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canonical enlargement of a complete totally ordered group.
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1. Introduction

Since various concepts of conjugation have important applications to duality in optimiza-
tion theory, an axiomatic approach to generalized conjugation theory was started in [14]
and continued in [15], [16] and [6]-[9]. Let us recall that if X and W are two sets (which
. =X W —=X
we shall assume non-empty throughout the sequel), a mapping A: R~ — R~ (where R

denotes the family of all functions f: X — R = [—o0, +o0]) is called
a) a duality ([16],[6]), if for any index set I we have

. =X
(inf ;) = sup f7* {fitier CR), (1.1)
where inf;c7 f; € EX and sup;¢; fiA € R" are defined pointwise on X and W respectively
(i.e., (infier fi)(x) = infies fi(x) for all z € X), with the usual conventions
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inf ) = 400, sup® = —oc; (1.2)
b) a conjugation [14], if we have (1.1) and
(Jhd)® =7 —d (feR .deR) (13)

where we identify each d € R with the constant function taking everywhere the value d,

. =X
the operations + and + on R~ (respectively, RW) are defined pointwise, and the binary
operations + and + on R are the “upper addition” and “lower addition” defined ([10],

[11]) by
atb=at+b=a+b if RN{a,b}#0 or a=b= oo, (1.4)
a+b = +o00,a+b=—c0 if a=—b=Hooc; (1.5)
¢) a V-duality [7], if we have (1.1) and

(fVd)A=fAA—d (feR ,deR), (1.6)

where V and A stand for (pointwise) sup and inf, in EX and EW respectively;
d) a L-duality [7], if we have (1.1) and

(fLd)® = fAT —d (fe R ,deR), (1.7)

where | and T are the binary operations defined [6] on R by

_fa ifa<b
alb= {+oo it a > b, (1.8)
a if a > b,
aTh= { oo ifa <, (1.9)

and extended pointwise to FX and FW.
Let us also recall (see e.g. [16], [6]) that if A: B >R isa duality, then so is the dual
mapping A’ B SR defined by

A = inf h (geR™), (1.10)
heR™
hA<g

=X 4 .
and for any f € R and g € R we have the equivalence

fA<ge gt <f (1.11)

In the above mentioned papers, among other results, various “representation theorems”
have been given for dualities (with the aid of functions G: X x W x R — R), conjugations,
V-dualities and A-dualities (with the aid of “coupling functions” from X x W into R)
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A:EX — EW and for their duals A’ :FW — EX, as well as for the “second dual”
AN = ( fA)A/ e RY of a function f e rY. Also, it has been shown there that the
dual ARV = R of a conjugation AR - RV isa conjugation, but the dual of
a V-duality is a L-duality (actually, this was the main motivation for introducing in [6]
the operations L and T and the concept of 1-dualities) and the dual of a L-duality is a
V-duality.

Furthermore, in the recent paper [8], we have generalized the theory of conjugations (1.1),

(1.3) to certain mappings A: ¥ ZW, called (in [8]) *-dualities, where A = (A, <, %, %)
is the “canonical enlargement” of a complete totally ordered group A = (A, <,x*), which

. . . . —=X =W . .
contain, as particular cases, the conjugations A: R© — R and various kinds of known

polarities (e.g., polarities A: ﬁf — EK/ in the sense of Moreau [10], p. 92, formula (14.4),
Rockafellar [13], p. 136, Elster and Wolf [4], with applications to fractional programming
duality, etc.).

In the present paper, continuing to develop these axiomatic approaches to generalized con-

jugation theory, we shall introduce and study a kind of dualities A: EX — FW, namely,
dualities associated to a binary operation * on R satisfying “condition (a)” (i.e., condi-
tion (2.1) below), called, briefly, x-dualities, which encompass, as particular cases, the
conjugations, V-dualities and | -dualities mentioned above. Also, we shall show how this
theory can be extended to the case when R is replaced by the canonical enlargement A of
a complete totally ordered group A = (A, <, ), so as to encompass also the “x-dualities”
in the sense of [8], as particular cases.

In Section 2 we shall introduce the class of binary operations * on R satisfying condition
(a) (defined by (2.1)), which contain, as particular cases, the binary operations +, V and
1 mentioned above. Also, we shall introduce and study “the (left) epi-hypo-inverse” x;
and “the (left) conjugate” % of such a binary operation *, which will be needed in the
sequel.

In Section 3 we shall introduce the concept of a duality A: EX — EW with respect to a
binary operation * on R satisfying condition (), called, briefly, a *-duality, with the aid
of a suitable “second condition” (besides (1.1)), namely, condition (3.1), encompassing,
among other particular cases, (1.3), (1.6) and (1.7). Also we shall determine the dual of a
«-duality, from which one recovers, in particular, the above mentioned results of [14] and
[7] on the duals of conjugations, V-dualities and L-dualities.

. . . .. —X
In Section 4 we shall obtain some results on the representations of x-dualities A: R~ —

— — —X —
RW and of their duals A’: RW — R, with the aid of coupling functions ¥: X x W — R,
which contain, as particular cases, the results of [14] and [7] on the representation of
conjugations, V-dualities and 1-dualities, mentioned above.

Finally, in Section 5 (Appendix) we shall show that the concept x-duality of the present
paper can be extended to a more general notion of “(x, s)-duality”, which encompasses, as

X — — —
particular cases, also the “x-dualities” M: A~ — AW, in the sense of [8], where A = (A, <
, %, %) is the “canonical enlargement” of a complete totally ordered group A = (A, <, %).

Thus, we shall obtain a unifying framework for the results of the present paper and those
of [8].
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2. Inverses and conjugates of binary operations on R

Definition 2.1. We shall say that a binary operation * on R satisfies condition (), if
for any index set I we have

(inf b;) * ¢ = inf(b; * c) ({bi}ier C R,c € R). (2.1)
i€l icl

Remark 2.2. a) For I = (), condition (2.1) yields

+00 * ¢ = +00 (c e R). (2.2)
b) For each ¢ € R, define k.: R — R by

ke(b) =bxc (b€ R). (2.3)

Then, condition («) means that for any index set I we have
k:c(inf bz) = 1nf k‘c(bz) ({bz}zef - R, (S E), (24)
i€l el

or, equivalently (by [6], lemma 2.1, applied to k. regarded as a mapping of (R, <) into

(R,>), i.e., into R endowed with the “reverse order” >), that for each ¢ € R the function
ke 1s non-decreasing and upper semi-continuous.

