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We extend the well known large deviation upper bound for sums of independent, identically distributed

random variables in IRd by weakening the requirement that the rate function have compact level sets
(the classical Cramér condition). To do so we establish an apparently new theorem on approximation of
closed convex sets by polytopes.
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1. Introduction

Let X1, X2, . . . be independent random variables taking values in IRd, 1 ≤ d < ∞, with
common probability law µ( · ) = P{Xi ∈ · }, and expectation EXi = m =

∫
xdµ(x)

when it exists (the following discussion does not require existence of an expectation). Let

Sn =
∑n

i=1 Xi. The law of large numbers says that Sn/n→ m almost surely.

Large deviation theory is concerned with the behavior of Sn/n away from its central
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tendency. A classical result, due originally to Cramér [1], states that there exists a

convex, lower semicontinuous function I : IRd → IR+, such that

lim inf n−1 logP{Sn/n ∈ G} ≥ − inf
x∈G

I(x) (1.1)

for each open subset G of IRd, and that under some hypotheses

lim sup n−1 logP{Sn/n ∈ F} ≤ − inf
x∈F

I(x) (1.2)

for each closed F . I(x) is called the rate function, and {Sn} is said to satisfy the large
deviation principle (LDP).
Convex duality theory plays an important role in the above results, because great interest
attaches to properties of I( · ), and because it can be shown that

I(x) = Λ∗(x), (1.3)

where Λ(α) = logE exp〈α,X1〉, α ∈ IRd, and Λ∗ is the convex conjugate of Λ. The
function Λ is convex, proper, and (by Fatou’s lemma) closed, with Λ(0) = 0.
The inequality (1.1) holds for all d (with no further hypotheses). Also (1.2) is known to
hold for d = 1, and it holds for d > 1 if F is compact, or is closed and convex. For general
closed F (1.2) is known to hold if

0 ∈ int dom Λ, (C)

where dom Λ is the effective domain {α ∈ IRd | Λ(α) < +∞}. This condition (known as
the Cramér condition) ensures that the level sets of Λ∗,

La(Λ
∗) = {x | Λ∗(x) ≤ a},

are compact, a fact that plays a role in the proofs.
The validity of (1.2) for general closed F , without the condition (C), has been an open
question with some interesting history. Slaby [10] produced a counterexample when F
was open, and Dinwoodie [4] extended this to a counterexample for closed F with d = 3.
Yet there are many interesting cases in which (1.2) holds for closed F , and for general F ,
without (C). In this paper we give some general sufficient conditions under which this is
true. A basic difference between our approach and that usually used in proofs of (1.2)
is that the latter tries to approximate F itself by halfspaces or balls, whereas we try to
approximate the level sets of Λ∗.
In the process we use some apparently new results on the approximation of convex sets
by polyhedral convex sets (Theorems 2.1 and 2.2), and on the separation of the level sets
of convex functions by polyhedra (Theorem 2.3). Some of these results make use of the
principle of cancellation (subtraction) of convex sets established by R̊adström [6], in the
support-function form studied definitively by Hörmander [5].
For background on large deviation theory the reader is referred to Varadhan [11], Deuschel
and Stroock [3], or Dembo and Zeitouni [2]. For background on convexity the reference
is of course Rockafellar [9].
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2. Results

Here is an outline of our approach to the problem. Let

a = Λ∗(F ) := inf
x∈F

Λ∗(x).

