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1. Introduction

It is well known that for studying local behavior of nonsmooth functions one can suc-
cessfully use an appropriate concept of subdifferential (set of subgradients) which replaces
the classical gradient at points of nondifferentiability in the usual two-sided sense. Such
a concept first appeared for convex functions in the context of convex analysis that has
had many significant applications to the range of problems in optimization, economics,
mechanics, etc. One of the most important branches of convex analysis is subdifferen-
tial calculus for convex extended-real-valued functions that was developed in the 1960’s,
mainly by Moreau and Rockafellar; see [23] and [25, 27] for expositions and references.
The first concept of subdifferential for general nonconvex functions was introduced by
Clarke (1973) who performed pioneering work in the area of nonsmooth analysis spread
far beyond the scope of convexity. In particular, Clarke developed a comprehensive sub-
differential calculus for his generalized gradients of locally Lipschitzian functions defined
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on Banach spaces; see [2] and references therein. In [26, 28], Rockafellar established and
sharpened a number of calculus rules for Clarke’s generalized gradients of nonconvex lower
semicontinuous (l.s.c.) functions that are not necessarily locally Lipschitzian.

In this paper we study another subdifferential concept for extended-real-valued functions
on Banach spaces that appeared in Kruger-Mordukhovich [10, 11] as a generalization
of Mordukhovich’s finite dimensional construction in [16, 17].This subdifferential corre-
sponds to the collection of sequential limiting points of the so-called Fréchet ε-subgradients
under small perturbations. In contrast to Clarke’s subdifferential, such a set of limiting
subgradients usually turns out to be nonconvex (may be even not closed) that makes its
analysis more complicated. Nevertheless, a number of principal calculus rules and appli-
cations have been established for this nonconvex subdifferential and related constructions
in finite and infinite dimensions under some geometric assumptions on the structure of
(infinite dimensional) Banach spaces. We refer the reader to [3, 4, 7, 9, 13–22, 29, 30] for
more details and further information.

To the best of our knowledge, the most general calculus results are obtained in the recent
paper [22] for the case of l.s.c. functions defined on Asplund spaces. This class of Banach
spaces (see [24]) includes, in particular, every space with a Fréchet differentiable renorm
(hence every reflexive space) and appears to be convenient for many applications. On the

other hand, some standard Banach spaces (like C, L1, L∞) are not Asplund that reduces
the range of possible applications of the subdifferential theory in [22], e.g., in optimal
control.

This paper is concerned with developing subdifferential calculus for the limiting noncon-
vex constructions in arbitrary Banach spaces. In this general framework one cannot hope
to obtain full calculus for such sequential constructions based on Fréchet subgradients;
our limiting subdifferential may be even empty for certain locally Lipschitzian functions
outside of Asplund spaces. Nevertheless, we are able to prove a number of useful calculus
results in general Banach spaces including sum rules, chain rules, product and quotient
rules, subdifferentiation of marginal functions, etc. Most (but not all) of these results
involve assumptions about strict differentiability of some components in compositions.
Moreover, we establish parallel calculus rules for the basic subdifferential and its singular
counterpart important for characterizing non-Lipschitzian functions. Note that the prin-
cipal calculus results obtained in this paper are expressed in the form of equalities (not
just inclusions) without subdifferential regularity assumptions on all the components.

Let us emphasize that in proving the main results we essentially use the original repre-
sentations of the basic and singular subdifferentials in terms of sequential limits of the
ε-Fréchet (not exact Fréchet) counterparts. For the case of Asplund spaces we can always
take ε = 0 in these representations (see [22]), but in the general Banach space setting one
cannot dismiss ε > 0 from the original limiting constructions without loss of the principal
calculus rules.

We also mention another line of infinite dimensional generalizations of nonconvex sub-
differential constructions in [16, 17] that was developed by Ioffe under the name of “ap-
proximate subdifferentials”; see [5] and references therein. Those constructions, based
on topological limits of the so-called Dini subdifferentials and ε-subdifferentials, are more
complicated and may be broader than our basic sequential constructions even for locally
Lipschitzian functions on Banach spaces with Fréchet differentiable renorms; see [22] for
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details and discussions. On the other hand, the best of such topological constructions,
called the G-subdifferential, enjoy full calculus in general Banach spaces. We refer the
reader to [5] and the recent paper of Jourani-Thibault [8] for more information.

The rest of the paper is organized as follows. Section 2 deals with definitions and prelimi-
nary material. In Section 3 we prove sum rules for the basic and singular subdifferentials.
Section 4 contains the main results of the paper about subdifferentiation of marginal
functions and chain rules for compositions of functions and mappings. In Section 5 we
provide some other calculus formulas for subdifferentials of products, quotients, and min-
imum functions as well as a nonsmooth version of the mean value theorem.

Throughout the paper we use standard notation except special symbols introduced when
they are defined. All spaces considered are Banach whose norms are always denoted by
‖·‖. For any space X we consider its dual space X∗ equipped with the weak-star topology.
Recall that cl Ω means the closure of a nonempty set Ω ⊂ X while notation cl∗ is used for
the weak-star topological closure in X∗. The adjoint (dual) operator to a linear continuous
operator A is denoted by A∗.

In contrast to the case of single-valued mappings Φ : X → Y , the symbol Φ : X ⇒ Y
stands for a multifunction from X into Y with graph

gph Φ := {(x, y) ∈ X × Y | y ∈ Φ(x)}.

In this paper we often consider multifunctions Φ from X into the dual space X∗. For
such objects the expression

lim sup
x→x̄

Φ(x)

always means the sequential Kuratowski-Painlevé upper limit with respect to the norm
topology in X and the weak-star topology in X∗, i.e.,

lim sup
x→x̄

Φ(x) := {x∗ ∈ X∗| ∃ sequences xk → x̄ and x∗k
w∗→ x∗

with x∗k ∈ Φ(xk) for all k = 1, 2, . . .}.

