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1. Introduction

Let E be a Hausdorff locally convex space, X a convex set in it, and E∗ the dual space.
We say an operator f : X → E∗ is quasi-monotone if

min{ 〈y − x, f(x)〉, 〈x− y, f(y)〉 } ≤ 0 (1.1)

for all x, y ∈ X, and cyclically quasi-monotone if

min{ 〈xi+1 − xi, f(xi)〉 : i = 0, . . . , k } ≤ 0 (1.2)

for all integer k and all cycles x0, x1, . . . , xk, xk+1 = x0 in X.
Such operators are closely related to the so-called demand functions in mathematical
economics [4]. Denote X = intIRn

+ and suppose that there exists the single solution d(p)

for the extremal problem
u(q)→ max, pq ≤ 1,

where an increasing utility function u on IRn
+ is assumed to be given, and a price vector p ∈

X is considered as a parameter. The demand function d, showing demand for n products
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as a vector function of their prices, satisfies the strong axiom of revealed preference due

to Houthakker: no cycle p0, p1, . . . , pk, pk+1 = p0 can exist in X such that

(pi+1 − pi)d(pi) ≤ 0, i = 0, 1, . . . , k,

and d(pi) 6= d(pj) for at least one pair of indices i, j = 0, . . . , k with i 6= j. The same
condition for k = 1 only is known as the weak axiom of revealed preference due to
Samuelson. It is easily seen that each axiom implies the corresponding quasi-monotonicity
property for the operator f = −d : X → IRn, the strong axiom implies (1.2), and the
weak axiom implies (1.1).
The simplest examples of quasi-monotone (resp. cyclically quasi-monotone) operators are
monotone (resp. cyclically monotone) ones. Their definitions are obtained by replacing
minima with sums in (1.1) and (1.2) respectively.
The notion of a (not necessarily single-valued) monotone operator was first proposed
by Kachurovskii [1] (see also [2, 3]), and properties and applications of such operators
were studied later by many authors. Cyclically monotone operators were introduced and
investigated by Rockafellar [6–9].
Given a smooth function u on a convex domain, characterizations of its convexity in terms
of monotonicity or cyclical monotonicity of gradu are known as follows:

u is convex ⇔ gradu is monotone ⇔ gradu is cyclically monotone.

The goal of the present paper is to get similar characterization theorems connecting quasi-
convex functions with quasi-monotone and cyclically quasi-monotone operators.

2. Characterization theorems

Let X be a convex set in a real vector space. Recall that a function u : X → IR1 is said
to be quasi-convex if its sublevel sets

{ x : u(x) ≤ α }, α ∈ IR1,

are convex or, which is the same thing, if

u((1− t)x+ ty) ≤ max{u(x), u(y)}

whenever x, y ∈ X, 0 < t < 1.
It follows from this definition that u is quasi-convex if and only if all the functions
ϕ(u, x, y; ·), x, y ∈ X, on the segment [0, 1] are so, where

ϕ(u, x, y; t) : = u((1− t)x + ty). (2.1)

Theorem 2.1. Let X be a convex open set in a Hausdorff locally convex space E, and

suppose that a function u : X → IR1 has two properties as follows:
(i) u is Gâteaux differentiable on X, i.e. for every x ∈ X there exists an element

gradu(x) ∈ E∗ such that

lim
t→0

u(x+ th)− u(x)

t
= 〈h, gradu(x)〉 for all h ∈ E; (2.2)
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(ii) for every x, y ∈ X the function ϕ(u, x, y; ·) given by (2.1) is absolutely continuous on
[0, 1].

The following assertions are then equivalent:
(a) u is quasi-convex,
(b) the operator gradu is cyclically quasi-monotone,
(c) the operator gradu is quasi-monotone.

Remark 2.2. Assumptions (i) and (ii) are clearly satisfied if u is C1. For the finite-
dimensional case of the theorem, see also [5, Proposition 3.1].

Before to pass on to a more general characterization theorem, let us formulate two as-

sumptions, (D1) and (D2), on a function u : X → IR1, where X is a convex set in a
vector space. The assumptions are expressed in terms of the functions ϕ(u, x, y; ·) (see
(2.1)) as follows:
(D1) for every x, y ∈ X and every t, 0 ≤ t < 1, there exists the right derivative

Dϕ(u, x, y; t) : = lim
∆t↓0

ϕ(u, x, y; t+ ∆t)− ϕ(u, x, y; t)

∆t
;

(D2) for every x, y ∈ X, ϕ(u, x, y; ·) is absolutely continuous on [0, 1].

It follows from (D1) and (D2) that

∫ 1

0
Dϕ(u, x, y; t) dt = u(y)− u(x) whenever x, y ∈ X. (2.3)

Note that if (D1) holds, then for every x, y ∈ X the directional derivative is defined as
follows:

u′(x, y − x) := Dϕ(u, x, y; 0) = lim
t↓0

u(x+ t(y − x))− u(x)

t
. (2.4)

Theorem 2.3. Let X be a convex subset in a vector space and u : X → IR1 satisfy
(D1) and (D2). The following assertions are then equivalent:
(a) u is quasi-convex;
(b) for every integer k and every cycle x0, x1, . . . , xk, xk+1 = x0 in X, the inequality

min{u′(xi, xi+1 − xi) : i = 0, . . . , k} ≤ 0

holds;
(c) for every x, y ∈ X, the inequality

min{u′(x, y − x), u′(y, x− y)} ≤ 0

holds.