Assume that a is positive, and suppose that for each ε > 0 we can find a finite collection
of open halfspaces H1, . . . , HN such that the intersection

P = ∩Ni=1Hi

satisfies
La−ε ⊂ P ⊂ La. (2.1)

Then for each i, Λ∗(Hc
i ) ≥ a − ε, where the superscript c denotes the complement of a

set.
There is also no loss of generality in assuming that Λ∗(Hc

i ) ≤ a, for if, e.g., Λ∗(Hc
1) > a ,

then La would be contained in H1. We claim that in such a case P ′ := ∩Ni=2Hi ⊂ La, so
that H1 could be discarded. Indeed, if this were not so we could find a point z contained
in P ′ but not in La. Let x ∈ P , and consider the line segment [x, z]. This segment is

a subset of P ′, and by identifying it with part of the real line we can consider it to be
ordered with x < z. Now z belongs to the open complement of La, so the segment [x, z]
crosses the boundary of La at a point w < z. Then w ∈ H1, which is open; accordingly,
if we take w′ close enough to w with w < w′ < z then w′ ∈ H1. But then w′ ∈ P ,
contradicting our assumption that P ⊂ La. Thus we may assume that for i = 1, . . . , N

a− ε ≤ Λ∗(Hc
i ) ≤ a. (2.2)

We also note that F ⊂ clLca. To see this, let x ∈ F ; if Λ∗(x) > a then x ∈ Lca, so suppose

Λ∗(x) = a. As a > 0 = −Λ(0) = inf Λ∗, there is some point p ∈ IRd with Λ∗(p) < a.

By prolonging the line segment [p, x] slightly beyond x we obtain a point x′ at which, by

convexity, Λ∗(x′) > a. Therefore x′ ∈ Lca, so x ∈ clLca and so F ⊂ clLca as asserted. Now
from the fact that P ⊂ La we obtain

Lca ⊂ P c = ∪Ni=1H
c
i .

The set on the right is closed, and so we have

F ⊂ clLca ⊂ ∪Ni=1H
c
i .

Now we can argue that

P{Sn/n ∈ F} ≤ P{Sn/n ∈ ∪Ni=1H
c
i } ≤

N∑

i=1

P{Sn/n ∈ Hc
i }. (2.3)

But Hc
i is closed and convex, so from the known fact that (1.2) holds for such sets we

deduce that
lim supn−1 logP{Sn/n ∈ Hc

i } ≤ −Λ∗(Hc
i ). (2.4)
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Applying this to (2.3) we find with some calculation that

lim sup n−1 logP{Sn/n ∈ F} ≤ −
N
inf
i=1

Λ∗(Hc
i ) ≤ −Λ∗(F ) + ε. (2.5)

Since ε > 0 was arbitrary, it follows that (1.2) holds for F .
We will determine conditions on the probability measure µ( · ) and the set F that suffice
for (2.1). We start by summarizing the convexity results we will need, then give the large
deviation results. Proofs are in Section 3.

2.1. Convexity results

Let us start with an arbitrary closed proper convex function f : IRd → (−∞,+∞] satis-
fying f(0) = 0. For a convex set C, let coneC be the cone generated by C (that is, the
set of all positive scalar multiples of points of C). Let dom f = {α | f(α) < +∞}; note
that 0 ∈ dom f . We write rcC for the recession cone of C, defined to be the set

{y ∈ IRd | x+ λy ∈ C for each x ∈ C and λ ≥ 0},

and IC and I∗C for its indicator and support functions respectively.

We denote the Euclidean unit ball in IRd by B = {x | ‖x‖ ≤ 1}, and the unit sphere by
S = {x | ‖x‖ = 1}. The distance from the point x to the set X is

d(x,X) = inf
y∈X
‖x− y‖,

and for sets R and T in IRd,

e(R, T ) = sup
r∈R

d(r, T ) = inf{ρ ≥ 0 | T + ρB ⊃ R}

is called the excess of R over T .
An earlier version of the following theorem appeared in the unpublished report [7].

Theorem 2.1. Let C be a nonempty closed subset of IRd. Then the following are
equivalent:
(a) C is convex, rcC is polyhedral, and e[C, rcC] < +∞.
(b) There is a polyhedral convex cone Z such that for each positive ε there exists a finite

collection { x1, . . . , xk } of points of IRd so that with Q := conv { x1, . . . , xk } one has
Q+ Z ⊂ C ⊂ Q+ Z + εB.