Let us give now some examples of binary operations * on R satisfying condition ().

Example 2.3. Let * = 4. Then, by [11], formula (4.7), * satisfies condition ().
Example 2.4. Let * = V. Then it is well-known (and immediate) that * satisfies
condition (a).

Example 2.5. Let x = L (of (1.8)). Then, by [7], formula (1.21), * satisfies condition
(@).

We shall denote by min (respectively, max), an inf (respectively, sup) which is attained.

Proposition 2.6. Let * be a binary operation on R, satisfying condition (o). Then

there exists a unique binary operation *; on R such that for any a,b,c € R we have the
equivalence
a<bxceaxc<b, (2.5)

namely,
ax c=min{b/ € R|a <V xc} (a,c € R). (2.6)

Proof. Since * satisfies condition (), for any a,c € R we have
(inf{t/ e R|a<t xc})xc=inf{t/ xc|b € R,a <V *c}>a,

soinf{t/ € R|a<bx*cte{bl cR|a<b xc} Thus, the min in (2.6) exists.

Let us show now that the binary operation #; on R defined by (2.6) satisfies (2.5).

If a <bsc, then b {b € R|a <V *c}, whence, by (2.6), a *; ¢ < b. Conversely,
assume now that a *; ¢ = min{l/ € R | a < xc} < b, so there exists b’ € R such that
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a <V xc=kq(b), v <b. Then, since k. is non-decreasing (by remark 2.2 b)), we obtain
a < k(b)) <ke(b)=bxc.
Finally, if we have (2.5), then for any a,c € R we have

axjc=min{t/ €R|a*c<b}=min{t/ € R|a <V *c}.
O
Definition 2.7. Let * be a binary operation on R, satisfying condition («). Then the

unique binary operation #; on R, of proposition 2.6, will be called the (left) epi-hypo-
inverse of *.

Remark 2.8. a) The theory of inversion of functions k: R — R (see e.g. [2], pp.
208-211, and [12]) can be easily extended to functions k: R — R, which is, in fact, its

natural framework. Then, for any ¢ € R, since k. of (2.3) is non-decreasing and upper
semi-continuous, it admits (see e.g. [12], proposition 2.6, extended to this framework), a

unique “epi-hypo-inverse”, i.e., a unique function j.: R — R such that for any a,b € R
we have the equivalence

a < ke(b) & je(a) <0, (2.7)
namely,
je(a) =min{t € R|a < k.(b)} (a € R). (2.8)
Then, by proposition 2.6, we have

Je(a) =ax;c (a € R), (2.9)

which motivates the terminology of definition 2.7.
b) If * is commutative and satisfies condition («), then, by (2.5),

axc<bsaxb<ec (2.10)

c¢) For a binary operation * on R, we shall also consider the binary operation *— on R,

defined by

a*x—c=ax*(—c) (a,c € R). (2.11)
Then, by (2.6) and (2.11), we have (x—); = %;—, since

a(x=)c=min{ € R |a <b *x—c=V*(—c)} =ax (—c) (a,c € R). (2.12)
d) If * satisfies condition (), then so does *—. Since (x—)— = %, the converse is also
true.

If a binary operation * on R satisfies condition (a), then *; need not satisfy it, but we
shall show that %; has a “dual” property.

Definition 2.9. We shall say that a binary operation * on R satisfies condition (3), if
for any index set I we have
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(sup a;) * ¢ = sup(a; * c) ({a;}ier € R,c € R). (2.13)
el el

Remark 2.10. If  satisfies condition (), then, by (2.13) for I = (), we have

—00 % ¢ = —00 (c € R). (2.14)

Proposition 2.11. If a binary operation * on R satisfies condition (), then *; satisfies
condition (3).

Proof. By («), the minima in (2.6) are attained, and hence

(supjer ai) x ¢ = min{b/ € R | supseya; <V xc} =min();c; {0’ € R|a; <V xc} =

= sup;e; min{t/ € R | a; <V *c} = sup;es(a; x;¢) ({aitier C R, c € R).
o

Remark 2.12.  a) One can also give the following alternative proof of proposition
2.11: If a,a’,c € R, a < d, then {¥ € R | d < k(t))} C{V/ € R | a < k(V)},
whence, by (2.8), je(a) < je(a'), 50 je is non-decreasing. Also, by (2.7), for each b € R
we have {a € R | jc(a) < b} = {a € R| a < k.(b)}, which is a closed set, so j. is lower
semi-continuous. But, by [6], lemma 2.1, we have these two properties if and only if

Je(sup a;) = sup je(a;) ({ai}tier C R,c € R), (2.15)
el el
i.e. (by (2.9)), if and only if %; satisfies condition (/3).
b) By the above, k. of (2.3) is the “hypo-epi-inverse” of j. (of (2.9)), in the inversion
theory (of [2], pp. 208211, and [12]) extended to functions k: R — R, and therefore
one can say that the binary operation * is the (left) hypo-epi-inverse of *;, in symbols,
% = (%7)y = *. Indeed, from (2.5) we obtain

bxc=max{a € R|d <bxc} =max{d € R|d *,¢c<b} (b,c € R). (2.16)

More generally, if we start with any = satisfying condition (3), then one can define, in
the obvious way, the (left) hypo-epi-inverse %, of x, and we have x = (x,); = *,;. Also,

dually to proposition 2.11, we have that if a binary operation * on R satisfies condition
(B), then %, satisfies condition ().

c) Concerning the above notations, let us mention that [ (and u) stand to indicate the
lower (and, respectively, the upper) semi-continuity of *; (respectively, *,) in the first
component. The word “left” in the above terminology is used to indicate that we are
dealing with the first component of %; (respectively, *,); in the sequel, we shall omit the

word “left”, since this will lead to no confusion. Note also that a binary operation * on R
satisfying both («) and () (with *; replaced by *) has both inverses %; and %, but they
need not coincide.

Let us consider now some examples.
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Example 2.3 (continued). If x = +, then *; = +— (since these * and *; satisfy (2.5),
by [11], formula (3.3)).

Example 2.4 (continued). If x =V, then %, = T (since these % and #; satisfy (2.5), by
[7], formula (1.5)).