If ϕ :→ ĪR := [−∞,∞] is an extended-real-valued function then, as usual,

dom ϕ := {x ∈ X with |ϕ(x)| <∞}, epi ϕ := {(x, µ) ∈ X × IR| µ ≥ ϕ(x)}.

In this case lim supϕ(x) and lim inf ϕ(x) denote the upper and lower limits of such (scalar)

functions in the classical sense. Depending on context, the symbols x
ϕ→ x̄ and x

Ω→ x̄
mean, respectively, that x→ x̄ with ϕ(x)→ ϕ(x̄) and x→ x̄ with x ∈ Ω.
Throughout the paper we use the convention that a + ∅ = ∅ + b = ∅ for any elements a
and b.

2. Basic definitions and properties

This section is devoted to presenting preliminary material on the basic generalized dif-
ferentiability concepts studied in the paper. Let us start with the definitions of normal
elements to arbitrary sets in Banach spaces as appeared in Kruger-Mordukhovich [10, 11].
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Definition 2.1. Let Ω be a nonempty subset of the Banach space X and let ε ≥ 0.
(i) Given x ∈ cl Ω, the nonempty set

N̂ε(x; Ω) := {x∗ ∈ X∗| lim sup

u
Ω→x

〈x∗, u− x〉
‖u− x‖ ≤ ε} (2.1)

is called the set of (Fréchet) ε-normals to Ω at x. When ε = 0 the set (2.1) is a cone
which is called the prenormal cone or Fréchet normal cone to Ω at x and is denoted

by N̂(x; Ω). If x /∈ cl Ω we set N̂ε(x; Ω) = ∅ for all ε ≥ 0.
(ii) Let x̄ ∈ cl Ω. The nonempty cone

N(x̄; Ω) := lim sup
x→x̄, ε↓0

N̂ε(x; Ω) (2.2)

is called the normal cone to Ω at x̄. We set N(x̄; Ω) = ∅ for x̄ /∈ cl Ω.

Note that in the finite dimensional case X = IRn the normal cone (2.2) coincides with the
one in Mordukhovich [16]:

N(x̄; Ω) = lim sup
x→x̄

[cone(x− Π(x,Ω))]

where “cone” stands for the conic hull of a set and Π(x,Ω) means the Euclidean projection
of x on the closure of Ω.
One can observe that the sets (2.1) are convex for any ε ≥ 0 while the normal cone
(2.2) is nonconvex even in simple finite dimensional situations (e.g., for Ω = gph |x| at

x̄ = 0 ∈ IR2). Moreover, if the space X is infinite dimensional, the weak-star topology in
X∗ is not necessarily sequential and the sequential upper limit in (2.2) does not ensure
either the weak-star closedness or the weak-star sequential closedness of the normal cone.
Nevertheless, this limiting construction possesses a broader spectrum of useful properties
in comparison with the prenormal (Fréchet) cone and its ε-perturbations; see [1, 3, 4, 6,
9–11, 13–22, 29–31] for more details and related material.
If Ω is convex then

N̂ε(x̄; Ω) = {x∗ ∈ X∗| 〈x∗, ω − x̄〉 ≤ ε‖ω − x̄‖ for any ω ∈ Ω} ∀ε ≥ 0

and both normal and prenormal cones at x̄ ∈ cl Ω coincide with the normal cone in the
sense of convex analysis [25].
Now we define the basic subdifferential constructions in this paper geometrically using
the normal cone (2.2).

Definition 2.2. Let ϕ : X → ĪR := [−∞,∞] be an extended-real-valued function and
x̄ ∈ dom ϕ. The sets

∂ϕ(x̄) := {x∗ ∈ X∗| (x∗,−1) ∈ N((x̄, ϕ(x̄)); epi ϕ)}, (2.3)

∂∞ϕ(x̄) := {x∗ ∈ X∗| (x∗, 0) ∈ N((x̄, ϕ(x̄)); epi ϕ)} (2.4)

are called, respectively, the subdifferential and the singular subdifferential of ϕ at x̄. We
let ∂ϕ(x̄) = ∂∞ϕ(x̄) = ∅ if x̄ /∈ domϕ.
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The subdifferential (2.3) generalizes the concept of strict derivative to the case of nons-
mooth functions and is reduced to the subdifferential of convex analysis if ϕ is convex.

For any function ϕ : X → ĪR on Banach space X the subdifferential (2.3) may be smaller
(never bigger) than Clarke’s generalized gradient ∂Cϕ(x̄) [2]. This was proved in Kruger
[9] by using the representation of ∂Cϕ(x̄) in terms of Rockafellar’s subderivative [26].
Furthermore, it follows from [9, Theorem 1] that for functions ϕ l.s.c. around x̄ ∈ dom ϕ
the subdifferential (2.3) can be represented in the analytic form

∂ϕ(x̄) = lim sup
x
ϕ→x̄, ε↓0

∂̂εϕ(x) (2.5)

based on the ε-subdifferential constructions

∂̂εϕ(x) := {x∗ ∈ X∗| lim inf
u→x

ϕ(u)− ϕ(x)− 〈x∗, u− x〉
‖u− x‖ ≥ −ε}, ε ≥ 0. (2.6)

When ε = 0 the set (2.6) is called the presubdifferential or Fréchet subdifferential of ϕ at

x and is denoted by ∂̂ϕ(x).
One can easily check that the normal cone (2.2) to any set Ω ⊂ X at x̄ ∈ Ω is expressed
in the subdifferential forms

N(x̄; Ω) = ∂δ(x̄,Ω) = ∂∞δ(x̄,Ω) (2.7)

where δ(·,Ω) is the indicator function of Ω, i.e., δ(x,Ω) = 0 if x ∈ Ω and δ(x,Ω) = ∞ if
x /∈ Ω.
In this paper we also use the following derivative-like concept for multifunctions related
to the normal cone (2.2).