Further, if (b) holds then Z = rcC and the points xi lie in C.

If (b) holds, we say that C can be approximated by a polytope. Here and later we use the
term “polytope” interchangeably with “polyhedral convex set” to denote the intersection
of finitely many closed halfspaces. (Thus the set P introduced just prior to (2.1) is not a
polytope.)
Let f∗ denote the convex conjugate of f , and for 0 ≤ a <∞ write

La = La(f
∗) = {x | f∗(x) ≤ a}.
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Theorem 2.2. (Approximation) Assume that a > 0 and that

K := cone dom f is polyhedral (H1)

(that is, K is the intersection of a finite collection of closed halfspaces). Then La can be
approximated by a polytope.

When a > 0, the support function I∗La of La can be written as

I∗La(α) = cone (f + a)(α) := inf
τ>0

τ−1[f(τα) + a]; (2.6)

for details see Theorems 9.7 and 13.5 and Corollary 13.2.1 of [9]. If

For some a > 0 and each α ∈ K ∩ S the infimum in (2.6) is attained, (H2)

we shall say later that f satisfies (H2) at a. We show in Lemma 3.2 below that if f
satisfies (H2) at a then in fact it satisfies (H2) at every value in (0, a].

Theorem 2.3. (Separation) Let 0 < a < b < +∞. Assume that (H1) holds and that f
satisfies (H2) at b. Then there is a positive δ such that

La + δB ⊂ Lb. (2.7)

Corollary 2.4. (of Theorems 2.2 and 2.3) Under the hypotheses of Theorem 2.3 there
exists a polytope V such that

La ⊂ V ⊂ Lb. (2.8)

The hypothesis (H1) is an easily visualized geometric condition, but (H2) might be less
easy to visualize. For that reason we state here a condition that is stronger than (H2)
but is also more geometric. Its proof is given after Lemma 3.2 in Section 3.

Proposition 2.5. Let f be as above and let a > 0. If for some positive δ

La + δB ⊂ dom f ∗, (2.9)

then f satisfies (H2) at a.

2.2. Large deviation results

Finally, we use the above convexity results to prove (in Section 3 below) the following
theorem.

Theorem 2.6. Let Λ(α) = logE exp〈α,X1〉. Assume that Λ satisfies (H1) (i.e., that
cone dom Λ is polyhedral) and that Λ satisfies (H2) at Λ∗(F ). Then the large deviation
upper bound (1.2) holds for F .

Note that (H2) was used only to obtain the inclusions (2.7) and (2.8).
To obtain the large deviation result (1.2) for closed F a variety of other sufficient condi-
tions can be formulated (see Section 4 below). However, once the Cramér hypothesis is
dropped, we know of no conditions that are specified simply and directly in terms of the
measure µ or its generating function exp Λ( · ). The attractiveness of the present result is
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that it uses a simple condition on Λ, in terms of a well known quantity from convexity
theory.

We also point out that under the Cramér condition (C), cone dom Λ = IRd so that (H1)
holds for all d ≥ 1. In Section 4 some examples are given where the probabilistic quantities
are identified.

3. Proofs

The proof of Theorem 2.1 is deferred to the end of this section. We start with three
lemmas, the first two of which concern the function f of Subsection 2.1. The proof of
Proposition 2.5 follows Lemma 3.2.

Lemma 3.1. Assume (H1). Then for some positive ε,

sup{f(α) | α ∈ K ∩ εB} =: Aε < +∞.

Proof. As K is polyhedral by (H1), it has a finite set of generators, say g1, . . . , gr. As
K = cone dom f there is no loss of generality in taking each gi to be in dom f . Define a

multifunction Γ from IRr to IRd by

Γ(λ) =
{∑r

i=1 λigi if λ1, . . . , λr ≥ 0,
∅ otherwise.