Example 2.5 (continued). If x = 1, then %; = A (since these * and %; satisfy (2.5), by
[7], formula (1.6)).

In the sequel, for simplicity, for any binary operation * on R we shall write —a ¢ instead
of (—a) * ¢, which will lead to no confusion (with —(a * c)).

Definition 2.13. Let * be a binary operation R. Then the binary operation ¥ on R,
defined by

a¥c = —(—ax*c) (a,c € R), (2.17)
will be called the (left) conjugate of *.
Example 2.3 (continued). If x = +, then ¥ = +— (since —(—a+c) = a+ — ¢, by [11],
formula (3.2)).
Example 2.4 (continued). If x =V, then ¥ = A— (since —(—a V ¢) = a A —c).

Example 2.5 (continued). If * = 1, then ¥ = T— (since —(—alc) =aT — ¢, by [7],
formula (1.12)).

Remark 2.14. a) By (2.17), we have
—(a%c) = —axc (a,c € R), (2.18)

a*c= —(—axc) (a,c € R). (2.19)

b) By (2.17) (applied to ¥ instead of %) and (2.19), for the “biconjugate” ¥ = (¥) of a
binary operation * on R we have ¥ = x, since

axc = —(—a¥c) = axc (a,c € R). (2.20)

c¢) For any binary operation * on R we have

P (2.21)
Indeed, by (2.17) and (2.11),

ax—c=—(—a*x —c) = —(—ax*(—c)) = ax(—c) =ax — ¢ (a,c € R). (2.22)

Proposition 2.15.
a) A binary operation * on R satisfies (o) (respectively, (3)) if and only if ¥ satisfies

(B) (respectively, (a)).
b) If * satisfies (a), then for any a,b,c € R we have the equivalence

axc <b< —bx*xc< —a. (2.23)
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If x is also commutative, then we also have the equivalence
axc <bs —bx —a <c. (2.24)
c) * is commutative if and only if % is “anti-commutative”; i.e.,

a¥c = —cx —a (a,c € R). (2.25)

Proof. a) If  satisfies condition («), then

(supjeg ai)¥c = = [(=sup;er ai) * o] = — [(inficr(—a;)) * ] =
= —infier(—a; * ¢) = sup;er[—(—a; * ¢)] = sup;e(aixe)  ({ai}tier € R,c € R),
so % satisfies condition (). Dually, interchanging sup and inf, we obtain that if x satisfies

(), then ¥ satisfies (). Hence, if ¥ satisfies (3) (respectively, (o)) then * = ¥ satisfies

() (respectively, ((3)).
b) By (2.17) and (2.5) we have

akc<bs —(—axc)<bs —a*xc> —-bs —bxc< —a.

If x is also commutative, then, by (2.23) and (2.10), we have (2.24).
c) If % is commutative, then

a¥c=—(—ax*xc)=—(c*x —a) = —cx —a (a,c € R).
Dually, if * is anti-commutative, then * is commutative. Hence, if % is anti-commutative,

then * = % is commutative. O

Since * is defined for any binary operation * (not necessarily satisfying condition («a)),
we may consider the conjugate of the epi-hypo-inverse of a binary operation * satisfying
condition (), i.e., the binary operation

a¥jc=—(—axc)=—min{t/ €R| —a <V xc}=
=max{-b €R|a>—{0 xc)} =max{be R|a>—(~bxc)} = (2.26)
= max{b € R | a > bxc} (a,c € R).

Remark 2.16. By (2.12) and (2.21) (applied to #; instead of ), for any binary operation

* on R we have

(k=) =x— = (%) —- (2.27)

Theorem 2.17. If a binary operation * on R satisfies condition (), then so does the
binary operation *;, and we have

(*¥1) =%, (2.28)

(*)1 = =. (2.29)
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Proof. By proposition 2.11, %; satisfies condition (). Hence, by proposition 2.15, %;
satisfies condition («), and therefore (%7); is well defined. Then, by (2.6) (applied to %;),
(2.5) and (2.17), we obtain

a(¥)ic=min{t/ € R|a<bFc}=min{t/ € R|a < —(~b xc)} =
= -—max{bER|—a>bxcl=-max{bc R|b< —axc}=
= —(—a*c) = axc (a,c € R),

which proves (2.28). Finally, (2.28) and (2.29) are equivalent (by (2.20)). O

Remark 2.18. By the first part of theorem 2.17, applied to %;, and by (2.29), if %
satisfies condition («), then so does *.

Example 2.3 (continued). If * = +, so #; = +—, then % = + (since —(—a+—c) = a+c).
Hence, by theorem 2.17, (%); =% = + |

*
I
“<
wn
o |
.
ol
0
= %
(@)
5
+

Example 2.4 (continued). If = 1— (since —(—aTc) =al—c).

*]
Hence, by theorem 2.17, (%)), =% = A—, (¥;); = * = V.

Example 2.5 (continued). If x = L, so*; = A, then % = V— (since —(—aAc) = aV—c).
Hence, by theorem 2.17, (%)) =% = T—, (x); =% = L.

Starting with %; instead of *, from example 2.4 and theorem 2.17 above we obtain

Example 2.19. If x = L — =V, then x; = A—, % = V. Hence, (¥)); =T, (¥); = L—.

Remark 2.20.

we shall use it in Section 4. Similarly, starting with * = V— = 1;, one obtains an example
which differs from example 2.4 only by the minus sign (however, we shall not use it in the
sequel).

b) The following table summarizes examples 2.3-2.5 and 2.19 above:

a) Example 2.19 differs from example 2.5 only by the minus signs, but

Example 2.3 Example 2.4 Example 2.5 Example 2.19
* + vV 1 1—
*1 +— T A A—
* + 1— V— Vv
(k)i =% +- N— T— T

. . - =X .
Each binary operation % on R can be extended to R, where X is any set, as follows.

Definition 2.21. For any f,h € EX, let

(f *h)(x) = f(x)* h(z)

(x € X).

(2.30)
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3. =#x-dualities and their duals

Definition 3.1. Let X and W be two sets and let * be a binary operation on R. A
duality A: A (see (1.1)) will be called a *-duality, if

(f *d)2 = f2%d (feR",deR), (3.1)
where we identify each d € R with the constant function hy € R defined by hq(x) =
d (x € X).