Definition 2.3. Let Φ : X ⇒ Y be a multifunction between Banach spaces X and Y ,
and let (x̄, ȳ) ∈ cl gph Φ. The multifunction D∗Φ(x̄, ȳ) from Y ∗ into X∗ defined by

D∗Φ(x̄, ȳ)(y∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ N((x̄, ȳ); gph Φ)} (2.8)

is called the coderivative of Φ at (x̄, ȳ). The symbol D∗Φ(x̄)(y∗) is used in (2.8) when Φ
is single-valued at x̄ and ȳ = Φ(x̄). We let D∗Φ(x̄, ȳ)(y∗) = ∅ if (x̄, ȳ) /∈ cl gph Φ.

The coderivative (2.8) turns out to be a generalization of the classical strict differentiability
concept to the case of nonsmooth mappings and multifunctions. Recall that a mapping
Φ : X → Y single-valued around x̄ is called strictly differentiable at x̄ with the derivative
Φ′(x̄) if

lim
x→x̄,u→x̄

Φ(x)− Φ(u)− Φ′(x̄)(x− u)

‖x− u‖ = 0. (2.9)

It is well known that any mapping Φ continuously Fréchet differentiable around x̄ is
strictly differentiable at x̄ but not vice versa. Based on the definitions, one can derive
that

D∗Φ(x̄)(y∗) = (Φ′(x̄))∗y∗ ∀y∗ ∈ Y ∗

if Φ is strictly differentiable at x̄. Therefore, the coderivative (2.8) is consistent with the
adjoint linear operator to the classical strict derivative.
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3. Sum rules

In this section we obtain important calculus results for nonconvex subdifferentials in
Section 2 related to representation of subgradients for sums of functions.

Theorem 3.1.
(i) Let ϕ : X → IR be strictly differentiable at x̄ and let ψ : X → ĪR be l.s.c. around this

point. Then one has

∂(ϕ + ψ)(x̄) = ϕ′(x̄) + ∂ψ(x̄). (3.1)

(ii) Let ϕ : X → IR be Lipschitz continuous around x̄ and let ψ : X → ĪR be l.s.c. around
this point. Then

∂∞(ϕ+ ψ)(x̄) = ∂∞ψ(x̄). (3.2)

In particular, one has ∂∞ϕ(x̄) = {0} for any locally Lipschitzian function.

Proof. Let us establish (i). First we verify that

∂(ϕ + ψ)(x̄) ⊂ ϕ′(x̄) + ∂ψ(x̄) (3.3)

for x̄ ∈ dom ψ. By definition (2.9) of the strict derivative, for any sequence γν ↓ 0 there
exists a sequence δν ↓ 0 such that

|ϕ(z)− ϕ(x)− 〈ϕ′(x̄), z − x〉| ≤ γν‖x− z‖ ∀x, z ∈ Bδν (x̄), ν = 1, 2, . . . . (3.4)

Now let us consider x∗ ∈ ∂(ϕ + ψ)(x̄). Using representation (2.5), we find sequences

xk → x̄, (ϕ+ ψ)(xk)→ (ϕ+ ψ)(x̄), x∗k
w∗→ x∗, and εk ↓ 0 as k →∞ such that

x∗k ∈ ∂̂εk(ϕ+ ψ)(xk) ∀k = 1, 2, . . . . (3.5)

Due to xk → x̄ as k → ∞ one can choose a sequence k1 < k2 < . . . < kν < . . . of
positive integers satisfying ‖xkν − x̄‖ ≤ δν/2 for all ν = 1, 2, . . .. By virtue of (3.5) we

pick 0 < ην ≤ δν/2 such that

ψ(x)− ψ(xkν ) + ϕ(x)− ϕ(xkν )− 〈x∗kν , x− xkν 〉 ≥ −2εkν‖x− xkν‖
∀x ∈ Bην (xkν ), ν = 1, 2, . . . .

(3.6)

Observe that x ∈ Bδν (x̄) whenever x ∈ Bην (xkν ) for all ν = 1, 2, . . . It follows from (3.4)

and (3.6) that

ψ(x)− ψ(xkν )− 〈x∗kν − ϕ′(x̄), x− xkν 〉 ≥ −(2εkν + γν)‖x− xkν‖
∀x ∈ Bην (xkν ), ν = 1, 2, . . . .

This implies that

x∗kν − ϕ′(x̄) ∈ ∂̂ε̄νψ(xkν ) with ε̄ν := 2εkν + γν , ν = 1, 2, . . . . (3.7)

Taking into account that ψ(xkν ) → ψ(x̄) as ν → ∞, we derive from (2.5) and (3.7) that

x∗−ϕ′(x̄) ∈ ∂ψ(x̄) and, therefore, get (3.3). Then applying (3.3) to the sum of functions
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(ψ + ϕ) + (−ϕ), one arrives at the inclusion opposite to (3.3) that establishes equality
(3.1) for the case of x̄ ∈ dom ψ. The case of x̄ /∈ dom ψ is trivial. This ends the proof of
assertion (i).

To prove (ii) we just check the inclusion

∂∞(ϕ+ ψ)(x̄) ⊂ ∂∞ψ(x̄) (3.8)

under the assumptions made. This implies equality (3.2) similarly to (i).
Let us establish (3.8) for x̄ ∈ dom ψ. To furnish this we consider x∗ ∈ ∂∞(ϕ+ ψ)(x̄) and

use definition (2.4). In this way one can find sequences x∗k
w∗→ x∗, αk → 0, xk → x̄, rk →

(ϕ+ ψ)(x̄), εk ↓ 0, and δk ↓ 0 such that rk ≥ ϕ(xk) + ψ(xk) and

〈x∗k, x− xk〉+ αk(r − rk) ≤ 2εk(‖x− xk‖+ |r − rk|) (3.9)

for all (x, r) ∈ epi(ϕ+ ψ) with x ∈ Bδk(xk) and |r − rk| ≤ δk, k = 1, 2, . . ..