Then K = Γ(IRr). By [8, Proposition 2] the set K ∩ B is contained in Γ(M) for some
bounded subset M of IRr. Accordingly, there is a positive constant ζ such that any k ∈ K
can be written as k =

∑r
i=1 λigi, with each λi in the interval [0, ζ‖k‖]. Define ε = (rζ)−1.

If k ∈ K ∩ εB, then we can write k =
∑r

i=0 λigi with λ0 := 1 −∑r
i=1 λi ∈ [0, 1] and

g0 = 0. But then by convexity

f(k) ≤
r∑

i=0

λif(gi) ≤
r

max
i=0

f(gi) =: Aε,

which proves Lemma 3.1.

Lemma 3.2. Let 0 < a < b < +∞. If f satisfies (H2) at b then it also satisfies (H2)
at a.

Proof. If K is the origin then (H2) holds vacuously, so let α ∈ K ∩ S. By hypothesis
there is some positive τb such that

cone (f + b)(α) = τ−1
b [f(τ−1

b α) + b].

For any positive τ we have

τ−1
b [f(τbα)+a]+τ−1

b (b−a) = τ−1
b [f(τbα)+b] ≤ τ−1[f(τα)+b] = τ−1[f(τα)+a]+τ−1(b−a),

so that
τ−1[f(τα) + a] ≥ τ−1

b [f(τbα) + a] + (τ−1
b − τ−1)(b− a).
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Accordingly, in seeking the infimum in the definition of cone (f + a)(α) we may restrict τ
to the interval (0, τb]. Also, we assumed that f was lower semicontinuous with f(0) = 0.
As a > 0 we see that

lim
τ→0+

τ−1[f(τα) + a] = +∞,

and so we may further restrict τ to [τ0, τb], where τ0 is some small positive number. Now

lower semicontinuity of f implies that the infimum of τ−1[f(τα) + a] is attained.

Proof of Proposition 2.5. As before, the claim is vacuously true if K is the origin, so
we can fix an element α ∈ K ∩ S. Recall that the recession function of f , which we write
rec f , is the support function of dom f ∗ [9, Theorem 13.3]. As we assumed f(0) = 0 we
have

rec f(α) = sup
τ>0

τ−1[f(0 + τα)− f(0)] = sup
τ>0

τ−1f(τα),

and we note for future reference that this difference quotient is nondecreasing in τ [9,
Theorem 23.1].
As cone (f + a) = I∗La, the hypothesis (2.9) yields

cone (f + a) + δ‖ · ‖ ≤ rec f.

From the definitions of cone (f +a) and rec f , we find that there are positive ρ and σ such
that

ρ−1[f(ρα) + a] < cone (f + a)(α) + δ/2, σ−1f(σα) > rec f(α)− δ/2.

From the above inequalities we obtain

ρ−1[f(ρα) + a] < σ−1f(σα).

As the right-hand side is nondecreasing in σ, we see that ρ < σ and that whenever τ ≥ σ
we have

ρ−1[f(ρα) + a] < τ−1f(τα) < τ−1[f(τα) + a],

so in looking for the infimum in the definition of cone (f + a)(α) we need only consider
τ ∈ (0, σ]. Now we can finish the proof as we did in Lemma 3.2.

The following lemma is related to more general results in the literature, but as we want
a tailored form of the result and do not need the extra generality, we give a simple direct
proof.

Lemma 3.3. Let C be a closed convex subset of IRn. Then

e[C, rcC] = sup{ I∗C(α) | α ∈ B ∩ (rcC)◦ }. (3.1)

