differentia-
bility of dX (the distance function to X) on an open tube U around X. We then proceed
to establish analytic properties of the class of functions f : Rn → R for which epi(f)
is proximally smooth in a local sense. It transpires that this function class corresponds

precisely to one considered by R. T. Rockafellar in [18]: f is said to be lower–C2 provided
that for each point y ∈ Rn there exists an open neighborhood Ny of y so that locally f
has the representation

f(x) = max
s∈S

F (x, s) ∀x ∈ Ny, (1.1)

where S is a compact set in some topological space, and F : Ny × S → R is a function
which has second partial derivatives with respect to x and which, along with these deriva-
tives, is jointly continuous in (x, s) ∈ Ny × S. Thus f is the value function of a family of
maximization problems parametrized by x and satisfying specific continuity and smooth-
ness requirements. Rockafellar derived several equivalent conditions which characterize

a locally Lipschitz function f being lower–C2, including a type of monotonicity in terms
of the Clarke subdifferential of f , the expressibility of f as a difference of convex and
quadratically convex functions, as well as the fact (referred to in section 5 below) that
F in (1.1) may without loss of generality be taken to be of a particular form in which
it is quadratic in x and continuous in s. In [18], the distinctions between the class of

lower–C2 functions and the analogously defined class of lower–C1 functions were made
clear. Properties of the latter class are well–known; see e.g. Danskin [9], Clarke [8], [5],

Rockafellar [19] and Spingarn [20]. As was pointed out in [18], however, the lower–Ck

classes all coincide for 2 ≤ k ≤ ∞. Let us also mention that the lower–C2 property
has appeared elsewhere in the literature as well, along with geometric versions, under
such names as “generalized convexity”, “weak convexity”, “convexity up to a square”,
“F–convexity”, and so on. We refer the reader to Vial [21] for a comprehensive treatment
of this subject as well as for references and historical comments. See also Hiriart-Urruty
[12] in this regard.

The plan of the present article is as follows: Section 2 contains the requisite background
in nonsmooth analysis, including recent results of Clarke, Ledyaev and Wolenski [6] on
proximal subdifferentiability of the distance function in Hilbert space. Section 3 contains
certain general results on the distance function which are of independent interest, and are
required in section 4, where we present our main characterizations of proximal smooth-
ness, with the only requirement on X being closedness. Notable among the properties
equivalent to proximal smoothness is that dX possess a nonempty proximal subdifferential
at every point of the tube U . It will also be shown that the derivative is then necessarily
locally Lipschitz on U . The Lipschitz behavior of the derivative will be seen to follow from
the fact that for X proximally smooth, the metric projection onto X is single valued and
Lipschitz on U . We shall also obtain geometric characterizations which involve the behav-
ior of the proximal normal cone multifunction on X, as well as on nearby approximations
of X. Under the additional assumption that X is weakly closed, the list of equivalences
is extended to include the existence of a unique closest point in X for every u ∈ U , and
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certain specializations to the finite dimensional case are included as well. In section 5 we

demonstrate that a locally Lipschitz function’s being lower–C2 is in fact a local form of
proximal smoothness of its epigraph.

Prior to proceeding, we pause for a heuristic digression which serves to motivate some of
the subsequent results. Consider a closed set X ⊆ Rn. A useful pedagogical device for
describing the existence of proximal normals at a point x ∈ bdry(X) is the “paintability”
of x; that is, the existence a closed ball (that can be thought of as a paintroller, if one
prefers) which touches X only at x. We can then go on to say that X is “paintable”
provided that, outfitted with an infinite family of paintrollers of arbitrarily small radii,
we can paint every point in the boundary of X. But what if we had our disposal only
a single paintroller; that is, only one radius r was available? Our results will show that
paintability of X under this restriction is tantamount to what we have above termed
proximal smoothness of X. An outcome of this is that if one paints the boundary of
X with a single roller, and allows the roller to assume all possible positions at each
point being painted, the locus of the roller’s center (which is the boundary of a closed

r–neighborhood of X) is a C1 manifold; see part 4 of Corollary 4.15 below.

2. Preliminaries in nonsmooth analysis

In this section we present a concise overview of basic material from nonsmooth analysis;
other required facts will be mentioned later. We cite Clarke [8], [5], [4], and Loewen [14]
as general references and guides to the literature.

Throughout this article, we will let X denote a closed subset of a real Hilbert space H,
which is equipped with an inner product 〈·, ·〉 and corresponding norm ‖ · ‖. The distance
of a point u ∈ H to X is given by

dX(u) := inf{‖u− x‖ : x ∈ X}.

We require the fact that the distance function dX : H → R is globally Lipschitz of rank
1. The (possibly empty) set of closest points to u in X is denoted

projX(u) := {x ∈ X : ‖u− x‖ = dX(u)}.

The multifunction projX is referred to as the metric projection onto X. If u 6∈ X and
x ∈ projX(u), then we say that the vector u− x is a perpendicular to X at x. The set of

all nonnegative multiples of such perpendiculars is denoted NP
X(x), and is referred to as

the proximal normal cone (or P–normal cone) to X at x. One can show that ζ ∈ NP
X (x) if

and only if there exists M > 0 such that the following proximal normal inequality holds:

M‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ X.

(In general, M will depend on x.) Thus the P–normal cone is convex (but may not be
closed even in finite dimensions). If x ∈ int(X) or no perpendiculars to X exist at x, then

by convention, we set NP
X (x) = {0}. Let x ∈ X and 0 6= ζ ∈ NP

X(x). If one has

X ∩ int

{
x + r

(
ζ

‖ζ‖ + cl(B)

)}
= φ ∀y ∈ X,
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then we shall say that ζ is realized by an r-ball. This expresses the fact that open ball of

radius r centered at x + r ζ
‖ζ‖ has empty intersection with X. It will be useful for us to

note that this condition can be rephrased as
∥∥∥∥x + r

ζ

‖ζ‖ − y
∥∥∥∥ ≥ r ∀y ∈ X.

Upon squaring and expanding, this in turn becomes

1

2r
‖y − x‖2 ≥

〈
ζ

‖ζ‖ , y − x
〉
∀y ∈ X. (2.1)

Let f : U → (−∞,∞] be a lower semicontinuous extended real valued function on an
open set U ⊆ H, and denote its epigraph by

epi(f) := {(x, y) : x ∈ dom(f), y ≥ f(x)},
where dom(f) is the set of points in U where f is finite. The lower semicontinuity
assumption is equivalent to epi(f) being closed, a fact which is relevant in regard to the
next definition: ζ ∈ H is said to be a proximal subgradient (or P–subgradient) of f at
x ∈ U provided that

(ζ,−1) ∈ NP
epi(f)(x, f(x)).

The set of all such vectors is called the P–subdifferential of f at x, and is denoted ∂P f(x).
Similarly, the P–superdifferential of an upper semicontinuous function f at x is defined as

∂P f(x) := −∂P (−f)(x),

with the members of this set referred to as P–supergradients. One can prove that ζ ∈
∂P f(x) if and only if there exist positive numbers σ and γ such that the following proximal
subgradient inequality is satisfied:

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉 ∀y ∈ x+ γB,

where B denotes the open unit ball in H. We shall require the fact that ∂P f(x) 6= φ for
all x in a dense subset of dom(f); for an optimization based proof, see Clarke, Stern and
Wolenski [7].

The following result on proximal subdifferentiability of the distance function to a closed
subset of a Hilbert space, and the existence of nearest points, appears in Clarke, Ledyaev
and Wolenski [6], and is a consequence of more general variational principles. Related
work on the existence of closest points in more general Banach space settings (as well as
further references on this topic) may be found in Borwein and Fitzpatrick [2]; see also
Borwein and Giles [3] and Ioffe [13].