Remark 2.4. Similarly to the case of cyclically monotone operators, the notion of
cyclical quasi-monotonicity can be generalized in the natural way on multivalued op-
erators. A well-known result of Rockafellar [6,9] asserts that subdifferentials of proper
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semi-continuous convex functions are characterized as maximal cyclically monotone oper-
ators. Here a multivalued cyclically monotone (resp. cyclically quasi-monotone) operator
f is called maximal if no cyclically monotone (resp. cyclically quasi-monotone) operator
g exists with grf ⊂ grg. This Rockafellar’s characterization theorem cannot be general-
ized on quasi-convex functions, because for any (single-valued) cyclically quasi-monotone
operator f , the operator g(x) := {αf(x) : α ≥ 0} is cyclically quasi-monotone as well,
and grf ⊂ grg provided f 6≡ 0. It follows that for every non-constant smooth quasi-
convex function u the single-valued cyclically quasi-monotone operator f = gradu is not
maximal.

3. Proofs

Proof of Theorem 2.1 Observe that if u is Gâteaux differentiable on X, then (D1)

holds and u′(x, y − x) = 〈y − x, gradu(x)〉 for all x, y ∈ X. Theorem 2.1 is then a direct
consequence of Theorem 2.3.

Proof of Theorem 2.3 (a)⇒(b). If (b) fails, then for some cycle x0, x1, . . . , xk+1 = x0

in X,

u′(xi, xi+1 − xi) > 0, i = 0, 1, . . . , k.

We have Dϕ(u, xi, xi+1; 0) > 0, so

ϕ(u, xi, xi+1; 0) < ϕ(u, xi, xi+1; t) for small t > 0, (3.1)

and as ϕ(u, xi, xi+1; ·) is quasi-convex on [0, 1], it follows from (3.1) that

ϕ(u, xi, xi+1; 0) < ϕ(u, xi, xi+1; 1),

i.e. u(xi) < u(xi+1). We obtain a contradictory chain of inequalities

u(x0) < u(x1) < . . . < u(xk) < u(x0),

and the contradiction means that (b) is true.
(b)⇒(c). Obvious.
(c)⇒(a). Suppose u is not quasi-convex. There exist then x, y ∈ X and t0, 0 < t0 < 1,
such that

u((1− t0)x + t0y) > max{u(x), u(y)}. (3.2)

We claim that there exist t1 and t2, 0 < t1 < t0 < t2 < 1, such that

Dϕ(u, x, y; t1) > 0 (3.3)

and

Dϕ(u, y, x; 1− t2) > 0. (3.4)

Indeed, if Dϕ(u, x, y; t) ≤ 0 for all t, 0 < t < t0, then, taking into account (2.3) and the
identity

ϕ(u, x, (1− t0)x + t0y; t) = ϕ(u, x, y; t0t),
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we obtain

u((1− t0)x+ t0y) = u(x) +

∫ 1

0
Dϕ(u, x, (1− t0)x+ t0y; t) dt

= u(x) +

∫ 1

0
Dϕ(u, x, y; t0t) dt

= u(x) +
1

t0

∫ t0

0
Dϕ(u, x, y; τ) dτ ≤ u(x),

which contradicts (3.2).
Similarly, if Dϕ(u, y, x; t) ≤ 0 for all t, 0 < t < 1− t0, then

u((1− t0)x + t0y) = u(y) +

∫ 1

0
Dϕ(u, y, (1− t0)x+ t0y; t) dt

= u(y) +

∫ 1

0
Dϕ(u, y, x; (1− t0)t) dt

= u(y) +
1

1− t0

∫ 1−t0

0
Dϕ(u, y, x; τ) dτ ≤ u(y),

which again contradicts (3.2). The claim is thus proved.
Set now

xk := (1− tk)x + tky, k = 1, 2,

and, by using (3.3) (3.4) and the identities

ϕ(u, x1, x2; t) = ϕ(u, x, y; t1 + t(t2 − t1)),

ϕ(u, x2, x1; t) = ϕ(u, y, x; 1− t2 + t(t2 − t1)),

one obtains

u′(x1, x2 − x1) = Dϕ(u, x1, x2; 0) = (t2 − t1) Dϕ(u, x, y; t1) > 0,

u′(x2, x1 − x2) = Dϕ(u, x2, x1; 0) = (t2 − t1) Dϕ(u, y, x; 1− t2) > 0,

hence
min{u′(x1, x2 − x1), u′(x2, x1 − x2)} > 0,

a contradiction with (c).

Remark : After submitting the present paper, in November 1994, I have seen a manuscript
by Aussel, Corvellec and Lassonde [10], where some related results on connections between
(non-differentiable) quasi-convex functions and multivalued quasi-monotone operators in
Banach spaces are proved in a different way.
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