Proof. Write Z for rcC. This cone is closed because C is closed [9, Theorem 8.2].
Denote by σ the supremum on the right side of (3.1). Choose any c ∈ C, and let z be the
closest point in Z to c. Then c = z + ζ with z ∈ Z, ζ ∈ Z◦, and 〈z, ζ〉 = 0. Evidently
‖ζ‖ = d[c, Z]. Suppose for the moment that ζ 6= 0 and write φ = ζ/‖ζ‖. Then φ ∈ B∩Z◦,
and

d[c, Z] = ‖ζ‖ = 〈φ, ζ〉 = 〈φ, c〉 ≤ I∗C(φ) ≤ σ,
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and d[c, Z] ≤ σ also in the case ζ = 0 because then c ∈ Z. Now by taking the supremum
over c ∈ C we find that e[C,Z] ≤ σ. For the opposite inequality, let α ∈ B ∩ Z◦. Let
c ∈ C and let z and ζ be as above. Then

〈α, c〉 = 〈α, z + ζ〉 ≤ 〈α, ζ〉 ≤ d[c, Z],

where we used the Schwarz inequality and the fact that ‖ζ‖ = d[c, Z]. Now take the
supremum over c ∈ C to obtain I∗C(α) ≤ e[C,Z], then the supremum over α ∈ B ∩ Z◦ to

conclude that σ ≤ e[C,Z].

Proof of Theorem 2.2. We apply Theorem 2.1 to C = La, a closed convex set. By [9,
Theorem 27.1(f)], we have rcLa = K◦. Under (H1) this cone is polyhedral. The equation
(2.6) implies that I∗La ≤ f + a, and then Lemma 3.1 tells us that I∗La(α) has a finite

supremum on K ∩ B (recall that this function is positively homogeneous). Then from
Lemma 3.3 we obtain e[La, K

◦] < +∞, which implies that condition (a) of Theorem 2.1
is satisfied. The conclusion of Theorem 2.2 then follows from (b) of Theorem 2.1.

Proof of Theorem 2.3. If K is the origin then f = I{0} and f∗ is identically zero, so

the conclusion of the theorem holds. Therefore suppose K is not the origin; choose such
a and b, and fix any α ∈ K ∩ S. Use the attainment hypothesis to find a positive tb with

cone (f + b)(α) = t−1
b [f(tbα) + b].

Then

cone (f + a)(α) = inf
t>0

t−1[f(tα) + a] ≤ t−1
b [f(tbα) + a] < cone (f + b)(α).

Now for fixed a > 0 cone (f + a)(α) is closed [9, Theorem 9.7] and convex (as a function
of α); its effective domain is K, which is polyhedral, and therefore it is continuous on
K by [9, Theorem 10.2]. If a < b, then the difference cone (f + b) − cone (f + a) is a
continuous, strictly positive function on the compact set K ∩ S. It must therefore have
a positive minimum there, say δ. As cone (f + c) is positively homogeneous for each c, it
follows that for each α ∈ K one has the inequality

cone (f + a)(α) + δ‖α‖ ≤ cone (f + b)(α).

But since cone (f + a) = I∗La and δ‖ · ‖ = I∗δB, it follows that La + δB ⊂ Lb.

Proof of Corollary 2.4. Note first that by (H2) and Theorem 2.3, for some positive δ

La + δB ⊂ Lb. (3.2)

Theorem 2.2 says we can obtain a polytope V such that

V ⊂ Lb ⊂ V + δB. (3.3)

Now (3.2) and (3.3) together imply La+ δB ⊂ V + δB, which in turn implies the support
function inequality

I∗La + δ‖ · ‖ ≤ I∗V + δ‖ · ‖.
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Subtracting δ‖ · ‖ from both sides we obtain I∗La ≤ I∗V , and as V is closed this implies

that La ⊂ V . Combining this with (3.3), we obtain (2.8).