Theorem 2.1. Let u 6∈ X, and suppose that ∂PdX(u) 6= φ. Then the following hold:
(1) projX(u) is a singleton, say {x}, and ∂PdX(u) is the singleton {ζ}, where

ζ :=
u− x
dX(u)

.

(2) If ui is a sequence in X such that ui → u, and {ζi} = ∂PdX(ui), then ζi → ζ.



F. H. Clarke, R. J. Stern, P. R. Wolenski / Proximal smoothness, lower–C2 property 121

Since dX has a nonempty P–subdifferential on a dense subset of H\X, the preceding
theorem readily yields the conclusion that projX(u) 6= φ for all u in a dense subset of
H\X, the complement of X. (See also Lau [14] for a Banach space version.) It readily

follows that NP
X(x) 6= {0} for a dense set of x ∈ bdry(X).

The limiting normal cone (or L–normal cone) to X at x ∈ X is defined to be the set

NL
X(x) := {ζ : ζi

w→ ζ, ζi ∈ NP
X (xi), xi → x},

where “
w→” denotes weak convergence; this set is nonempty and weakly closed. The

convexified normal cone (or C–normal cone) to X at x is defined as

NC
X (x) := clco[NL

X(x)],

the closure of the convex hull of the L–normal cone at x.

The normal cones defined above give rise to corresponding nonempty subdifferential sets
for f as one would expect:

∂Lf(x) := {ζ : (ζ,−1) ∈ NL
epi(f)(x, f(x).

∂Cf(x) := {ζ : (ζ,−1) ∈ NC
epi(f)(x, f(x).

These are referred to as the limiting subdifferential (or L–subdifferential) and convexified
subdifferential (or C–subdifferential) of f at x, respectively. It is not difficult to show
directly that

∂Lf(x) = {ζ : ζi
w→ ζ, ζi ∈ ∂P f(xi), xi → x, f(xi)→ f(x)}.

Should it exist, the directional derivative of f at x in the direction v is the quantity

f ′(x; v) := lim
t↓0

f(x+ tv)− f(x)

t
.

If there exists ζ ∈ H such that f ′(x; v) = 〈ζ, v〉 for every v, then ζ is unique, and we say

that ζ := f ′(x) is the Gâteaux derivative of f at x. When f has a Gâteaux derivative at

x and additionally the convergence defining f ′(x; v) is uniform on bounded sets of v, then

f ′(x) is called the Fréchet derivative. If f has a Gâteaux derivative at x, then

∂P f(x) ⊆ {f ′(x)}.

In other words, if f is Gâteaux differentiable at x and has a nonempty P–subdifferential
at x, then this reduces to the singleton {f ′(x)}.
Let us now assume that f is Lipschitz of rank K on an open set U . By a result in [7], this
is equivalent to ‖ζ‖ ≤ K for every ζ ∈ ∂P f(x), for each x ∈ U where the P–subdifferential
is nonempty. In the Lipschitz case, ∂Cf(x) is weakly compact, and one has the relation

∂Cf(x) = clco[∂Lf(x)].
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Furthermore, the Gâteaux derivative satisfies has

f ′(x) ∈ ∂Cf(x)

at points of differentiability. (If H = Rn, then Gâteaux and Fréchet differentiabilities
coincide at x; this is false if the Lipschitz assumption is removed.) A Lipschitz function
f is said to be strictly differentiable at x provided that ∂Lf(x) (or equivalently ∂Cf(x))
reduces to a singleton ζ. Should this occur, then necessarily ζ is the Gâteaux derivative
f ′(x). We say that f is continuously differentiable at a point xo ∈ H provided that the

Gâteaux derivative exists on a ball around xo, and the mapping x→ f ′(x) is continuous
on that ball. It is not difficult to show that this is equivalent to continuous Fréchet
differentiability; hence there is no ambiguity about what is meant by a function being

continuously differentiable (C1). We will require the fact that continuous differentiability

of f at x implies strict differentiability at x. (On the other hand, even a C1 function
f : R→ R can have ∂P f(x) = φ “often”, in either the sense of measure or category, as is
demonstrated by an example in [6].)

For f Lipschitz near x and given v ∈ H, one defines the generalized directional derivative
of f at x in the direction v as

fo(x; v) := lim sup
t↓0
y→x

f(y + tv)− f(y)

t
.

For any v, one has
fo(x; v) = max{〈ζ, v〉 : ζ ∈ ∂Cf(x)}.

Furthermore, ζ ∈ ∂Cf(x) if and only if

〈ζ, v〉 ≤ f o(x; v) ∀v ∈ H.

We say that f (still assumed Lipschitz near x) is regular at x if the ordinary directional

derivative f ′(x; v) exists and f ′(x; v) = f o(x; v) for every v ∈ H. We shall require the
fact that regularity at x is guaranteed when f is continuously differentiable at x, or if f
is strictly differentiable at x. A closed set X ⊂ H is said to be regular at x ∈ X provided
that

lim sup
y→x
y∈X

〈
ζ,

y − x
‖y − x‖

〉
≤ 0 ∀ζ ∈ NC

X (x).

One can show that this definition of regularity agrees with the usual one given via tangency

notions ([8], [5]) and that a sufficient condition for this property is that NP
X (x) = NC

X (x).

Also, regularity of a Lipschitz function f at x is equivalent to regularity of its epigraph
at (x, f(x)), and so a sufficient condition for this is ∂P f(x) = ∂Cf(x).

3. General results

In this section, we shall collect certain preparatory results, which are also of some inde-
pendent interest. The following result complements Theorem 2.1.
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Theorem 3.1. Let u 6∈ X be such that projX(u) 6= φ. Then the following hold:

(1) ∂P dX(u) 6= φ.
(2) If ∂P dX(u) 6= φ, then dX is Fréchet differentiable at u and

∂PdX(u) = ∂P dX(u) = {d′X(u)} =

{
u− x
dX(u)

}
,

where projX(u) = {x}.

Proof. Consider the function
fx(w) := ‖w − x‖.

For 0 < δ < dX(u), it is continuously differentiable on the ball u + δB, and there exists
K > 0 such that for each x ∈ X, the mapping

w → f ′x(w) =
w − x
‖w − x‖

is Lipschitz of rank K on u + δB. By the mean value theorem, for each x ∈ X and
w ∈ u+ δB,

fx(w)− fx(u) = 〈f ′x(q), w − u〉
for some q contained in the line segment (u, w). The Cauchy–Schwarz inequality now
implies that for each such u and w one has

fx(w)− fx(u) ≤ 〈f ′x(u), w− u〉+K‖w − u‖2.

Let x̃ ∈ projX(u). Then for each w ∈ u+ δB we have

dX(w)− dX(u)−K‖w − u‖2 ≤ 〈f ′x̃(u), w − u〉, (3.1)

and therefore f ′x̃(u) ∈ ∂P dX(u).

Now let ζ ∈ ∂PdX(u). Then there exist positive numbers σ and γ such that

dX(w)− dX(u) + σ‖w − u‖2 ≥ 〈ζ, w− u〉 ∀w ∈ u+ γB, (3.2)

where γ < δ. The inequalities (3.1) and (3.2) together imply that ζ = f ′x̃(u) is the Fréchet
derivative of dX at u.

Remark 3.2. Since the P–subdifferential of the distance function is nonempty on a
dense subset of H\X, Theorems 2.1 and 3.1 together yield the fact that dX is Fréchet
differentiable on a dense subset of H\X. In view of the Lipschitz nature of dX , this
conclusion by itself could also have been reached via Rademacher’s theorem in finite
dimensions, or via a result of Preiss [15] in a setting more general than Hilbert space.