Example 3.2. Let x = +. Then ¥ = +— (see example 2.3), and thus condition (3.1)
means that we have (1.3), i.e., that A: R >R isa conjugation.

Example 3.3. Let x = V. Then ¥ = A— (see example 2.4), and thus condition (3.1)
means that we have (1.6), i.e., that A: R >R isa V-duality.

Example 3.4. Let x = L. Then ¥ = T— (see example 2.5), and thus condition (3.1)
means that we have (1.7), i.e., that A: R - R isa L -duality.

Remark 3.5. If A is a x-duality, then it is also a (x—)-duality. Indeed, by (2.11), (3.1)

and (2.21), we have
(f % —d)™ = (f # (—d) = [25 —d = [25=d (feR ,deR).

Proposition 3.6. Let X and W be two sets and let x be a commutative binary operation

on R, satisfying condition (). Then, a duality AR RV isa x-duality if (and only
if ) we have (3.1) for all d € R.

Proof. Assume that A:R® — R is a duality, satisfying (3.1) for all d € R. Then, by
the commutativity of *, (2.2) and (1.1) for I = () (with the conventions (1.2)), we have
=X
(f % +00)2 = (400 % )2 = 4002 = —c0 (feR"). (3.2)

On the other hand, since * satisfies condition (3) (by proposition 2.15 a)) we have, by
(2.25) and (2.14) (applied to *),

fA¥+ 00 = —00% — fA = —00 (f € EX). (3.3)

Thus, by (3.2) and (3.3), we have (3.1) for d = +oc.
Finally, by the commutativity of x, (2.1), (1.1), (3.1) for all d € R, (2.25) and (2.13) for
* (by proposition 2.15 a)), we obtain

(f % =00) = (=00 ) = ((inf d)  f)* = (inf (d+ [))* =

deR
= (inf (f = d))A = sup(f * d)A = sup(fA§d) = sup(—dx — fA) =
deR deR deR deR
— (sup(—d))F — 2 = +oF — 2 = f2% — oo (feRY),
deR

so A satisfies (3.1) also for d = —oc. O
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Theorem 3.7. Let X and W be two sets and let * be a binary operation on R, satisfying
condition (o).

(a) If AR SR isa x-duality, then its dual AR SR s a *;-duality.
(b) If A: R 2R isa *;-duality, then its dual A’ R SR isa x-duality.

Proof. a) If A is a *-duality, then so is A’ (see Section 1), and, by (1.10), (2.23), (3.1),
(1.11) and (2.5), we have

(gfid)® = inf h= inf h= inf h=
hA<gwd hA <—(—gxd) —hA>—gxd
= inf h= inf h= inf h=
g>hA%d gZ(h*d)A gA/Sh*d
= inf h:gA/ *ld:gA/*:ld (gEEW,dGE).
gA/*ldgh

b) If A is a ¥;-duality, then, by part a) (applied to ¥; instead of x) and (2.29), A’ is a
x-duality. O

Corollary 3.8. Let X and W be two sets and let x be a binary operation on R, satisfying
condition (o). Then

(a) Every x-duality is the dual of a *j-duality.

(b) Every ¥;-duality is the dual of a *-duality.

Proof. a) If A is a *-duality, then A = (A’)" (see Section 1), where A’ is a *;-duality
(by theorem 3.7 a)).

b) if A is a ¥;-duality, then A = (A’)’; where A’ is a *-duality (by theorem 3.7 b)). O
Corollary 3.9. Let X, W and x be as above. Then

(a) A duality A: R 2R isa x-duality if and only if A’ is a *;-duality.

(b) A duality A: R 2RV isa *-duality if and only if A’ is a x-duality.

Remark 3.10. a) For x = +, V, or L, theorem 3.7 yields again that the dual of a
conjugation, or V-duality, or 1-duality, is a conjugation, or a l-duality, or a V-duality,

respectively (see Section 1). Similar remarks can be made for corollaries 3.8 and 3.9.
b) One can generalize definition 3.1 as follows. Let K be a family of non-decreasing upper

semi-continuous functions k: R — R. A duality A: EX — FW is a K-duality, if

(ko )2 = —ko(—f2) (ke K, feR) (3.4)
Then, in particular, A is a x-duality if and only if it is a Ko-duality, where

Ko = {kc| c € R}, (3.5)
with k. of (2.3). Indeed, by (2.3) and (2.30), we have

(ke o [)(x) = ke(f(2)) = f(x) ¥ ¢ = (f * ) () (feR" . ceRueX)
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whence

(koo f) = (F ) (feR".ceR). (3.6)
and, on the other hand, by (2.3), (2.17) and (2.30), we have

(=ke o (=) (w) = =ke(=f2(w)) = =(=fA(w) ¥ ) = 2 (w)Fe =
— (fA5e)(w) (fFER ,ceRweW),
thus, (3.4) (for Ky of (3.5)) is equivalent to (3.1). O

4. Representations of x-dualities and their duals, with the aid of coupling
functions

Definition 4.1. Let % be a binary operation on R. An element e € R is called
(a) a left neutral element for x, if

exc=c (c € R); (4.1)
(b) a right neutral element for x, if

cxe=c (c € R); (4.2)
(c) a meutral element for x, if it is both a left and a right neutral element for .
Note that a neutral element is necessarily unique.
Example 4.2. Let * = +. Then e = 0 is the neutral element for *.

Example 4.3. Let x =V. Then e = —o0 is the neutral element for x.

Example 4.4. Let *x = L. Then e = 400 is the (unique) right neutral element for
(by [7], formula (1.15)), but there exists no left neutral element for .

Definition 4.5. Let X be a set and let * be a binary operation on R, which admits a
left (or right) neutral element e. Then, for any subset S of X, the generalized indicator
function of S (with respect to e) is the function xyg: X — {e,+o0} defined by

_Je ifyesS
) =1{ o ifyec X\ (4.3)

Example 4.2 (continued). If * = +, so e = 0, then yg is the usual indicator function
of S.

Example 4.3 (continued). If * = V, so e = —oo, then xg is the “representation
function” of S, introduced by Flachs and Pollatschek [5].