Let l be a Lipschitz modulus of ϕ around x̄. We denote δ̄k := δk/2(l + 1) and r̄k :=
rk − ϕ(xk), k = 1, 2, . . .. It is easy to see that r̄k ≥ ψ(xk) for all k and r̄k → ψ(x̄)
as k → ∞. Observe that for any fixed k = 1, 2, . . . and any (x, r̄) ∈ epi ψ satisfying

x ∈ Bδ̄k(xk) and |r̄ − r̄k| ≤ δ̄k one has

(x, r̄ + ϕ(x)) ∈ epi(ϕ+ ψ) and |(r̄ + ϕ(x))− rk| ≤ δk.

By virtue of (3.9) we get

〈x∗k, x− xk〉+ αk(r̄ − r̄k) ≤ ε̄k(‖x− xk‖+ |r̄ − r̄k|) with ε̄k := 2εk(1 + l) + |αk|l

for any (x, r̄) ∈ epi ψ with x ∈ Bδ̄k(xk) and |r̄ − r̄k| ≤ δ̄k, k = 1, 2, . . .. This implies

(x∗k, αk) ∈ N̂ε̄k((xk, r̄k); epi ψ).

Now using definition (2.4), we conclude that x∗ ∈ ∂ψ(x̄) which proves (3.8) and, therefore,
equality (3.2). Letting ψ ≡ 0 in (3.2), one has ∂∞ϕ(x̄) = {0} for any function ϕ Lipschitz
continuous around x̄. This completes the proof of the theorem.

Remark 3.2. In [30], Thibault proved an analogue of assertion (ii) in Theorem 3.1
using another definition of singular subgradients

∂∞1 ϕ(x̄) := lim sup
x
ϕ→x̄; ε,λ↓0

λ∂̂εϕ(x). (3.10)

In the case of Asplund spaces X both constructions (2.4) and (3.10) are equivalent (see
[22, Theorem 2.9]) but in the general Banach space setting they may be different.

4. Subdifferentiation of marginal functions and chain rules

In this section we obtain the main results of the paper related to subdifferentiation of the
so-called marginal functions of the form

m(x) := inf{ϕ(x, y)| y ∈ Φ(x)} (4.1)
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where ϕ : X×Y → ĪR is an extended-real-valued function and Φ : X ⇒ Y is a multifunc-
tion between Banach spaces. This class includes value functions in parametric optimiza-
tion problems that play an important role in nonsmooth analysis, optimization theory,
and various applications. It is well known that marginal functions (4.1) are usually non-
smooth even for smooth ϕ and simple constant sets Φ. Therefore, to compute generalized
(in some sense) derivatives for (4.1) is a challenging issue which has many significant
applications to optimization, sensitivity analysis, etc. We refer the reader to [2, 3, 19,
22, 29, 30] for various results in this direction and further bibliographies. Our goal is to
provide formulas that express the subdifferential (2.3) and singular subdifferential (2.4)
of (4.1) in terms of differential constructions for ϕ and Φ in general Banach spaces.

Note that when Φ : X → Y happens to be a single-valued mapping the marginal function
(4.1) is just a composition of ϕ and Φ which we denote by

(ϕ ◦ Φ)(x) := ϕ(x,Φ(x)). (4.2)

In this case subdifferential formulas for (4.1) are related to chain rules for subdifferentia-
tion of compositions.

Let us consider the minimum set

M(x) := {y ∈ Φ(x)| ϕ(x, y) = m(x)} (4.3)

associated with (4.1). In the sequel we need the following lower semicompactness property
for the multifunction M : X ⇒ Y around the reference point x̄: there exists a neighbor-
hood U of x̄ such that for any x ∈ U and any sequence xk → x as k → ∞ there is a
sequence yk ∈ M(xk), k = 1, 2, . . ., which contains a subsequence convergent in the norm
topology of Y . Obviously, any multifunction lower semicontinuous around x̄ is lower semi-
compact around this point. It always happens, in particular, when Φ is single-valued and
continuous around x̄. If dim Y < ∞ the lower semicompactness property is inherent in
every multifunction whose values are nonempty and uniformly bounded near the reference
point.
First we present results on subdifferentiation of (4.1) for the case of general multifunctions
Φ between Banach spaces.

Theorem 4.1. Let Φ : X ⇒ Y have closed graph, let M in (4.3) be lower semicompact
around x̄ ∈ dom m, and let ϕ be l.s.c. on gph Φ and strictly differentiable at (x̄, ȳ) for
any ȳ ∈M(x̄). Then one has

∂m(x̄) ⊂
⋃

ȳ∈M(x̄)

[ϕ′x(x̄, ȳ) +D∗Φ(x̄, ȳ)(ϕ′y(x̄, ȳ))], (4.4)

∂∞m(x̄) ⊂
⋃

[D∗Φ(x̄, ȳ)(0)| ȳ ∈M(x̄)]. (4.5)

Proof. First we check that the marginal function (4.1) is l.s.c. around x̄ under the
assumptions made. Indeed, let U be a neighborhood of x̄ from the local semicompactness
condition for M . Taking any x ∈ U and sequence xk → x, we find a sequence yk ∈M(xk)
that contains a subsequence convergent to some point y ∈ Y with (x, y) ∈ gph Φ. Since
ϕ is l.s.c. on gph Φ one has

m(x) ≤ ϕ(x, y) ≤ lim inf
k→∞

ϕ(xk, yk) = lim inf
k→∞

m(xk)
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that ensures the lower semicontinuity of m(x) around x̄.