We shall have frequent occasion to employ the closed r–neighborhoods of X (r ≥ 0)
defined via

X(r) := {u ∈ H : dX(u) ≤ r}.
Two useful elmentary facts about X(r) are now summarized.
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Lemma 3.3.
(1) Suppose that x ∈ projX(x + δζ), where δ > 0 and ‖ζ‖ = 1. Then

0 ≤ r ≤ s < δ =⇒ x+ rζ ∈ projX(r)(x+ sζ).

(2) Let ζ ∈ NP
X(r)(u) and ‖ζ‖ = 1. Then there exists δ > 0 such that dX(u+ δζ) = r+ δ.

Proof. Upon noting that x+rζ ∈ X(r), the first assertion will follow upon showing that
x+rζ ∈ projX(r)(x+δζ). To this end, we only need to verify that dX(r)(x+δζ) ≥ δ−r. To

see this, observe that if dX(r)(x+δζ) < δ−r, then dX(x+δζ) < δ, violating dX(x+δζ) = δ.

In order to prove the second assertion of the lemma, denote z = u + δζ, where δ > 0 is
chosen small enough to ensure that dX(r)(z) = ‖z − u‖ = δ. Then dX(z) ≤ r + δ. Now

consider any x ∈ X. One has dX(x) = 0, and therefore the Intermediate Value Theorem
implies that there exists a point y in the segment [x, z] such that dX(y) = r; that is,
y ∈ X(r). But then

‖z − x‖ = ‖y − x‖+ ‖z − y‖ ≥ r + δ,

since ‖y − x‖ ≥ r and ‖z − y‖ ≥ δ. Hence dX(z) ≥ r + δ, and therefore equality holds.

Consider u ∈ H such that dX(u) = r > 0, and suppose that ζ ∈ ∂P dX(u). Then the
proximal subgradient inequality tells us that that there exist positive numbers σ and γ
such that

dX(w)− dX(u) + σ‖w − u‖2 ≥ 〈ζ, w− u〉 ∀w ∈ u+ γB,

and so
σ‖w − u‖2 ≥ 〈ζ, w− u〉 ∀w ∈ {u+ γcl(B)} ∩X(r).

Therefore ζ is a P–normal to the set {u + γcl(B)} ∩ X(r) at u, and therefore also ζ ∈
NP
X(r)(u). Since ‖ζ‖ = 1, we have shown that

∂P dX(u) ⊆ NP
X(r)(u) ∩ {ζ ∈ H : ‖ζ‖ = 1}.

The reverse containment is true as well, but does not follow as readily. This is taken up
next.

Theorem 3.4. Suppose that dX(u) = r > 0. Then

∂PdX(u) = NP
X(r)(u) ∩ {ζ ∈ H : ‖ζ‖ = 1}. (3.3)

Proof. In view of the preceding discussion, we only need to show that the right side of

(3.3) is contained in the left. Suppose that ζ ∈ NP
X(r)(u) and that ‖ζ‖ = 1. Then, by

part 2 of Lemma 3.3, there exists δ > 0 such that

dX(u+ δζ) = r + δ (3.4)

and
{y ∈ H : ‖y − u− δζ‖ < r + δ} ∩X = φ. (3.5)
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Then since dX has Lipschitz rank 1, for all u′ one has

dX(u′) ≥ r + δ − ‖u′ − u− δζ‖. (3.6)

Now, ζ ∈ ∂PdX(u) if and only if there exists σ > 0such that

dX(u′)− 〈ζ, u′ − u〉+ σ‖u′ − u‖2 ≥ dX(u) = r (3.7)

for all u′ near u. From (3.6) it then follows that (3.7) holds provided that

δ + σ‖u′ − u‖2 ≥ 〈ζ, u′ − u〉+ ‖u′ − u− δζ‖ (3.8)

for all u′ sufficiently near u. Now let

a := ‖u′ − u‖
b := ‖u′ − u− δζ‖

θ := arccos

(〈ζ, u′ − u〉
‖u′ − u‖

)
.

Then (3.8) is equivalent to

δ + σa2 ≥ a cos(θ) + b. (3.9)

By the law of cosines,

b2 = a2 + δ2 − 2δa cos(θ),

and so

a cos(θ) =
a2 + δ2 − b2

2δ
. (3.10)

First suppose that δ ≤ b. Then (3.10) implies

a cos(θ) =
a2

2δ
+

(δ + b)(δ − b)
2δ

≤ a2

2δ
+ δ − b.

From this it follows that (3.9) holds with σ = 1
2δ . Now suppose that δ > b. Then (3.10)

implies that cos(θ) ≥ 0 and

2δ

δ + b
a cos(θ) =

a2

δ + b
+ δ − b. (3.11)

Since
2δ

δ + b
≥ 1,

we have

a cos(θ) + b ≤ 2δ

δ + b
a cos(θ) + b

=
a2

δ + b
+ δ

≤ a2

δ
+ δ,

which is (3.9) with σ = 1
δ .
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In view of part 1 of Lemma 3.3, we have the following.

Corollary 3.5. Let ζ ∈ NP
X(x) and ‖ζ‖ = 1. Then

∂PdX(x + rζ) = {ζ} ∀r ∈ (0, 1].

We shall also require the following result.

Proposition 3.6.
(1) Suppose that u 6∈ X, projX(u) 6= φ, and that dX is Gâteaux differentiable at u. Then

‖d′X(u)‖ = 1.

(2) Let u 6∈ X, and dX be continuously differentiable at u. Then u admits a unique
closest point x ∈ X, and

d′X(u) =
u− x
dX(u)

.

Proof. In order to prove part 1, let x ∈ X be a closest point to u, and let v = x − u.
Then for small positive t one has dX(u+ tv) = (1− t)dX(u). Consequently

d′X(u; v) = lim
t↓0

(1− t)dX(u)− dX(u)

t

= lim
t↓0
−tdX(u)

t

= −dX(u) = −‖x− u‖ = 〈d′X(u), x− u〉.

Since the distance function is Lipschitz of rank 1, we have ‖d′X(u)‖ ≤ 1. The Cauchy–

Schwarz inequality therefore implies ‖d′X(u)‖ = 1.

We now turn to part 2. The continuous differentiability assumption implies strict differ-
entiablity at u; that is ∂LdX(u) = {d′X(u)}. Then d′X(u) is the weak limit of a sequence ζi
such that ∂P d(ui) = {ζi}, where ui → u. But since Theorem 3.1 implies that ζi = d′X(ui)

and d′X is continuous, it follows that d′X(u) is actually the strong limit of ζi. Now note

that

ζi =
ui − xi
dX(ui)

,

where projX(ui) = {xi}. We then have

x := u− dX(u)d′X(u) = lim xi

and

d′X(u) =
u− x
dX(u)

.

Since the norm of this expression is 1 and x ∈ X, it follows that x ∈ projX(u). It remains

to show that this x is the unique element in projX(u). Suppose that x′ ∈ projX(u).
Denote

uδ := u− δu− x
′

dX(u)
.
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Then
x′ ∈ projX(uδ) ∀δ ∈ (0, dX(u)).

It follows that
u− x′
dX(u)

∈ NP
X(dX (u)−δ)(uδ).

Then by Theorem 3.4,

{
u− x′
dX(u)

}
= ∂PdX(uδ) = {d′X(uδ)}.

Now letting δ ↓ 0, continuity of the derivative implies

d′X(u) =
u− x′
dX(u)

;

that is, x′ = x.