Proof of Theorem 2.6. Choose any closed subset F of IRd and let a = Λ∗(F ). The
bound (1.2) holds trivially if a = 0, so we may assume a > 0. Our hypotheses, together
with Corollary 2.4, imply that for any η ∈ (0, a) we can find a polytope V satisfying

Lη ⊂ V ⊂ La. (3.4)

We show that we then have (2.1), and the argument of Section 2 then completes the proof.
Let ε ∈ (0, a) and choose η ∈ (a − ε, a). By Lemma 3.2, Λ satisfies (H2) at η, and then
by Theorem 2.3 we have for some positive γ and for the V given by (3.4) the inclusion

La−ε + γB ⊂ Lη ⊂ V, (3.5)

so that V must have nonempty interior. If we write V = ∩Ni=1Ci, where the Ci are closed

halfspaces whose corresponding interiors (open halfspaces) we denote by Hi, we have

intV = ∩Ni=1Hi by [9, Theorem 6.5]. Then (3.4) and (3.5) imply

La−ε ⊂ intLη ⊂ intV ⊂ V ⊂ La,

so that we have (2.1).

Proof of Theorem 2.1.
(a) implies (b): Write Z for rcC. Lemma 3.3, together with our finiteness assumption
on e[C,Z], tells us that the effective domain dom I∗C of the support function I∗C is exactly

Z◦ (we always have cl dom I∗C = Z◦; the point is that here we can remove the closure

symbol). But Z◦ is polyhedral (because Z was assumed to be), hence locally simplicial.
Therefore [9, Theorem 10.2] tells us that I∗C is continuous on Z◦.
Now fix ε > 0. For each c ∈ C define Ψc = {α ∈ Z◦ ∩ S | I∗C(α) ≥ 〈α, c〉 + ε }. Recall

that for each α ∈ IRn, I∗C(α) is the pointwise supremum of the linear functions 〈α, c〉 for

c ∈ C. Therefore the intersection of the Ψc over c ∈ C is empty. But the Ψc are compact
sets because I∗C is continuous on Z◦, so there is a finite subset { c1, . . . , ck } of C such that

the intersection of the Ψci for i = 1, . . . , k is empty. Therefore, for each α ∈ Z◦ there is

at least one index i with I∗C(α) ≤ 〈α, ci〉 + ε‖α‖. Writing s(α) = supki=1〈α, ci〉, we have

I∗C ≤ s+ ε‖ · ‖+ IZ◦; note that we have used here the fact that the effective domain of I∗C
is exactly Z◦. But s is the support function of the set Q := conv { c1, . . . , ck }, ε‖ · ‖ is the
support function of εB, and IZ◦ = I∗Z is the support function of Z. Writing P = Q + Z,

we have C ⊂ P + εB; note that the sum on the right is closed because Q+ εB is compact
and Z is closed. But P ⊂ C because Q ⊂ C and Z = rcC.
(b) implies (a): Let ε > 0 and suppose that Q and Z are as stated in (b). Write
P = Q + Z; then as P + εB is closed and convex we have P ⊂ C ⊂ cl convC ⊂ P + εB;
accordingly, e[cl convC,C] ≤ e[P + εB, P ] = ε. As ε was arbitrary and C is closed, we
have C = cl convC and hence C is convex. Again, because the sets involved are closed,
the inclusion P ⊂ C ⊂ P + εB implies rcP ⊂ rcC ⊂ rc (P + εB) = rcP , and therefore
rcC = rcP = Z, which is polyhedral. Finally, the triangle inequality for the excess e[ · , · ]
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implies that e[C, rcC] ≤ e[C, P + εB] + e[P + εB, rcC]. The first term on the right is
zero; the second is e[Q + εB + Z,Z], which is obviously finite. This proves (a).
For the final claim, note that we have already shown, under (b), that Z = rcC. As 0 ∈ Z
and Q+ Z ⊂ C we have Q ⊂ C, so the xi lie in C.

4. Examples and remarks

In this section we first give three examples, the first illustrating a situation in which the
Cramér condition fails but our hypotheses apply. The second is a situation in which our
hypothesis (H2) is satisfied for some but not all a, and some but not all level sets separate,
but in which the Cramér condition is satisfied (so that the large deviation upper bound
holds). Thus, separation of level sets is not a necessary condition for (1.2). The third
example is a situation in which our hypotheses are not satisfied and in which we do not
know whether or not the large deviation upper bound holds. We then conclude with some
brief remarks on a possible extension of our approach.