Now let us consider a function f : X × Y → ĪR defined by

f(x, y) := ϕ(x, y) + δ((x, y), gph Φ) (4.6)

and let us prove that

∂m(x̄) ⊂ {x∗ ∈ X∗| (x∗, 0) ∈ ∂f(x̄, ȳ), ȳ ∈M(x̄)}. (4.7)

Taking x∗ ∈ ∂m(x̄) and using representation (2.5), we find sequences xk → x̄, x∗k
w∗→ x∗,

and εk ↓ 0 such that m(xk) → m(x̄) as k → ∞ and x∗k ∈ ∂̂εkm(xk) for all k = 1, 2, . . ..

Therefore, there exists a sequence ρk ↓ 0 as k →∞ with

〈x∗k, x− xk〉 ≤ m(x)−m(xk) + 2εk‖x− xk‖ ∀x ∈ Bρk(xk), k = 1, 2 . . . .

By definitions (4.1) and (4.2) of m and M , for any yk ∈M(xk) one has

〈(x∗k, 0), (x, y)− (xk, yk)〉 ≤ f(x, y)− f(xk, yk) + 2εk(‖x− xk‖+ ‖y − yk‖)

for all (x, y) ∈ Bρk((xk, yk)), k = 1, 2, . . .. Due to (2.5) and (4.6) this yields

(x∗k, 0) ∈ ∂̂2εkf(xk, yk) ∀yk ∈M(xk), k = 1, 2 . . . . (4.8)

Now using the lower semicompactness of M around x̄, one can select a sequence yk ∈
M(xk) which contains a subsequence convergent to some point ȳ ∈ Φ(x̄). Since m(xk)→
m(x̄) one has ȳ ∈ M(x̄) and f(xk, yk)→ f(x̄, ȳ) as k →∞. By virtue of (4.8) and (2.5)
we conclude that (x∗, 0) ∈ ∂f(x̄, ȳ) and finish the proof of inclusion (4.7).
Next we note that the function f in (4.6) is represented as the sum of two functions
satisfying the assumptions of Theorem 3.1(i) at the point (x̄, ȳ) ∈ gph M . Employing the
sum rule (3.1) and taking into account the first equality in (2.7) as well as Definition 2.3
of the coderivative, one can easily arrive at inclusion (4.4).
It remains to verify (4.5). To furnish this we first prove that

∂∞m(x̄) ⊂ {x∗ ∈ X∗| (x∗, 0) ∈ ∂∞f(x̄, ȳ), ȳ ∈M(x̄)}. (4.9)

Picking any x∗ ∈ ∂∞m(x̄) and using definition (2.4), one gets sequences x∗k
w∗→ x∗, λk →

0, xk → x̄, rk → m(x̄), εk ↓ 0, and ρk ↓ 0 as k →∞ such that rk ≥ m(xk) and

〈x∗k, x− xk〉+ λk(r − rk) ≤ 2εk(‖x− xk‖+ |r − rk|) (4.10)

for all (x, r) ∈ epi m with x ∈ Bρk(xk) and |r − rk| ≤ ρk, k = 1, 2, . . .. Taking into

account representation (4.6) and choosing any yk ∈ M(xk), we note that rk ≥ f(xk, yk)
and (4.10) implies the estimate

〈(x∗k, 0), (x, y)− (xk, yk)〉+ λk(r − rk)
≤ 2εk(‖x− xk‖+ ‖y − yk‖+ |r − rk|)



220 B. S. Mordukhovich, Yongheng Shao / On nonconvex subdifferential calculus

for all ((x, y), r) ∈ epi f with (x, y) ∈ Bρk((xk, yk)) and |r − rk| ≤ ρk, k = 1, 2, . . .. This
yields

((x∗k, 0), λk) ∈ N̂2εk(((xk, yk), rk), epi f), k = 1, 2, . . . . (4.11)

Now using the lower semicompactness property of M around x̄, we select a sequence
yk ∈ M(xk) that contains a subsequence convergent to some point ȳ ∈ Φ(x̄). Since
rk → m(x̄), we conclude that ȳ ∈M(x̄) and rk → f(x̄, ȳ) as k →∞. Passing to the limit
in (4.11) as k →∞, one gets (x∗, 0) ∈ ∂∞f(x̄, ȳ) and arrives at the inclusion (4.9).
To obtain the final inclusion (4.5) from (4.9) we apply Theorem 3.1(ii) to the sum of
functions in (4.6) taking into account the second representation of the normal cone in
(2.7) and construction (2.8). This ends the proof of the theorem.

Now we consider the case when Φ is single-valued and locally Lipschitzian around x̄.
Then inclusion (4.5) is trivial but (4.4) carries some chain rule information about the
subdifferential (2.3) of composition (4.2). Let us provide more precise and convenient
chain rule in the form of equality using instead of the coderivative of Φ the subdifferential
of its Lagrange scalarization

〈y∗,Φ〉(x) := 〈y∗,Φ(x)〉 ∀y∗ ∈ Y ∗, x ∈ X.

It is proved in [22] that one always has

∂〈y∗,Φ〉(x̄) ⊂ D∗Φ(x̄)(y∗) ∀y∗ ∈ Y ∗

for any mapping Φ : X → Y between Banach spaces which is single-valued and continuous
around x̄.