For any u 6∈ X, we have

−dX(u) = sup{−‖u− x‖ : x ∈ X},

and therefore, near u, the negative of the distance function is the pointwise supremum of a

family of C1 functions parametrized by x. However, attainment is not guaranteed (unless
weak closedness of X or finite dimensionality of H is assumed). For this reason, known
results on pointwise maximum functions (see Clarke [8], [5]) are not directly applicable
in order to prove regularity of −dX on H\X. However, the special nature of the distance
function allows for an independent proof. This, and a bit more, is given in the next result.

Theorem 3.7. Let u 6∈ X. Then the following hold:
(1) −dX is regular at u.
(2) dX is regular at u if and only if dX is strictly differentiable at u.

Proof. Let ζ ∈ ∂LdX(u). Then there exist sequences ui and ζi such that ui → u, ζi
w→ ζ,

and

∂P dX(ui) = {ζi} =

{
ui − xi
dX(ui)

}
,

where projX(ui) = {xi}. Now, for any v ∈ H,

dX(ui + tv)− dX(ui) ≤ ‖ui + tv − xi‖ − ‖ui − xi‖

=
‖ui + tv − xi‖2 − ‖ui − xi‖2
‖ui + tv − xi‖+ ‖ui − xi‖

=
2t〈ui − xi, v〉+ t2‖v‖2
‖ui + tv − xi‖+ ‖ui − xi‖

.
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Therefore

lim sup
t↓0

dX(u+ tv)− dX(u)

t
= lim sup

t↓0

[
lim

dX(ui + tv)− dX(ui)

t

]

≤ lim sup
t↓0

[
lim

2〈ui − xi, v〉+ t‖v‖2
‖ui + tv − xi‖+ ‖ui − xi‖

]

= 〈ζ, v〉.

Since the C–subdifferential satisfies

∂CdX(u) = clco[∂LdX(u)] = −∂C(−dX) = (u),

it follows from the preceding that for all v ∈ H,

lim inf
t↓0

−dX(u+ tv) + dX(u)

t
≥ sup{〈−ζ, v〉 : ζ ∈ ∂L(dX)(u)}

= max{〈−ζ, v〉 : ζ ∈ ∂C(dX)(u)}
= max{〈ζ, v〉 : ζ ∈ ∂C(−dX)(u)}
= (−dX)o(u; v)

= lim sup
t↓0
w→u

−dX(w + tv) + dX(w)

t

≥ lim sup
t↓0

−dX(u+ tv) + dX(u)

t
.

From this we obtain

(−dX)o(u; v) = lim
t↓0
−dX(u+ tv) + dX(u)

t
,

which verifies the regularity of −dX at u.
As for the second part of the theorem’s statement, we first recall that strict differentiability
of dX at u implies regularity. Now suppose that both dX and −dX are regular at u, and
let ζ ∈ ∂CdX(u). Then for all v ∈ H one has

〈ζ, v〉 ≤ doX(u; v) = d′X(u; v).

Since also −ζ ∈ ∂C(−dX)(u), we have

〈−ζ, v〉 ≤ (−dX)o(u; v) = −d′X(u; v).

It follows that
〈ζ, v〉 = doX(u; v) ∀v ∈ H,

which implies that ∂CdX(u) is the singleton {ζ}.
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4. Proximally smooth sets

It is our primary aim in the present section to characterize when a closed set X ⊆ H
is proximally smooth; that is, when there exists r > 0 such that the distance function is
continuously differentiable on a “tube” of the form

U(r) := {u ∈ H : 0 < dX(u) < r}.

Let us note at the outset that it is possible for a closed nonconvex set to be proximally
smooth, and that continuous differentiability of the distance function on the tube U(r)

does not imply the property on U(r′) for r′ > r; both phenomena are easily illustrated

by examples involving C2 manifolds in finite dimensions.

The following is our main result characterizing proximal smoothness. Among other
facts, it asserts the following one: X ⊆ H is proximally smooth if and only if the P–
subdifferential ∂P dX(u) is nonempty for each u ∈ U(r). We shall denote

Y (r) := {u ∈ H : dX(u) ≥ r}.

Theorem 4.1. For given r > 0, the following are equivalent:
(a) dX is continuously differentiable on U(r).

(b) projX(u) 6= φ ∀u ∈ U(r) and the Gâteaux derivative d′X(u) exists.

(c) projX(u) 6= φ ∀u ∈ U(r), and for every r′ ∈ (0, r), one has

dX(u) + dY (r′)(u) = r′ ∀u ∈ U(r′).

(d) projX(u) 6= φ ∀u ∈ U(r), and every nonzero P–normal to X is realized by an r-ball.

(e) For every r′ ∈ (0, r) and u ∈ H such that dX(u) = r′, one has NP
X(r′)(u) 6= {0}.

(f) ∂PdX(u) 6= φ ∀u ∈ U(r).

Remark 4.2.
(1) U(r) = φ if and only if X = H, in which case all the statements are vacuously true;

consequently H is proximally smooth.
(2) Since the distance function to the empty set is identically +∞ by convention, the

formula in part (c) implies that Y (r′) 6= φ if X is a proximally smooth proper subset
of H.

Proof of the theorem:
(a) =⇒ (b):

This follows from part 2 of Proposition 3.6.

(b) =⇒ (c):

By (b), projX(u) 6= φ for every u ∈ U(r). It remains to show that for any given r′ ∈ (0, r),

dX(u) + dY (r′)(u) = r′ ∀u ∈ U(r′). (4.1)

Fix r′ ∈ (0, r) and let u ∈ U(r′). We first claim that

dX(u) + dY (r′)(u) ≥ r′. (4.2)
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For this purpose, we can without loss of generality assume that u admits a closest point
in Y (r′), since this is so for a dense set of u in U(r′). Let y ∈ projY (r′)(u). Then, if x is

a closest point in X to u,

r′ = dX(y) ≤ ‖y − x‖ ≤ ‖u− x‖+ ‖y − u‖ = dX(u) + dY (r′)(u),

which gives (4.2).

We now must show that

dX(u) + dY (r′)(u) ≤ r′ ∀r′ ∈ (0, r). (4.3)

Introduce the function

V (α) := dY (α)(u), 0 < α < r.

It is useful to express V as a value function:

V (α) =

{
inf{‖u− z‖ : dX(z) ≥ α} if Y (α) 6= φ

+∞ otherwise

}
, 0 < α < r. (4.4)

Claim 4.3. V is finite, nondecreasing, and Lipschitz of rank 1 on (0, r).

The nondecreasing property is immediate. Prior to proving the rest of the claim, let us
observe that it implies (4.3) holds. Indeed, Claim 4.3 implies that for any r′ ∈ (0, r), we
have

V (r′)− V (dX(u)) ≤ r′ − dX(u).

Then, since V (r′) = dY (r′)(u) and V (dX(u)) = 0, (4.3) immediately follows.

By part 1 of Proposition 3.6, ‖d′X(u)‖ = 1. Denoting ζ = d′X(u), one has

dX(u+ tζ) = dX(u) + 〈ζ, tζ〉+ o(t)

= dX(u) + t + o(t).

Therefore for any sufficiently small ε > 0, there exists a point zε such that ‖zε − u‖ < 2ε
and dX(zε) > dX(u) + ε. From this it follows that

V (dX(u) + ε) < 2ε,

and therefore
lim

α↓dX (u)
V (α) = 0. (4.5)

Since V (α) = 0 on (0, dX(u)], (4.5) implies that proving Claim 4.3 reduces to verifying
the following.