Lemma 4.6. Let X be a set and let * be a binary operation on R, satisfying (2.2) and

admitting a left neutral element e. Then, for any function f € EX we have

where Xy 18 the generalized indicator function of the singleton {z}.
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Proof. By (4.3), (4.1) and (2.2) we have, for any z,y € X,

ex f(z) = flz) = fly) ifz=y
toox fla) =400 itz vy,

whence

inf Ly (v) * f(2)} = inf{f (). +o0} = f(y) (y € X).
o

We recall (see [11]) that if X and W are two sets, then every function ¢: X x W — R is
called a coupling function.

Theorem 4.7. Let X and W be two sets and let * be a binary operation on R, satisfying

2.2) and admitting a left neutral element e. Then for each *-duality /\: EX — EW there
( g y
exists a coupling function 1: X x W — R, for example,

¢($7w) = (X{x})A(w) (I eX,we W)v (45)
such that we have
F3(w) = sup{u(e w)Ef ()} (feR wew). (4.6)

Moreover, if x is also commutative, then ¢ of (4.5) is unique (i.e., the unique coupling
function for which we have (4.6)).

Proof. By lemma 4.6 and definition 3.1, for any x-duality A: R > R" we have

72 = (inf {xgy = F@D® = sup{(xgay) >3/ (@)} (feRY).

i.e., (4.6), with ¥ of (4.5).
Moreover, if e is a neutral element for x and = € X, then, applying (4.6) to f = X{z} and
using (2.17), (4.3), (4.2) and (2.2), we obtain

(X{x})A(w) = sup {w(l‘/v w)§X{x} (ZL‘/)} = sup {_@Z)(lja ’LU) * X{z} (l‘/))} =

r'eX r'eX
= —(=t(w,w)) = ¥(x, w) (we W),

O

Remark 4.8. a) If * is a binary operation on R, satisfying (2.2) and admitting a left
neutral element e, then, by (4.3), (4.1) and (2.2), for any =,y € X and any d € R we have

_fexd=d ifr=y
X(a}(y) +d = {+oo*d:+oo if x #y. (4.7)

Now, by part of [6], theorem 4.7, for any duality A: RY = R we have
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FAw) = sup Gz, w, f(z)) (fe R, wew), (4.8)

where Ga: X x W x R — R is the function defined by

Gz, w,d) = (9pq)™(w) (z € X,weW,deR), (4.9)
with ¢, g0 X — R defined by

d if v =
ead®) ={ Lo iz (4.10)

But, by (4.10) and (4.7), we have

Pud = X{z} * d (r e X,d € R), (4.11)
and hence, if A is a *-duality, then, by (4.9), (4.11) and (3.1),

Ga(z,w,d) = (Y(z) * d)> (W) = (xgzy) (w)xd (z € X,weW,deR), (4.12)

which, together with (4.8), yields again (4.6), with ¢ of (4.5).
b) One can also prove that if * and A are as in a) above, then ¢: X x W — R of (4.5) is
the unique coupling function satiisfying, for any index set I,

—(x,w) * in§ d; = inﬁ{—w(:c,w) * d; } (x € X,we W,{di}ier CR). (4.13)
S IS

c) One cannot omit the assumption of commutativity of * in the uniqueness part of
theorem 4.7, as shown by the following example: Let X be a non-empty set, let W = X

and let * be the binary operation on R defined by

b if a < 400
a*b_{Jroo if a = 4o00.

Then = satisfies (2.2) (moreover, it is easy to see that * satisfies even condition («))
and each e € R U {—o0o} is a left neutral element for x. Furthermore, the mapping

A:EX — FW defined by

—X
fA=—f (feR")
is obviously a x-duality (even for any binary operation * on E) and, for any coupling
function 1: X x W — R such that

Y(z,w) = —oo if and only if z # w,

fA(w) = —fw) = — inf {~(w,2)  f(2)} = sup {$(z, w)Ff(2)} (FER ,weW).
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In the converse direction to theorem 4.7, we have

Theorem 4.9. Let X and W be two sets, * a binary operation on R, : X x W — R

a coupling function and A:EX — EW the mapping defined by (4.6).

a) If x is commutative and satisfies condition (&), then A is a duality.

b) If % is associative, then A satisfies (3.1).

Hence, if * is commutative, associative and satisfies condition (), then A is a x-duality.

Proof. a) For any {f;}ier C R andw € W we have, by (4.6), (2.17), the commutativity
of %, and (2.1),

(inf fi) 2 (w) = sup {¢(z, w)*inf fi(2)} = sup {—{~¢(z, w) * inf fi(x)}} =

1€ rzeX 1€ zeX e
= ;g)({—{;g filw) x =z, w)}} = — inf {inf fi(2) * —(z, w)} =
= — Inf {inf{ fi(2) * —¢(z,w)}} = —inf{ inf {fi(2) * —¥(z,w)}} =

= sup{— inf { fi(x) * —(z,w)}} = sup sup {~(fi(x) * (2, w))} =

iel icl zeX
= sup sup{—(—¢(z, w) * fi(x))} = sup{e)(w, w)¥f;(x)} = sup [ (w).
i€l xeX el el

b) For any f € EX, d € Rand w € W we have, by (4.6), (2.30), (2.17) and the
associativity of x,

(f * d)>(w) = sup {(z, w)F(f(x) * d)} = sup {—{—v(w,w) * (f(x) xd)}} =

reX rzeX
= sup{—((—=v(z,w) x f(z)) * d)} = sup{ (Y (2, w)*f(z))*d} =
zeX reX

= fA(w)xd = (f2%d)(w).

O

Remark 4.10. One can also prove that A of (4.6) is a duality whenever v satisfies
(4.13) (even if * is not commutative or does not satisfy condition («)).
Proposition 4.11. Under the assumptions of theorem 4.9 a), we have
A . —X
S (w) = min  d (feR ,weW). (4.14)

deR
—dxp—p(-,w)<f

Proof. By (4.6) and (2.24), for any f € R and w € W we have

fAw)= min d= min d= min  d.
deR der deR
FA(w)<d P(w)*xf<d —dx—(,w)<f
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Remark 4.12. For * = + and, respectively, x = V, proposition 4.11 yields [14],
proposition 3.1 and, respectively, [7], corollary 2.2.

Definition 4.13. We shall say that a binary operation * on R satisfies condition (r),
if * is commutative, associative and admits a neutral element e.