Theorem 4.2. Let Φ : X → Y be single-valued and Lipschitz continuous around x̄ and
let ϕ : X × Y → IR be strictly differentiable at (x̄,Φ(x̄)). Then one has

∂(ϕ ◦ Φ)(x̄) = ϕ′x(x̄, ȳ) + ∂〈ϕ′y(x̄, ȳ),Φ〉(x̄) with ȳ = Φ(x̄). (4.12)

Proof. Due to the strict differentiability of ϕ at (x̄, ȳ) with ȳ = Φ(x̄), for any sequence
γν ↓ 0 there exists a sequence ρν ↓ 0 such that

|ϕ(u,Φ(u))− ϕ(x,Φ(x))− 〈ϕ′x(x̄, ȳ), u− x〉 − 〈ϕ′y(x̄, ȳ),Φ(u)− Φ(x)〉|
≤ γν(‖u− x‖+ ‖Φ(u)− Φ(x)‖) ∀x, u ∈ Bρν (x̄), ν = 1, 2, . . . .

(4.13)

Let us pick any x∗ ∈ ∂(ϕ◦Φ)(x̄). By virtue of (2.5) one gets sequences xk → x̄, x∗k
w∗→ x∗,

and εk ↓ 0 such that (ϕ ◦ Φ)(xk)→ (ϕ ◦ Φ)(x̄) and

x∗k ∈ ∂̂εk(ϕ ◦ Φ)(xk) ∀k = 1, 2, . . . . (4.14)

Since xk → x̄ as k →∞ we select a sequence k1 < k2 < . . . < kν < . . . of positive integers
satisfying ‖xkν − x̄‖ ≤ ρν/2 for all ν. By virtue of (4.14) one can choose 0 < ην ≤ ρν/2
such that

ϕ(x,Φ(x))− ϕ(xkν ,Φ(xkν ))− 〈x∗kν , x− xkν 〉
≥ −2εkν‖x− xkν‖ ∀x ∈ Bην (xkν ), ν = 1, 2, . . . .

(4.15)
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Let l be a Lipschitz modulus of Φ in some neighborhood of x̄ that contains all xk for k
sufficiently large. Noting that x ∈ Bρν (x̄) if x ∈ Bην (xkν ) for all ν, we derive from (4.13)

and (4.15) that

〈ϕ′y(x̄, ȳ),Φ(x)〉 − 〈ϕ′y(x̄, ȳ),Φ(xkν )〉 − 〈x∗kν − ϕ′x(x̄, ȳ), x− xkν 〉
≥ −[2εkν + γν(l + 1)]‖x− xkν‖ ∀x ∈ Bην (xkν ), ν = 1, 2, . . . .

From here and (2.6) one has

x∗kν − ϕ′x(x̄, ȳ) ∈ ∂̂ε̄ν 〈ϕ′y(x̄, ȳ),Φ(xkν )〉 with ε̄ν := 2εkν + γν(l + 1) (4.16)

for all ν = 1, 2, . . .. Passing to the limit in (4.16) as ν →∞ and using (2.5), we obtain

x∗ − ϕ′x(x̄, ȳ) ∈ ∂〈ϕ′y(x̄, ȳ),Φ(x̄)〉

that proves the inclusion “⊂” in (4.12). To verify the opposite inclusion in (4.12) we

employ the similar arguments starting with a point x∗ ∈ 〈ϕ′y(x̄, ȳ),Φ〉(x̄). This ends the

proof of the theorem.

Now let us obtain chain rules for the basic and singular subdifferentials of compositions
(4.2) in the case of nonsmooth functions ϕ and strictly differentiable mappings Φ between
arbitrary Banach spaces.

Theorem 4.3.
(i) Let Φ : X → Y be strictly differentiable at x̄ with Φ′(x̄) invertible (i.e., surjective and

one-to-one) and let ϕ : X × Y → ĪR be represented as

ϕ(x, y) = ϕ1(x) + ϕ2(y)

where ϕ1 is strictly differentiable at x̄ and ϕ2 is l.s.c. around ȳ = Φ(x̄). Then one
has

∂(ϕ ◦ Φ)(x̄) = ϕ′1(x̄) + (Φ′(x̄))∗∂ϕ2(ȳ).

(ii) Let ϕ and Φ satisfy the assumptions in (i) except that ϕ1 is Lipschitz continuous
around x̄. Then

∂∞(ϕ ◦ Φ)(x̄) = (Φ′(x̄))∗∂∞ϕ2(ȳ).

Proof. In the case considered one has

(ϕ ◦ Φ)(x) = ϕ1(x) + ϕ2(Φ(x)). (4.17)

To prove (i) we use Theorem 3.1(i) that yields

∂(ϕ ◦ Φ)(x̄) = ϕ′1(x̄) + ∂(ϕ2 ◦ Φ)(x̄).

Thus we should show that

∂(ϕ2 ◦ Φ)(x̄) = (Φ′(x̄))∗∂ϕ2(ȳ) with ȳ = Φ(x̄) (4.18)
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First we verify the inclusion “⊃” in (4.18). Let us consider any y∗ ∈ ∂ϕ2(ȳ) and find

sequences yk → ȳ, y∗k
w∗→ y∗, and εk ↓ 0 such that ϕ2(yk) → ϕ2(ȳ) as k → ∞ and

y∗k ∈ ∂̂εkϕ2(yk) for all k = 1, 2, . . . Employing the inverse mapping theorem for strictly

differentiable mappings [12], we conclude that Φ−1 is locally single-valued and strictly

differentiable at ȳ with the strict derivative (Φ′(x̄))−1 at this point. Therefore, Φ is a local
homeomorphism around x̄. Now using the procedure similar to the proof of Theorem 4.2,
for any sequence γν ↓ 0 one gets ρν ↓ 0, xν → x̄, and a subsequence kν → ∞ as ν → ∞
such that

ϕ2(Φ(x))− ϕ2(Φ(xν))− 〈(Φ′(x̄))∗y∗kν , x− xν〉 ≥ −(2lεkν + γν‖y∗kν‖)‖x− xν‖

for any x ∈ Bρν (xν), where l is a Lipschitz modulus of Φ in some neighborhood of x̄

containing all Bρν (xν) as ν = 1, 2, . . .. Due to (2.5) the latter implies the inclusion “⊃”

in (4.18).
To verify the opposite inclusion we represent ϕ2 in the form

ϕ2(y) = (ψ ◦ Φ−1)(y) with ψ(x) := (ϕ2 ◦ Φ)(x).