Claim 4.4. V is Lipschitz of rank 1 on (dX(u), r).

Let us first make note of the fact that

V (α) = inf{‖u− z‖ : dX(z) = α} ∀α ∈ (dX(u), r). (4.6)
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To see this, consider a point z such that dX(z) > α > dX(u). Then there exists a point
y in the segment (u, z) such that dX(y) = α. Since ‖u − y‖ < ‖u − z‖, it follows that
points z such that dX(z) > α can be discarded in the definition of V given by (4.4), for
α in the interval (dX(u), r). This verifies (4.6).

For α ∈ (dX(u), r), consider the lower semicontinuous function defined by

W (α) := lim
α′↑α

V (α′).

In order to prove Claim 4.4, it suffices to show that W is Lipschitz of rank 1 on (dX(u), r).
Let ζ ∈ ∂PW (αo), where αo ∈ (dX(u), r). Note that since W is nondecreasing. Then,
referring to [7], it follows that ζ ≥ 0, a fact required below. By another result in [7], the
required Lipschitz behavior of W will follow upon verifying that ‖ζ‖ ≤ 1.

In view of the proximal subgradient inequality, there exist positive numbers σ and γ such
that

W (α)−W (αo) + σ(α− αo)2 ≥ ζ(α− αo) (4.7)

whenever |α − αo| < γ. Then, since V (α) ≥ W (α) on (dX(u), r), for points z such that
dX(z) = α ∈ (dX(u), r), one has

‖u− z‖ + σ(dX(z)− αo)2 − ζdX(z) ≥ W (αo)− ζαo (4.8)

if |dX(z) − αo| < γ. Now let ε ∈ (0, γ2 ), and choose zo to satisfy 0 < αo − dX(zo) < ε

and |‖u− zo‖ −W (αo)| < ε. Then, if |dX(z) − dX(zo)| < γ
2 , we have |dX(z) − αo| < γ.

Bearing in mind that ζ ≥ 0, we have

‖u− z‖ + σ(dX(z)− dX(zo)
2 − ζdX(z)

= ‖u− z‖ + σ(dX(z)− αo)2 − ζdX(z) + σ[(dX(z)− dX(zo))
2 − (dX(z)− αo)2]

≥ W (αo)− ζαo + σ[(dX(z)− dX(zo))
2 − (dX(z)− αo)2]

≥ ‖u− zo‖ − ζdX(zo)− ε+ ζ(dX(zo)− αo) + σ[(dX(z)− dX(zo))
2 − (dX(z)− αo)2]

≥ ‖u− zo‖ − ζdX(zo)− ε− εζ,

where in the last inequality we used the fact that

(dX(z)− dX(zo))
2 − (dX(z)− αo)2 ≥ 0,

as a straightforward calculation shows. Let us denote δ := ε + εζ. Then zo is δ–optimal
for minimizing the function

z −→ ‖u− z‖+ σ(dX(z)− dX(zo))
2 − ζdX(z)

over the set

S := {z ∈ H : ‖z − zo‖ ≤
γ

2
},

since

z ∈ S =⇒ |dX(z)− dX(zo)| ≤
γ

2
.
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By virtue of Ekeland’s Theorem ([10], [5]), there exists z′ such that ‖z′ − zo‖ <
√
δ and

such that z′ minimizes the function

h(z) := ‖u− z‖ + σ(dX(z)− dX(zo))
2 − ζdX(z) +

√
δ‖z − z′‖

over S. We may choose ε sufficiently small to ensure that z′ is in the interior of S; that

is, such that
√
δ < γ

2 . Then a necessary condition for optimality of z′ is

0 ∈ ∂Ch(z′).

The calculus of the C–subdifferential ([5]) then yields

0 = w1 + 2σ
√
δd′X(z′)− ζd′X(z′) +

√
δw2,

where ‖wi‖ ≤ 1, i = 1, 2. Since ‖d′X(u)‖ = 1 (by part 1 of Proposition 3.6) and δ is

arbitrarily small, we conclude that ‖ζ‖ ≤ 1, as required.

(c) =⇒ (d):

In view of formula (2.1), it suffices to show that if r′ ∈ (0, r), then every nonzero P–normal

to X is realized by an r′–ball. Fix r′ ∈ (0, r), let x ∈ X, ζ ∈ NP
X(x), and ‖ζ‖ = 1. Then

there exists δ ∈ (0, r′) such that

projX(x+ r′′ζ) = {x} ∀r′′ ∈ (0, δ).

For any r′′ ∈ (0, δ), part 1 of Lemma 3.3 implies that

x+ r′′ζ ∈ projX(r′′)(x + δζ).

Therefore
ζ ∈ NP

X(r′′)(x + r′′ζ).

In view of Theorem 3.4, we have ∂P dX(x+r′′ζ) = {ζ} =. Then Theorem 3.1 implies that

∂PdX(x + r′′ζ) = ∂PdX(x+ r′′ζ) = {ζ}.

Since the formula in (c) is an identity in u (locally), we obtain

∂PdY (r′)(x+ r′′ζ) = {−ζ},

and so projY (r′) = x+r′′ζ+αζ for some α >= 0. But since (c) holds and dX(x+r′′ζ) = r′′,
it follows that α == r′ − r′′, and therefore x + r′ζ is in the boundary of Y (r′). Hence

dX(x + r′ζ) = r′, which shows that ζ is realized by an r′–ball.

(d) =⇒ (e):

Suppose that dX(u) = r′ where 0 < r′ < r, and let x ∈ projX(u). Then

ζ :=
u− x
r′
∈ NP

X(x),
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and ‖ζ‖ = 1. Hence (d) implies that

projX(u+ δζ) = {x} ∀δ ∈ (0, r − r′).

Therefore part 1 of Lemma 3.3 gives

u ∈ projX(r′)(u+ δζ) ∀δ ∈ (0, r − r′),

and so NP
X(r′)(u) 6= {0}, as required.

(e) =⇒ (f):

This follows immediately from Theorem 3.4.

(f) =⇒ (a):

By Theorems 2.1 and 3.1, for any u ∈ U(r), one has

∂P dX(u) = {d′X(u)} =

{
u− x
dX(u)

}
,

where now d′X denotes the Fréchet derivative. The required continuity of the derivative

follows from part 2 of Theorem 2.1. This completes the proof of the theorem.

Remark 4.5. Note that if X is weakly closed, as when H = Rn, then in conditions
(b)–(d), the requirement that projX(u) be nonempty is automatically satisfied.

When the conditions of Theorem 4.1 hold for a given r, we shall say that X is proximally
smooth of radius r. If X is convex, then it is weakly closed, and it follows that projX(u) 6=
φ for all u. Furthermore, classical normals coincide with P–normals, and so (2.1) holds
with 0 left hand side for every x ∈ X, and therefore for every r > 0. Hence X is proximally
smooth of radius r for every r > 0. The following corollary asserts the converse.

Corollary 4.6. A closed set X ⊆ H is convex if and only if it is proximally smooth of
radius r for every r > 0.

Proof. The “only if” part has already been explained, so let us assume that X is prox-
imally smooth for every r > 0. Let u 6∈ X. The proximal smoothness assumption implies
that u admits a closest point in X, say x =. Furthermore, for every r > 0, we have

1

2r
‖y − x‖2 ≥

〈
ζ

‖ζ‖ , y − x
〉
∀y ∈ X,

where ζ := u− x. But then
0 ≥ 〈ζ, y− x〉 ∀y ∈ X.

Since 〈ζ, u− x〉 > 0, we have shown that for each point u 6∈ X, there exists a hyperplane
separating u from X. This is equivalent to convexity of X.