Example 4.1. Λ is not finite on a neighborhood of the origin (i.e., the Crámer condition
fails), but Theorem 2.6 applies.

A specific case illustrating this is Example 2.2 of Dinwoodie [4]: µ on IR2 is the direct
product of a normal and a Cauchy distribution. Here clearly 0 /∈ int dom Λ, but Theorem

2.6 holds. More generally, if µ is any measure on IRd such that the convex hull of its

support is all of IRd, then dom Λ∗ = IRd, so by Proposition 2.5 Λ satisfies (H2) for
all a. If in this situation d = 2 and the cone generated by dom Λ is any closed cone

that is not all of IR2 (e.g., the closed negative quadrant) then the Cramér condition

fails. However, Theorem 2.6 applies because (H1) holds (any closed convex cone in IR2

is trivially polyhedral). This would be the case, for instance, if µ is the mixture of a

Gaussian measure on IR2 with any measure whose support is the positive quadrant and
which has “large” tails.

Example 4.2. Λ satisfies (H2) for some but not all a, some but not all level sets
separate, but the large deviation upper bound (1.2) still holds.
Consider the simple binomial distribution P{X1 = 1} = 1 − P{X1 = 0} = 1/3. In this
case Λ(α) = log(2 + eα)− log 3, and

Λ∗(x) =

{
x log x + (1− x) log(1− x)− (1− x) log 2 + log 3 if 0 ≤ x ≤ 1,

+∞ otherwise.

As dom Λ = IR, the Cramér condition (C) applies, so (1.2) holds. The effective domain of
Λ∗ is the interval [0, 1]; we have Λ∗(0) = log(3/2) and Λ∗(1) = log 3, and the graph has a
vertical tangent at each of these points.

Let ξb(s) = s−1[Λ(s) + b]. Then

cone (Λ + b)(α) =

{
α infs>0 ξb(s) if α ≥ 0,

α infs<0 ξb(s) if α < 0.

If b ∈ (0, log(3/2)) then (H2) must hold (use the Proposition), and the level sets of Λ∗

separate. If b = log(3/2) then (H2) does not hold because the infimum of ξb(s) for s < 0
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is not attained; however, the separation condition (2.7) does hold. For b > log(3/2) (H2)
cannot hold because the level sets of Λ∗ separate on the right (near 1) only.

Example 4.3. The hypotheses of Theorem 2.6 are not satisfied.

Let Z be a Cauchy random variable in IR and let X = (Z,Z2) ∈ IR2. Then

dom Λ = {(α1, α2) ∈ IR2 | α2 < 0 or (α1, α2) = (0, 0)}.

This is not a closed cone (hence not polyhedral), so (H1) is violated.
One can show in this case (with a fair amount of calculating) that Corollary 2.4 fails:
that is, the level sets of Λ∗ cannot be separated by polyhedra. We do not know whether
the large deviation upper bound holds in this case for all closed sets.
We conclude by sketching a possible extension of the approach we have taken. Note
that in this paper the set F in the upper bound (1.2) has been quite arbitrary, e.g.
not necessarily closed. Suppose we now add the condition that F is closed, and write
F = (F ∩ tB) ∪ (F ∩ tBc), where B is the unit ball, and t is to be thought of as “large.”
Then

P{Sn/n ∈ F} = P{Sn/n ∈ F ∩ tB}+ P{Sn/n ∈ F ∩ tBc}.
Since F ∩ tB is compact, (1.2) is known to hold for this set. As Λ∗(F ∩ tB) ≥ Λ∗(F ),
it suffices to prove that (1.2) holds for F ∩ tBc for some finite t. One could attack this
problem by separation methods analogous to those used here, modified to take advantage
of the fact that the set F ∩ tBc contains only elements far from the origin. However, that
is beyond the scope of this paper.
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