Now applying the inclusion “⊃” in (4.18) to the composition ψ ◦ Φ−1 and taking into

account that (Φ−1)′(ȳ) = (Φ′(x̄))−1, we obtain the inclusion “⊂” in (4.18). This ends the
proof of assertion (i) in the theorem.
It remains to establish (ii). Under the assumptions made one has

∂∞(ϕ ◦ Φ)(x̄) = ∂∞(ϕ2 ◦ Φ)(x̄)

due to Theorem 3.1(ii). The equality

∂∞(ϕ2 ◦ Φ)(x̄) = (Φ′(x̄))∗∂∞ϕ2(Φ(x̄))

can be proved similarly to (4.18) using definitions (2.4) and (2.2); cf. the proof of (4.5)
in Theorem 4.1.

In conclusion of this section we present a useful corollary of Theorem 4.3 providing a
representation of the normal cone (2.2) to sets of the form

Φ−1(Λ) := {x ∈ X| Φ(x) ∈ Λ)}

where Φ : X → Y and Λ ⊂ Y .

Corollary 4.4. Let Φ be strictly differentiable at x̄ with Φ′(x̄) invertible, and let Λ be
closed around the point ȳ = Φ(x̄) ∈ Λ. Then one has

N(x̄; Φ−1(Λ)) = (Φ′(x̄))∗N(ȳ; Λ).

Proof. This follows directly from Theorem 4.3(i) when ϕ1 = 0 and ϕ2 = δ(·,Λ).
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5. Other calculus rules

In this concluding section of the paper we obtain some additional calculus formulas for
the subdifferentials (2.3) and (2.4). Let us start with the following product rules involving
locally Lipschitzian functions.

Theorem 5.1. Let ϕi : X → IR, i = 1, 2, be Lipschitz continuous around x̄. Then one
has

∂(ϕ1 · ϕ2)(x̄) = ∂(ϕ2(x̄)ϕ1 + ϕ1(x̄)ϕ2)(x̄). (5.1)

If, in addition, one of the functions (say ϕ1) is strictly differentiable at x̄, then

∂(ϕ1 · ϕ2)(x̄) = ϕ′1(x̄)ϕ2(x̄) + ∂(ϕ1(x̄)ϕ2)(x̄). (5.2)

Proof. To obtain (5.1) we apply the chain rule in Theorem 4.2 with a smooth function

ϕ : IR2 → IR and a Lipschitzian mapping Φ : X → IR2 defined by

Φ(x) := (ϕ1(x), ϕ2(x)) and ϕ(y1, y2) := y1 · y2.

When ϕ1 is strictly differentiable at x̄, equality (5.2) follows from (5.1) by virtue of
Theorem 3.1(i).

In the same way we obtain the following quotient rules for subdifferentials of Lipschitzian
functions.

Theorem 5.2. Let ϕi : X → IR, i = 1, 2, be Lipschitz continuous around x̄ and let
ϕ2(x̄) 6= 0. Then one has

∂(ϕ1/ϕ2)(x̄) =
∂(ϕ2(x̄)ϕ1 − ϕ1(x̄)ϕ2)(x̄)

[ϕ2(x̄)]2
. (5.3)

If, in addition, ϕ1 is strictly differentiable at x̄, then

∂(ϕ1/ϕ2)(x̄) =
ϕ′1(x̄)ϕ2(x̄) + ∂(−ϕ1(x̄)ϕ2)(x̄)

[ϕ2(x̄)]2
. (5.4)

Proof. Apply Theorem 4.2 to the composition (ϕ1/ϕ2)(x) = (ϕ ◦ Φ)(x) where Φ : X →
IR2 and ϕ : IR2 → IR are defined by

Φ(x) := (ϕ1(x), ϕ2(x)) and ϕ(y1, y2) := y1/y2.

Remark 5.3. (a) One can obtain some product and quotient rules for the basic and
singular subdifferentials of l.s.c. functions using Theorem 4.1 instead of Theorem 4.2 in
the arguments above.
(b) The right-hand side of the product rule (5.2) is equal to

ϕ′1(x̄)ϕ2(x̄) + ϕ1(x̄)∂ϕ2(x̄)
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when ϕ1(x̄) ≥ 0. (A similar conclusion holds for the numerator in the right-hand side of
the quotient rule (5.4)). This follows from the obvious equality ∂(αϕ)(x̄) = α∂ϕ(x̄) valid
for any ϕ and α ≥ 0. On the other hand, one has

∂(αϕ)(x̄) = α∂+ϕ(x̄) for α < 0

where ∂+ϕ(x̄) := −∂(−ϕ)(x̄) is the so-called superdifferential of ϕ at x̄ that can be
equivalently defined in terms of the normal cone (2.2) to the hypograph of ϕ or similarly
to (2.5); see [18]. Note that the subdifferential and superdifferential may be considerably

different for nonsmooth functions (e.g., for ϕ(x) = |x| where ∂ϕ(0) = [−1, 1] but ∂+ϕ(0) =
{−1, 1}).
Corollary 5.4. Let ϕ : X → IR be Lipschitz continuous around x̄ with ϕ(x̄) 6= 0. Then
one has

∂(1/ϕ)(x̄) = −∂
+ϕ(x̄)

ϕ2(x̄)
.

Proof. This follows from Theorem 5.2 with ϕ1 = 1 and ϕ2 = ϕ.

Now we consider a collection of extended-real-valued functions ϕi, i = 1, . . . , n (n ≥ 2),
and define the minimum function

(minϕi)(x) := min{ϕi(x)| i = 1, . . . , n}.