A further result in the same vein is the following. It follows directly from Corollary 4.6
and Theorem 4.1.
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Corollary 4.7. A closed set X ⊆ H is convex if and only if it satisfies the following
two conditions for every u ∈ H\X:
(1) projX(u) 6= φ.

(2) The Gâteaux derivative d′X(u) exists.

The next result asserts that proximal smoothness of a closed set X ⊆ H implies Lipschitz
behavior of both the (necessarily single valued) metric projection projX and the (Fréchet

= Gâteaux) derivative d′X near X. In particular, the distance function to a closed set

X has the feature that continuity of d′X on a tube U(r) implies that d′X must in fact be

locally Lipschitz on U(r).

Theorem 4.8. Let X be proximally smooth, with r > 0 as in Theorem 4.1. Then the
following hold:
(1) Let r′ ∈ (0, r). Then projX is Lipschitz of rank r

r−r′ on U(r′).

(2) For every u and w in U(r) one has

〈u− w, projX(u)− projX(w)〉 ≥ 0. (4.9)

(3) d′X is locally Lipschitz on U(r).

Proof. Let u and w be points in the tube U(r′). Then

〈
u− projX(u)

dX(u)
, projX(w)− projX(u)

〉
≤ 1

2r
‖projX(w)− projX(u)‖2 (4.10)

and

〈
w − projX(w)

dX(w)
, projX(u)− projX(w)

〉
≤ 1

2r
‖projX(w)− projX(u)‖2. (4.11)

Since dX(u) ≤ r′ and dX(w) ≤ r′, (4.10) and (4.11) yield

〈u− projX(u), projX(w)− projX(u)〉 ≤ r′

2r
‖projX(w)− projX(u)‖2 (4.12)

and

〈projX(w)− w, projX(w)− projX(u)〉 ≤ r′

2r
‖projX(w)− projX(u)‖2, (4.13)

respectively. Upon adding the inequalities (4.12) and (4.13), we obtain

〈u− w + projX(w)− projX(u), projX(w)− projX(u)〉 ≤ r′

r
‖projX(w)− projX(u)‖2,

and therefore

〈u− w, projX(w)− projX(u)〉 ≤ r′ − r
r
‖projX(w)− projX(u)‖2. (4.14)
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Consequently,

‖projX(w)− projX(u)‖2 ≤ r

r − r′ 〈w − u, projX(w)− projX(u)〉.

An application of the Cauchy–Schwarz inequality then yields

‖projX(w)− projX(u)‖ ≤ r

r − r′‖w − u‖. (4.15)

Since u and w were arbitrary points in U(r′), part 1 of the assertion follows. Part 2 is
a consequence of (4.14), while part 3 follows readily from part 1 and the fact that the
formula

d′X(u) =
u− projX(u)

dX(u)

holds for every u ∈ U(r).

Remark 4.9. The above results have some bearing on the issue of extending a mul-
tifunction defined on X and which is Lipschitz there (in the Hausdorff sense), beyond
X. In the single–valued case, this is well understood; global extensions exist and require
no smoothness properties of X, even in infinite dimensions; see Hiriart–Urruty [11]. The
multivalued case is more delicate, however. When X is proximally smooth, a local exten-

sion to X(r′) is provided by F̃ (u) = F (projX(u)), in view of Theorem 4.8; furthermore,
the extension has Lipschitz rank arbitrarily close to that of F on X, depending upon
how small we choose r′. Responding to a conjecture of the authors, Azé and Horvath
have recently shown that in finite dimensions, global Lipschitz extensions do exist [1], but
whose ranks increase as a function of the dimension; the infinite dimensional case remains
unsettled.

In Theorem 4.8, if X is additionally assumed to be convex, then r may be taken arbitrarily
large, and (4.10), (4.11) hold with 0 on the right hand sides. We then readily obtain the
following.

Corollary 4.10. Let X be a closed and convex subset of H. Then on H, projX is

Lipschitz of rank 1, (4.9) holds, and d′X is locally Lipschitz.

The consequences of Theorem 4.1 can be strengthened under the additional hypothesis
that X be weakly closed.

Theorem 4.11. Assume that X is weakly closed and let r > 0. Then conditions (a)–(f)
of Theorem 4.1 are equivalent to
(g) projX(u) is a singleton for every u ∈ U(r).

Proof. Since the other conditions imply (g), we only need to prove that (g) implies
(a). To this end, we shall posit (g), and show that dX has a continuously varying strict
derivative.

Given u ∈ U(r), let ζ ∈ ∂LdX(u). Then

ui − xi
dX(ui)

w−→ ζ, (4.16)
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where ui is a sequence in X converging to u, and xi is the unique closest point in X to
ui. The weak closedness of X then implies that

xi
w−→ x := u− dX(u)ζ ∈ X, (4.17)

and so

ζ =
u− x
dX(u)

. (4.18)

Since (4.16) implies ‖ζ‖ ≤ 1, we conclude that x ∈ projX(u). Since this x is unique, it
follows that ζ is the sole element in ∂LdX(u). Since u ∈ U(r) was arbitrary, dX is strictly

differentiable on U(r). We denote this derivative by d′X . Letting ui be a sequence in U(r)

such that ui → u ∈ U(r), we wish to show that d′X(ui)→ d′X(u). We have that for each
i,

d′X(ui) =
ui − xi
dX(ui)

,

where projX(ui) = {xi}. Likewise,

d′X(u) =
u− x
dX(u)

,

where projX(u) = {x}. Therefore we need to show that xi → x. In fact, it is enough to

show that xi
w→ x, for then we would have

ui − xi
dX(ui)

w−→ u− x
dX(u)

,

and since both sides of this expression are of norm 1, it would follow that the convergence
is strong, implying xi converges to x strongly as well, as required. Now, by way of
contradiction, suppose that x was not the weak limit of xi. Since this sequence is norm

bounded, by Alaoglu’s theorem there exists a subsequence so that xi′
w→ x̂ 6= x, where

x̂ ∈ X by the weak closedness assumption. But since

ui′ − xi′
dX(ui′)

w−→ u− x̂
dX(u)

and each term on the left is of norm 1, we have

∥∥∥∥
u− x̂
dX(u)

∥∥∥∥ ≤ 1,

and so the norm in fact equals 1. Consequently x̂ ∈ projX(u), which violates the unique-
ness of x as the closest point in X to u.

In a similar spirit to Corollary 4.6, we then have the following result.

Corollary 4.12. A weakly closed set X ⊆ H is convex if and only if projX(u) = is a
singleton for every u 6∈ X.
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Remark 4.13.
(1) A longstanding conjecture (still open to our knowledge) would assert the statement

of Corollary 4.12 with the a priori assumption of weak closedness replaced by strong
closedness.

(2) Theorems 4.8 and 4.11 together imply that if X ⊆ H is weakly closed, then the

metric projection projX is single valued on U(r) if and only if it is Lipschitz on U(r′)
for any r′ ∈ (0, r), with the Lipschitz rank being r

r−r′ .
(3) It is interesting to note that it is possible, even in finite dimensions, for a point

u 6∈ X to have a unique closest point in X, while ∂PdX(u) = φ. Let X = epi(f)
where f : R→ R is given by

f(x) =
√

1− x2 − 1 + x6.

The point (0,−1) admits the origin as a unique closest point in X. However, every
point of the form (0,−y) with y > 1 admits multiple closest points. Consequently,

NP
X(1)(0,−1) = {0}, and Theorem 3.4 implies that ∂PdX(0,−1) = φ.

We now specialize still further, to the finite dimensional case.