From theorems 4.7 and 4.9, we obtain

Theorem 4.14. Let X and W be two sets and let * be a binary operation on R,
satisfying conditions () and (r). For a mapping A: R = FW, the following statements
are equivalent:

1°. A is a *-duality.

2°. There exists a coupling function 1: X x W — R, such that we have (4.6).

Moreover, in this case ¥ of 2° is unique, namely, it is the function (4.5).

Remark 4.15. a) One can prove that the equivalence 1° < 2° also holds for an

associative binary operation * on R satisfying (2.2) and having a neutral element (instead
of satisfying conditions («) and (r)). Under these assumptions, if A is a *-duality, then
¥ of (4.5) is the unique coupling function satisfying (4.13) and such that we have (4.6).

b) By theorem 4.14 and a) above, for x satisfying conditions («) and (r) (or alternatively,
being associative, satisfying (2.2) and having a neutral element), we have a one-to-one

correspondence between *-dualities A: EX — EW and coupling functions 1: X x W — R.
We shall call A = A(x,1)) of (4.6) (respectively, 1) = 1)  of (4.5)) the x-duality associated
to the coupling function b (respectively, the coupling function associated to the x-duality
A).

c¢) In particular, for x = + and, respectively, * = V (which satisfy conditions («) and
(r)), from theorem 4.14 we obtain again the results of [14] and [7] on the relations be-
tween conjugations, respectively, V-dualities; and coupling functions ([14], example 2.1
and theorem 3.1 and, respectively, [7], example 2.1 and theorem 2.1).

d) By (4.7), one can replace (4.4) of lemma 4.6 by

= inf 2 xd}, 4.15
f (%d)eEpif{X{} } (4.15)

where Epif = {(z,d) € X x R | f(z) < d}, the epigraph of f. Then, by the above
arguments, using (4.15) and (1.1) with I = Epif (which is 0 for f = +00), we obtain, for

any *-duality A and any f € EX,
fA= sup {(X{x})A¥d} = sup {Ya(z,w)*d}. (4.16)
(z,d)€Epif (z,d)€Epif
Let us consider now the dual mappings A’ (defined by (1.10)).

Theorem 4.16. Let X and W be two sets, x a commutative binary operation on R,

satisfying condition (o), ¥: X x W — R a coupling function, and A:EX — FW the
mapping defined by (4.6). Then

g sgyv{—g(w) %, —(z, w)} (geR,zeX). (4.17)
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Proof. By (1.10), (4.6) and (2.24), we have

A . . . =W
g~ = inf h= inf h= inf h geER ), 4.18
hASg ¢(7);h§9 _g*l_d)('a')gh ( ) ( )
whence
A =W
g~ = sup {—g* —¥(-,w)} (geR"). (4.19)
weWw

On the other hand, for any g € ﬁw, the function h, defined by

hg@) = sup {—g(ﬂ?) *] —¢(x>w)} (LU € X)v
weW
belongs to the set {h € B | —g*; —(-,-) < h}, whence, by (4.18), we obtain gd < hg,
which, together with (4.19), yields (4.17). O
Under the assumptions of theorem 4.16, A of (4.6) is a duality (by theorem 4.9), and

hence so is A’ of (4.17); however, we do not know whether A is a *-duality. In the next
result we obtain the same conclusion (4.17), with different assumptions on * and A.

Theorem 4.17. Let X and W be two sets, * a binary operation on R satisfying condition

(o) and admitting a left neutral element e, A: EX — EW a *-duality and : X x W — R
the coupling function (4.5). Then we have (4.17) (and, by theorem 4.7, we have also

(4.6)).

Proof. By part of [6], theorem 3.5, for any duality A: RX =R we have

gA/(:c) = sup Gar(w,z, g(w)) (g € EW,:U € X), (4.20)
weW
where
Gar(w,z,b) =  min a (weW,r € X,beR), (4.21)

a€R
G (z,w,a)<b

with Ga of (4.9), (4.10). But, since now * satisfies (2.2) and admits a left neutral element
e, and since A is a *-duality, we have (4.12) (see remark 4.8). Thus, by (4.21), (4.12),
(2.24) and (4.5), we obtain

Gar(w,z,b) = —bx —)(x,w) (we W,z € X,beR), (4.22)
which, together with (4.20), yields (4.17). O

Theorem 4.18. Let X and W be two sets, * a commutative binary operation on R, and

—=X - . . . . . . -
AR — RW a duality for which there exist a unique coupling function Ya . X xW — R
such that
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FA(w) = up {Ua (@, w)Ef(2)} (fe R wew), (4.23)

and a coupling function 1: X x W — R such that A':EW — EX satifies (4.17). Then 9
of (4.17) is unique, namely, we have

UV =YAu (4.24)

Proof. By A = (A’), (1.10) (applied to A’ instead of A), (4.17) and (2.24), we have

QGEW gGEW
g <f supye x {¥(2,)%f () <g
— =X
— sup {1 (w, w)Ff(2)} (RS cew)
reX
which by our assumption of uniqueness of ¥a . in (4.23), implies (4.24). O

From theorems 4.7, 4.16 and 4.18 we obtain

Theorem 4.19. Let X and W be two sets and let x be a commutative binary operation
on R, satisfying condition (o) and admitting a neutral element e. Then, for each *-duality

—=X - . . . . =Y
AR — RW there exists a unique coupling function »: X x W — R such that we have

9% () = sup {~g(w) 51 (0]} (9e R e X),
namely
¢($7w) = (X{x})A(w) (I cX,we W)

Remark 4.20. a) By theorem 4.7, the above ¢ coincides with the unique coupling
function for which we have

FA(w) = sup {u (e, w)Ef ()} (feR ,weW).

b) In particular, for * = + and * = V, from theorem 4.19 we obtain again the results of
[14] and [7] on the representation of conjugations, V-dualities and their duals, with the
aid of coupling functions.

Let us consider now, for a *-duality A:EX — EW, the “second dual” (called also the
A/A-hull) fAA" = (FAA" ¢ R of a function fe I

Theorem 4.21. Under the assumptions of theorem 4.19, for any *-duality A:EX —

=W
R we have
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FAY (@) = sup {—f2(w) % —v(z,w)} =

weW
— 4.25
= sup min b (feRX,:cEX), (4.25)
weW beR

P(z,w)Fb< fA (w)

with : X x W — R of (4.5).