Denoting by
I(x) := {i ∈ {1, . . . , n}| ϕi(x) = (minϕi)(x̄)},

we have the following subdifferentiation formula for the mimimum function in any Banach
space.

Theorem 5.5. Let functions ϕi : X → ĪR be l.s.c. at x̄ for i /∈ I(x̄) and be l.s.c. around
this point for i ∈ I(x̄) together with minϕi. Then one has

∂(minϕi)(x̄) ⊂
⋃
{∂ϕi(x̄)| i ∈ I(x̄)}. (5.5)

Proof. To justify (5.5) let us consider any sequence {xk} ⊂ X such that xk → x̄ and
ϕi(xk)→ (minϕi)(x̄) for i ∈ I(x̄) as k →∞. Using the l.s.c. of ϕi at x̄ for i /∈ I(x̄), one
can conclude that I(xk) ⊂ I(x̄). By virtue of (2.6) this yields

∂̂ε(minϕi)(xk) ⊂
⋃
{∂̂εϕi(xk)| i ∈ I(x̄)}

for any ε ≥ 0 and k = 1, 2, . . . The latter implies (5.5) due to representation (2.5) for
functions l.s.c. around x̄.

In conclusion let us present a nonsmooth version of the mean value theorem in Banach
spaces in terms of the subdifferential constructions under consideration. To this end we
define the symmetric subdifferential

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄) = ∂ϕ(x̄) ∪ [−∂(−ϕ)(x̄)] (5.6)
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for any function ϕ : X → ĪR at x̄. One can see that (5.6) always possesses the classical

symmetry property ∂0(−ϕ)(x̄) = −∂0ϕ(x̄) and may be nonconvex in simple situations.
First we observe the following nonsmooth analogue of the Fermat stationary principle.

Proposition 5.6. Let ϕ : X → ĪR and let x̄ ∈ dom ϕ. Then 0 ∈ ∂ϕ(x̄) if ϕ has a local

mimimum at x̄ and 0 ∈ ∂+ϕ(x̄) if ϕ has a local maximum at x̄. So 0 ∈ ∂0ϕ(x̄) if x̄ is
either minimum or maximum point of ϕ.

Proof. It follows directly from (2.6) as ε = 0 that 0 ∈ ∂̂ϕ(x̄) if x̄ provides a local

minimum to ϕ. Due to (2.5) one always has ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄). This implies the stationary
principle for the case of local minima. The other statements in the proposition follow
from here by virtue of the definitions.

Theorem 5.7. Let a, b ∈ X and let ϕ : X → ĪR be continuous in [a, b] := {a + t(b −
a)| 0 ≤ t ≤ 1}. Then there is a number θ ∈ (0, 1) such that

ϕ(b)− ϕ(a) ∈ ∂0
t ϕ(a+ θ(b− a)) (5.7)

where the right-hand side is the symmetric subdifferential (5.6) of the function t→ ϕ(a+
t(b− a)) at t = θ.

Proof. Following the line in standard calculus, we consider a function f : [0, 1] → IR
defined by

f(t) := ϕ(a+ t(b− a)) + t(ϕ(a)− ϕ(b)), 0 ≤ t ≤ 1. (5.8)

Obviously, f is continuous in [0, 1] and f(0) = f(1) = ϕ(a). According to the classical
Weierstrass theorem the function f attains both global minimum and maximum on [0, 1].
Excluding the trivial case when f is constant in [0, 1], we conclude that there is an interior
point θ ∈ (0, 1) where f attains either its minimal or maximal value over the interval [0, 1].

Using Proposition 5.6, one has 0 ∈ ∂0f(θ). To obtain (5.7) we now apply Theorem 3.1(i)
to the sum of functions in (5.8). This ends the proof of the theorem that is similar to
standard calculus.

Remark 5.8.
(a) Theorem 5.7 implies the classical mean value theorem in Banach spaces when ϕ is

strictly differentiable at every point x ∈ (a, b). One gets this applying the chain rule
to the composition

ϕ(a+ t(b− a)) = (ϕ ◦ Φ)(t), 0 ≤ t ≤ 1,

in (5.7) with Φ(t) := a+ t(b− a); cf. Theorem 4.2. Note also that we cannot change

∂0ϕ for ∂ϕ in (5.7) as follows from the example ϕ(x) = −|x| on [0, 1].
(b) The arguments used above allow to establish analogues of the results obtained in this

paper for the case of modified singular subdifferentials (3.10).
(c) In the case of Asplund spaces the subdifferential constructions of this paper satisfy

more developed calculus for l.s.c. functions that is mainly based on extremal principles
valid in such spaces; see [22].

Acknowledgment. The authors gratefully acknowledge helpful remarks made by the referees.



226 B. S. Mordukhovich, Yongheng Shao / On nonconvex subdifferential calculus

References

[1] J. M. Borwein, H. M. Strojwas: Proximal analysis and boundaries of closed sets in Banach

spaces. I: Theory, Can. J. Math. 38 (1986), 431–452.

[2] F. H. Clarke: Optimizatiom and Nonsmooth Analysis, Wiley, 1983.

[3] F. H. Clarke: Methods of Dynamic and Nonsmooth Optimization, CBMS-NSF Regional
Conference Series in Applied Mathematics, vol. 57, Soc. Indust. Appl. Math., Philadelphia,
Pa., 1989.

[4] A. D. Ioffe: Approximate subdifferentials and applications. I: The finite dimensional theory,

Trans. Amer. Math. Soc. 281 (1984), 389–416.

[5] A. D. Ioffe: Approximate subdifferential and applications. III: The metric theory, Mathe-

matika 36 (1989), 1–38.

[6] A. D. Ioffe: Proximal analysis and approximate subdifferentials, J. London Math. Soc. 41

(1990), 175–192.
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