Corollary 4.14. Suppose that H = Rnand let r > 0. Then conditions (a)–(g) in
Theorems 4.1, 4.11 are equivalent to each of the following:
(h) The Gâteaux derivative d′X(u) exists for each u ∈ U(r).

(i) dX is strictly differentiable on U(r).
(j) dX is regular on U(r).

Proof. The equivalence of (g),(h) and (i) follows readily from results in Clarke [8]; see
also Chapter 2 of Clarke [5]. Then the equivalence of (j) to these conditions follows from
Theorem 3.7.

Some geometric consequences of proximal smoothness in finite dimensions are summarized
in the next corollary.

Corollary 4.15. Let H = Rn and assume that r > 0 is such that the equivalent
conditions (a)–(f) hold. Then the following hold:
(1) For every x ∈ X, one has

NP
X (x) = NL

X(x) = NC
X (x).

(2) For each r′ ∈ (0, r) and each u such that dX(u) = r′, one has

NP
X(r′)(u) = NL

X(r′)(u) = NC
X(r′)(u) = {α(u− x) : α ≥ 0},

where x is the unique closest point to u in X.
(3) X is regular, as is each set X(r′) for 0 < r′ < r.

(4) For each r′ ∈ (0, r), the boundary of X(r′) is a C1–manifold.

Proof. Part 1 will follow upon verifying that NL
X(x) ⊆ NP

X(x) for each x ∈ bdry(X).

To this end, let us assume that 0 6= ζ ∈ NL
X(x) for a boundary point x. Then for a
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sequence of boundary points xi → x there is a corresponding sequence ζi ∈ NP
X(xi) such

that ζi → ζ. In view of (2.1), for each i we have

1

2r
‖y − xi‖2 ≥

〈
ζi
‖ζi‖

, y − xi
〉
∀y ∈ X.

Then
1

2r
‖y − x‖2 ≥

〈
ζ

‖ζ‖ , y − xi
〉
∀y ∈ X,

which shows that ζ ∈ NP
X(x).

In order to verify part 2, first note that in view of condition (d) of Theorem 4.1, part 1 of

Lemma 3.3 implies that for each r′ ∈ (0, r), every nonzero P–normal to X(r′) is realized

by an (r − r′)–ball. Hence each X(r′) is itself proximally smooth, and so part 1 and
Theorem 2.1 yield part 2 of the assertion.
Part 3 follows from parts 1 and 2, while. Part 4 follows from condition (a) of Theorem

4.1 (continuous differentiability of dX on U(r)) and the fact that on U(r), ‖d′X(u)‖ = 1

(by part 1 of Proposition 3.6).

Remark 4.16. Suppose that H = Rn.
(1) Part 1 of the preceding corollary implies that if X is proximally smooth, then

NP
X (x) 6= {0} ∀x ∈ bdry(X), (4.19)

since the C–normal cone to a boundary point of a closed subset of Rn is always

nonzero. (In a general Hilbert space setting, however, one can have NP
X(x) = {0} for

a boundary point x, even for closed and convex X.)
(2) In general, the C–normal cone is not a closed multifunction, unless one makes extra

hypotheses on X. One such condition is that X be epi–Lipschitz; that is, locally, X is
the image under an isometry of the epigraph of a Lipschitz function. (See Rockafellar
[17] and section 7.3 of Clarke [5].) The preceding corollary shows that a different

condition implying the closedness of the multifunction NC
X—and NP

X too—is that X

be proximally smooth; this is a consequence of the closedness of the multifunction

NL
X . Let us note, however, that (4.19) alone does not guarantee the P–normal cone

mapping’s closedness. Consider for example X = epi(f) for the function f : R → R
given by

f(x) =

{
−|x|3/2 if x < 0
x if x ≥ 0

Here (4.19) holds, but one can readily confirm that NP
X(0, 0) is not closed.

(3) The following example shows that closedness of the multifunction NP
X is not sufficient

for proximal smoothness of an epi–Lipschitz set X. Choose sequences rn and xn such
that rn > 0, rn ↓ 0, xn ∈ (0, 1), and such that the intervals (xn − rn, xn + rn) are all
disjoint and contained in (0, 1). Then set

an :=
εnrn√
1 + ε2

n

,
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where εn > 0 and εn ↓ 0. The intervals (xn−an, xn+an) are all disjoint and contained

in (0, 1) too. Now take X ⊆ R2 to be the epigraph of the following function:

f(x) =





√
r2
n − (x− xn)2 −

√
r2
n − a2

n if ‖x− xn‖ ≤ an

0 otherwise

Then in (xn − an, xn + an), we have

f ′(x) =
−(x− xn)√
r2
n − (x− xn)2

.

Hence |f ′(x)| ≤ εn whenever |x−xn| ≤ an, implying that f is Lipschitz. Then, upon
noting that

NP
X (0, 0) = {(0, y) : y ≤ 0},

it is readily checked that the multifunction NP
X is closed. However, X is not prox-

imally smooth, since near the origin, the circles employed in the construction have
arbitrarily small radii.

5. Connection to the lower–C2 property for Lipschitz functions

In this section we continue to assume that H = Rn. Let us introduce a basic hypothesis:

(A) (a) U ⊆ Rn is open, convex and bounded.
(b) f : U → R is Lipschitz.

Under these assumptions, we shall say that f is lower–C2 on U provided that there
exist σ > 0, a compact set S (in some topological space V ) and continuous functions
b : S → Rn, c : S → R, such that

f(x) = max
s∈S

{
−σ‖x‖2 + 〈b(s), x〉+ c(s)

}
∀x ∈ U. (5.1)

In this case we shall also say that f is σ–lower–C2 on U . This is in fact a local form of the

lower–C2 property, as can be seen from the proof of Theorem 6 in Rockafellar [17], who
investigated this class of functions as one having favorable properties for optimization.
The following characterization is required as well; it leads to the connection between the

lower–C2 property and proximal smoothness.

Theorem 5.1. Let hypothesis (A) hold. Then the following are equivalent for a given
σ > 0:
(a) f is σ–lower–C2 on U .
(b) For each x ∈ U , there exists ζ ∈ Rn such that

f(y) ≥ −σ‖y − x‖2 + 〈ζ, y − x〉 + f(x) ∀y ∈ U. (5.2)

(c) For each x ∈ U , (5.2) holds for all ζ ∈ ∂P f(x).
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Proof.
(a) =⇒ (b):

Let x ∈ U , and let ŝ ∈ S be such that

f(x) = −σ‖x‖2 + 〈b(ŝ), x〉+ c(ŝ). (5.3)

Since
f(y) ≥ −σ‖y‖2 + 〈b(ŝ), y〉+ c(ŝ) ∀y ∈ U,

a simple calculation shows that (5.3) yields (5.2) with

ζ = −2σx + b(ŝ).

(b) =⇒ (c):

Let x0 ∈ U and ζ0 ∈ ∂P f(x0). Then there exists α > 0 so that

f(y) ≥ p(y) := −α‖y − x0‖2 + 〈ζ0, y − x0〉+ f(x0) (5.4)

for all y sufficiently near x0. Since hypothesis (A) implies that f is bounded below on U ,
it readily follows that α can be taken large enough to ensure that the quadratic p satisfies

f(y) > p(y) ∀y ∈ U, y 6= x0. (5.5)

Let
α̃ = inf{α > 0 : (5.5) holds}.

If α̃ ≤ σ, then (5.2) holds and there is nothing further to show. So we shall suppose that
α̃ > σ, and let 0 < ε < α̃ − σ. Also, let the quadratic p be as in (5.4), but with α = α̃.
Note that

f(y) ≥ p(y) ∀y ∈ U.
Since α̃ is an infimum, there exists x1 ∈ U different from x0 such that

p(x1) + ε‖x1 − x0‖2 > f(x1). (5.6)

For 0 ≤ t ≤ 1, let
xt = tx1 + (1− t)x0.