Proof. The first equality follows from (4.17) applied to g = f A Furthermore, by (2.6),
the commutativity of x and (2.17), for any f € EX, r € X and w € W we have

— B (w) % —(z,w) =min{b € R | —f2(w) < b —(x,w) = —th(z, w) * b} =
—wmin{b € B | fA(w) > —(—(e,w) * ) = (x, w)Fb},

which yields the second equality in (4.25). O

Theorem 4.22. Under the assumptions of theorem 4.17, for any *-duality A: EX —

—W
R we have

@) = sup {be —y(zw)) (feR",z€X), (4.26)
weW,beR
bxp—p(-,w)<f

with : X x W — R of (4.5).
. —=X N4
Proof. By [6], theorem 3.6, for any duality A: R© — R~ we have

Y@ = sup Garlw,,b) (feR",zeX), (4.27)
weW,beR
GAI(wa‘ab)Sf

with Gas of (4.21), where G a is that of (4.9), (4.10). But, by the above proof of theorem
4.17, we have now (4.22), which, together with (4.27), yields (4.26). O

Remark 4.23. a) Theorem 4.22 shows that, under the assumptions of theorem 4.19,

for any *-duality A: RX — FW the A’A-hull of f coincides with the “®-convex hull” of
f, in the sense of [3], where

O = {b*x —Y(-,w) | weW,be R}, (4.28)

. . X =W . .
or, in other words, that for any *-duality A: R© — R, the “elementary functions”, in a

sense similar to that of [11], are the functions vy, = b ¥ —¢(-w) € B (we W,b € R).

b) In particular, for * = 4+ and * = V, from theorems 4.21 and 4.22 we obtain again the
main results of [14] and [7] on the representation of second conjugates and second V-duals
of f, with the aid of coupling functions.
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Let us observe now that the above results can be “dualized” as follows: Let X and W
. . - . . .. =X N4
be two sets, * a binary operation on R, satisfying condition (a), and A:R~ — R a
— . .- - X . — .
x-duality. Then *; satisfies condition («) and A': R “R'isa *;-duality (by theorems
2.17 and 3.7 a)). Hence, replacing the assumptions of the above results by the same
assumptions on %; and using (2.20), (2.28), we obtain representations of A" and A = (A’

with the aid of the coupling function 1/": W x X — R defined by

!/

@Z)’(w,x) = (X{w})A (l‘) (w ceWze X)v (429)

or, equivalently, with the aid of the coupling function ¥ X x W — R defined by

Y(a,w) =¥ (w,z) = (x(uy) ™ () (z€ X, weW). (4.30)
For example, dualizing in this way theorem 4.7, we arrive at

Theorem 4.24. Let X and W be two sets and let * be a binary operation on R,

satisfying condition («) and such that ¥; admits a left neutral element e, A: EX — FW a
*-duality, and ¥: X x W — R the coupling function (4.30). Then we have

g™ (z) = sup {y(z,) 1 g(w)} (geR" xeX) (4.31)

Moreover, if %] is also commutative, then 1 of (4.30) is the only coupling function for
which we have (4.31).

Similarly, dualizing theorem 4.19 and using theorem 2.17, we arrive at

Theorem 4.25. Let X and W be two sets and let x be a binary operation on R, satisfying
condition () and such that ¥; is commutative and admits a neutral element e. Then for

each x-duality A:FX — FW there exists a unique coupling function . X x W — R,
namely, ¥ of (4.30), such that

FA(w) = sup{=f(e)F v (z,w)) (FeER wew) (4.32)

Moreover, the same 1 is the unique coupling function for which we have (4.31).

Remark 4.26. In particular, let *x = L —. Then * satisfies condition («) (by remark
2.8d)) and %, = V (see example 2.19), so %; satisfies the assumptions of theorem 4.25.
Also, ¥ = T and #; = A— (see example 2.19). Hence, for x = L — from theorem 4.25,
combined with remark 3.5, we obtain again the results of [7] on the representation of
1 -dualities and their duals, with the aid of coupling functions. However, note that in [7]
we have also obtained another expression for the coupling function v of (4.30) (see [7],
formula (3.9)), by exploiting the special properties of 1 and T, and this has also implied
another expression for the coupling function ) occurring in theorem 4.7, i.e., for ¢ of (4.5)
(see [7], formula (4.10)).

Proposition 4.27.  Under the assumptions of theorem 4.25, we have (4.14).
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Proof. By (4.32) and (2.23), for any f € R and w € W we have

fAw)= min d= min d= min  d.
deR deR deRr
FA(w)<d —f¥=1(-,w)<d —dx =, w)<f

O

Remark 4.28. For x = 1 — we have x; = A— (see example 2.19), so proposition 4.27,
combined with remark 3.5, yields again [7], corollary 3.1.

Finally, let us consider the second duals f AA'

Theorem 4.29. Under the assumptions of theorem 4.25, for any *-duality A: EX —

=W
R we have

A2 @) = sup {(z,w) % fAw)} = sup  min b (feR",zeX),
weWw weWw beR
—bx—1(z,w) < fA(w)

(4.33)
with : X x W — R of (4.30).

Proof. The first equality follows from (4.31) applied to g = f A Furthermore, by propo-
sition 2.15 ¢) (applied to %), *; = ¥ is anti-commutative. Hence, by (2.6) and (2.19),

U(z,w) % fA(w) = —fA(w) x; —p(z,w) = min{b € R | —fA(w) <bx—¢(z,w)} =
=min{b € R | —f>(w) < —(=b% — ¢p(z,w))} = min{b € R | f2(w) > —b% — (x,w)},

which yields the second equality in (4.33). O

Theorem 4.30. Under the assumptions of theorem 4.25, for any *-duality A: EX —

—W
R we have

Y@ = sup (e, w) + b (fe R, wew), (4.34)

weW,beR
(- w)xb< f

with : X x W — R of (4.30).

Proof. Since A’ is a ¥-duality (by theorem 3.7 a)), we have, by (4.12) (applied to A’
and %), (2.20) (for %;) and (4.30),

GA/(U),I‘, b) = (X{w})A/("L‘) 1 b = Q,U(ZL‘,U)) *1 b (w eWzreX,be E)a (435)

which, together with (4.27), yields (4.34). O
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Remark 4.31. a) One can make an observation similar to remark 3.5, with ® of (4.28)
replaced by

d = {Y(-,w)xb|lweW,bec R}, (4.36)

and with the “elementary functions” v, = ¥(-,w) *; b (weW,beR).

b) In particular, for x = L— we have *; = A— (see example 2.19), and thus theorems
4.29 and 4.30, combined with remark 3.5, yield again the main results of [7] on the
representation of second 1-duals of f, with the aid of coupling functions.

5. Appendix: A unifying framework for the above results and those of [8]

Let us first recall some concepts from [§].

Let A = (A, <,%) be a complete totally ordered group, i.e. (see e.g. [1], Ch. 14) a set
endowed with a total order < such that (A, <) is a conditionally complete lattice (that is,
every non-empty order-bounded subset of A admits a supremum and an infimum in A) and
with a binary operation  for which (A, %) is a group, such that all group translations are
isotone; then, by a result of Iwasawa (see e.g. [1], Ch. 14, theorem 20), * is commutative.
In the paper [8], assuming that A is not a singleton, we have adjoined to it a greatest
element 400 and a least element —oo, i.e., we have considered the set

A= AU {400} U{—00}, (5.1)
with the order < extended to A by

—o0 < a < 400 (a € A), (5.2)

and we have extended the binary operation x on A to two different binary operations s
and * on A (called upper and lower composition, respectively), by the rules

axb =axb=axb (a,be A), (5.3)
+ooka = ak + 0o = +00 (a € A), (5.4)
—00%a = a% — 00 = —00 (a € AU{—00}), (5.5)
+oo%a = a*x + 00 = +00 (a € AU{+00}), (5.6)
—00%a = A% — 00 = —00 (a € A). (5.7)

Then, A = (A, <,%,%) has been called (in [8]) the canonical enlargement of (A, <, *).

Furthermore, a mapping M: A% = A" has been called ([8], definition 2.3) a *-duality, if
for any index set I we have

(inf f;)™ = sup £ ({fikier €AY), (5.8)

el
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(Fra)M = fMya™! (feA" ae), (5.9)

where inf, % (in ZX) and sup, * (in ZW) are defined pointwise, each a € A is identified
with the constant function f,(z) = a (z € X), and if @ € A, then a~! denotes the
inverse of a in the Abelian group (A4, x), while the “inverses” of a € A\ A are defined by

(+00)~t = —o0, (—00)~! = +o0. In particular, clearly for A = R, with the usual total
order < on R and with * = 4, the usual addition on R, % and % are nothing else than

the upper and lower additions (1.4), (1.5) on R and the *-dualities are the conjugations
(1.1), (1.3).

Now we can give the following unifying framework for the results of the present paper
and those of [8].

Definition 5.1. Let (A, <) be a complete chain (i.e., a complete lattice, where < is
a total order on A), and let s: (A, <) — (A, <) be a bijective duality (i.e., a bijective
mapping s: A — A such that s(inf;e;a;) = sup;es s(a;) for every index set I and every
family {a;}ic; € A). Given a binary operation * on A, we define a new binary operation
%% on A, called the s-conjugate of *, by

ax®c=s(sa)*c) (a,c € A). (5.10)

Remark 5.2. a) If A = R, endowed with the usual total order < and if s: (R, <) —
(R, <) is the mapping defined by
s(a) = —a (a € R), (5.11)

then s is a bijective duality and, by (5.10) and (2.17), for any binary operation * on R
we have

ax®c=—(—axc)=a%c (a,c € R). (5.12)

b) If A = (A, <,%,%) is the canonical enlargement of a complete totally ordered group
A= (A, <, ), and if s: (A, <) — (4, <) is the mapping defined by

s(a) =at (a € A), (5.13)

then s is a bijective duality (by [8], lemma 1.1) and, by (5.10) with * being now the binary
operation # of (A, <, %, ) and [8], lemma 1.3, we have

ai®c = (a™!

fc) Tt = axc! (a,c € A). (5.14)

Definition 5.3. Let (A, <), s and * be as in definition 5.1. A mapping Ny Ny
is called a (x, s)-duality, if it is a duality (in the sense (1.1), with R replaced by A) and if

(f*xa)® = f2%%a (fGZX,aEZ), (5.15)
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where each a € A is identified with the constant function f,(z) = a (v € X) and where

* (in ZX) and ** (in XW) are defined pointwise on A.

Remark 5.4. a) If (4, <), s and * are as in remark 5.2a), then, by (5.15) and (5.12),

A:EX — EW is a (*, s)-duality if and only if it is a *-duality in the sense of definition
3.1.

b) If (A, <), s and * are as in remark 5.2b), then, by (5.15) and (5.14), AAY A s
a (%, s)-duality if and only if it is a *-duality in the sense of [8] (i.e., in the sense of (5.8),
(5.9) above, with M = A).

By remarks 5.2a) and 5.4a) and by our assumptions on (A, <) and s, some of the results
of the present paper can be extended to results on (x, s)-dualities, which, by remarks 5.2b)
and 5.4b), encompass, as particular cases, also the results of [8] on *-dualities (in the sense

of [8]); indeed, note that if A = (A, <, %, %) is the canonical enlargement of a complete
totally ordered group A = (A, <,x), then, by [8], lemma 1.4, the binary operation * on

A satisfies condition («) (i.e., (2.1) with * replaced by % and with inf taken in A), so the

“extended” proposition 2.6 and definition 2.7 (of *;) can be applied to (A, <) and * of
remark 5.2b).

Addendum. Given a binary operation * on R which satisfies condition (), formula
(2.4) of remark 2.2b) means that, for each ¢ € R, the mapping k.: R — R defined by
(2.3) is a duality between (R, <) and (R, >). Note also that, by (1.10) and (2.7), for each

¢ € R, the dual of this duality k. is the mapping j. defined by (2.9). Therefore, some
relations between the operations % and *; can be deduced from the theory of dualities (or,
equivalently [21], of Galois connections) between complete lattices (see also Blyth and
Janowitz [18], Baccelli, Cohen, Olsder and Quadrat [17]). For some earlier applications
of lattice theory to generalized conjugation theory, see e.g. Dolecki [19], Volle [22], Penot
and Volle [20].
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