By the present assumption that (b) holds, there exists ζt ∈ Rn and ct ∈ R so that

qt(y) := −σ‖y − x0‖2 + 〈ζt, y − x0〉+ ct

satisfies
qt(xt) = f(xt)

and
qt(y) ≤ f(y) ∀y ∈ U.

That is, we have chosen ζt so that ζt − 2σ(xt − x0) ∈ ∂P f(xt) and ct so that ct = qt(x0).
Let p and qt denote the restrictions of p and qt to the line segment [x0, x1]; that is, for
s ∈ [0, 1] we set

p(s) = −α̃s2‖x1 − x0‖2 + s〈ζ0, x1 − x0〉+ f(x0)
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and
qt(s) = −σs2‖x1 − x0‖2 + s〈ζt, x1 − x0〉+ ct.

If we define
wt(s) := qt(s)− p(s)− εs2‖x1 − x0‖2,

then
wt(0) = ct − f(x0) ≤ 0,

wt(1) ≤ f(x1)− p(x1)− ε‖x1 − x0‖2 ≤ 0,

and
d2

ds2
wt(s) = 2(−σ + α̃− ε)‖x1 − x0‖ < 0.

Thus wt does not attain its maximum in (0, 1), and therefore must satisfy wt(s) ≤ 0 for
all s ∈ [0, 1]; that is

qt(s) ≤ p(s) + εs2‖x1 − x0‖2 ∀t ∈ (0, 1), ∀s ∈ [0, 1]. (5.7)

Upon noting that p(t) ≤ f(xt) = qt(xt) = qt(t) and letting s = t in (5.7), we obtain

p(t) ≤ qt(t) ≤ p(t) + εt2‖x1 − x0‖2. (5.8)

Hence ct → f(x0) as t ↓ 0. Since ct = qt(0) ≤ f(x0), we also see from the first inequality
in (5.8) that

lim sup
t↓0

〈ζt, x1 − x0〉 ≥ 〈ζ0, x1 − x0〉. (5.9)

Thus we have

f(x1) ≥ lim sup
t↓0

qt(1)

= lim sup
t↓0

[−σ‖x1 − x0‖2 + 〈ζt, x1 − x0〉+ ct]

> −(α̃− ε)‖x1 − x0‖2 + 〈ζ0, x1 − x0〉+ f(x0)

= p(x1) + ε‖x1 − x0‖2.

This violates (5.6), and therefore α̃ ≤ σ.

(c) =⇒ (a):

Let x ∈ U and ζ ∈ ∂P f(x) be such that (5.2) holds. We then have

f(y) = max
(x,ζ)∈Γ

{
−σ‖y − x‖2 + 〈ζ, y − x〉 + f(x)

}
∀y ∈ U,

where
Γ := {(x, ζ) : x ∈ U, ζ ∈ ∂P f(x)};

this set is nonempty by the density of P–subgradients. Denote the Lipschitz rank of f on
U by K. Then

sup{‖ζ‖ : ζ ∈ ∂P f(x), x ∈ U} ≤ K.
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Therefore cl(Γ) is compact, and

f(y) = max
(x,ζ)∈cl(Γ)

{
−σ‖y − x‖2 + 〈ζ, y − x〉+ f(x)

}
∀y ∈ U.

This is readily seen to be a representation of f which is of the desired form (5.1).

In order to establish the relationship between the lower–C2 property for functions and
the proximal smoothness of sets, it is convenient to extend th= e definition of proximal
smoothness to sets that are merely locally closed. (Note that this property is adequate

for defining NP
X (x).) We say that the locally clos= ed set X is proximally smooth of

radius r > 0 if formula (2.1) holds for all x ∈ bdry(X) and all nonzero ζ ∈ NP
X(x). This

is precisely condition (d) of Theorem 4.1, and hence if X is closed, w= e recover the prior
sense of proximal smoothness. In general, however, there = is a qualitative difference,
especially as regards the existence of closest points; for example, the open ball B is locally
closed and proximally smooth, but no point outside B admits a closest point in B.

The connection between the lower–C2 property for Lipschitz functions and proximal
smoothness of their epigraphs is given in the following result.

Theorem 5.2. Let hypothesis (A) hold. Then the following are equivalent:

(a) f is lower–C2 on U .
(b) There exists σ > 0 such that for every x ∈ U , one has

σ‖(y, α)− (x, f(x))‖2 ≥
〈

(ζ,−1)

‖(ζ,−1)‖ , (y, α)− (x, f(x))

〉
(5.10)

for all ζ ∈ ∂P f(x), y ∈ U, α ≥ f(y).
(c) epi(f) is proximally smooth.

Furthermore, if f is lower–C2 on U , then one has

∂P f(x) = ∂Lf(x) = ∂Cf(x) ∀x ∈ U, (5.11)

and in particular, f is regular on U .

Proof. We first will prove that (a) and (b) are equivalent. Suppose that (a) holds, and

let f be σ–lower–C2 on U . We will show that (b) holds. For each x ∈ U and ζ ∈ ∂P f(x),
the inequality (5.2) holds. This implies that

α− f(x) + σ
[
‖y − x‖2 + (α− f(y))2

]
≥ 〈ζ, y − x〉 ∀y ∈ U, ∀α ≥ f(y).

It follows that

σ‖(y, α)− (x, f(x))‖2 ≥ 〈(ζ,−1), (y, α)− (x, f(x))〉 (5.12)

for all ζ ∈ ∂P f(x), y ∈ U, α ≥ f(y), and therefore (5.10) holds, and (b) follows.

Now suppose that (b) holds. Let x ∈ U and ζ ∈ ∂P f(x). Continuing to denote the
Lipschitz rank of f on U by K, we observe that (b) implies

(σ
√
K2 + 1)‖(y, α)− (x, f(x))‖2 ≥ 〈(ζ,−1), (y, α)− (x, f(x))〉
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for all ζ ∈ ∂P f(x), y ∈ U, α ≥ f(y). The last inequality can be rewritten as

(σ
√
K2 + 1)

[
‖y − x‖2 + ‖f(y)− f(x)‖2

]
≥ 〈ζ, y − x〉 − f(y) + f(x).

Since
‖f(y)− f(x)‖2 ≤ K2‖y − x‖2,

we therefore have

f(y) ≥ −σ(1 +K2)
3
2‖y − x‖2 + 〈ζ, y − x〉+ f(x) ∀y ∈ U.

In view of the fact that x ∈ U and ζ ∈ ∂P f(x) were arbitrary, we have shown that f is

σ(1 +K2)
3
2 –lower–C2 on U ; that is, condition (a) holds and is equivalent to (b).

Since f is Lipschitz on U , for each x ∈ U the proximal normal cone NP
epi(f)

(x, f(x)) is

generated by vectors of the form (ζ,−1) as ζ varies in the proximal subdifferential ∂P f(x).
Consequently, (5.10) is equivalent to condition (d) of Theorem 4.1, with X = epi(f), which
is locally closed.

The “furthermore” part of the assertion follows from Corollary 4.15.

Remark 5.3. The equivalences provided by Theorems 5.1 and 5.2 go through with
minor modifications if Rn is replaced by a general real Hilbert space H. At the outset, one
then requires weak continuity of the functions b(·) and c(·), as well as weak compactness
of the set S.

Acknowledgment. The authors benefited from useful discussions with Yu. S. Ledyaev.

References
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