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We prove some new results about the existence of solutions of variational inequalities with quasilinear
operators having the generalized pseudo-monotone property. We also consider the case where data are

Radon measures or L1 elements.

Introduction

Let Ω be a bounded open subset of IRn, 1 < p < n, ψ ∈ L∞(Ω). The problem we are

going to consider, when f lies in the dual space of H1,p
0 (Ω), has the form





find u ∈ H1,p(Ω), u ≥ ψ

find ζ ∈ A(u) satisfying

〈ζ, v − u〉 ≥ 〈f, v − u〉 for any v ∈ H1,p
0 (Ω), v ≥ ψ,

(0)

where A is a multivalued operator defined on H1,p
0 (Ω) with values in its dual H−1,p′(Ω)

(p′ = p/(p − 1)). More precisely we take a multivalued map a defined on Ω × IR × IRn

with values in IRn, maximal monotone with respect to the last variable. Then ζ ∈ A(u)
if and only if ζ = − div g and g is a measurable selection of the map

x ∈ Ω 7→ a(x, u(x), Du(x)) ⊂ IRn.

When a is single-valued and strictly monotone with respect to the last variable, some
particular case of this problem was developed for example by Pascali and Sburlan in [8],
ch. VI.
When f ∈ L1(Ω), after a suitable formulation of the inequality in (0), various existence
results, which consider particular cases of single valued and strictly monotone operators,
were obtained for example by L. Boccardo and T. Gallouet in [2] and L. Boccardo and
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G.R. Cirmi in [3]. Another kind of existence result for single valued operators was provided
by J.M. Rakotoson in [9] for the case of f Radon measure.

In this work we first give, in section 2, an existence theorem with f in H−1,p′(Ω) and a
multivalued operator A of the above kind. The form of the problem (0) is adopted for
example by R.T. Rockafellar in [10] and by G. Dal Maso - A. Defranceschi in [5].

In section 3 we deal with the cases where f is a bounded Radon measure or an L1 function.
In the first case we give an existence theorem for the problem stated in analogy with the

one in [9]. Then when we take f ∈ L1(Ω), we prove another existence theorem after
stating the problem in analogy with the one in [2].

1. Formulation of the problem

Notation and Hypotheses

Let Ω be a bounded open set of IRn, n ≥ 2, we denote by H1,p
0 (Ω), for 1 < p < ∞,

the usual Sobolev space, by H−1,p′(Ω) its dual; by 〈., .〉 the scalar product on IRn or

the duality between H1,p
0 (Ω) and H−1,p′(Ω). The symbol ‖‖Lp will denote the norm in

Lp(Ω)n or in Lp(Ω) and xh ⇀ x will mean that the sequence (xh)h∈N of a certain dual of
a Banach space, converges to x in the weak topology.

Let a: Ω×IR×IRn → 2IRn

be L(Ω)×B(IR)×B(IRn)-measurable, namely for every open set

U ⊂ IRn, a−1(U): = {(x, s, ξ) ∈ Ω× IR× IRn: U ∩a(x, s, ξ) 6= ∅} ∈ L(Ω)×B(IR)×B(IRn).
For a single or multivalued map F we also denote by Γ(F ) its graph.
We assume p ∈ (1, n) and α, β ∈ IR+ such that

(1.1.1) β < p− 1, (1.1.2)
α

p− 1− β <
p∗

p
, (1.1.3)

α

p− 1− β < p′ (1.1)

with p∗ = np/(n − p), p′ = p/(p − 1). Besides we suppose a to be closed and convex
valued and satisfying the following conditions:

i) for a.e. x ∈ Ω and every s ∈ IR, a(x, s, ·): IRn → 2IRn

is maximal monotone;

ii) there exist µ ∈ Lp′(Ω), ν ∈ Ln/(n−1)(Ω), c, c1, c2 ∈ IR+ such that

|η| ≤ µ(x) + c1|ξ|p−1 + c2|s|α|ξ|β (ii1)

〈η, ξ〉 ≥ ν(x) + c|ξ|p (ii2)

for a.e. x ∈ Ω, for every s ∈ IR, ξ ∈ IRn, η ∈ a(x, s, ξ).

iii) if u, v, (uh)h∈N , η are given, being u ∈ H1,p
0 (Ω), v ∈ H1,p(Ω), (uh)h∈N in H1,p

0 (Ω)

such that uh → u a.e. in Ω and η an L(Ω)-measurable selection of the map

x ∈ Ω 7→ a(x, u(x), Dv(x)) ⊂ IRn,

then there exists (ηh)h∈N converging a.e. to η in Ω, such that, for every h ∈ N , ηh is
an L(Ω)-measurable selection of the map x ∈ Ω 7→ a(x, uh(x), Dv(x)) ⊂ IRn.

From now on “measurability” will have the meaning adopted above for the multivalued
function a.
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Remark 1.1. The assumption iii) is for instance satisfied by all multivalued functions

of the form: a(x, s, ξ) = a0(x, ξ)+a1(x, s, ξ) with a0: Ω×IRn → 2IRn
, a1: Ω×IR×IRn → IRn

measurable and a1(x, ·, ξ) continuous for a.e. x ∈ Ω and every ξ ∈ IRn. Indeed if η is
an L(Ω)-measurable selection of the map x ∈ Ω 7→ a(x, u(x), Dv(x)) ∈ IRn, the sequence
(ηh)h∈N defined by

ηh(x) = η(x)− a1(x, u(x), Dv(x)) + a1(x, uh(x), Dv(x))

satisfies iii).

Another case in which iii) is true is given by a: Ω× IR× IRn → 2IRn
defined by a(x, s, ξ) =

{λa0(x, s, ξ) + (1 − λ)a1(x, s, ξ), λ ∈ [0, 1]}, where ai: Ω × IR × IRn → IRn, i = 1, 2, are
measurable functions, continuous in the second variable for a.e. x ∈ Ω and every ξ ∈ IRn.

Remark 1.2. If u: Ω→ IR, w: Ω→ IRn are L(Ω)-measurable,

x ∈ Ω 7→ a(·, u, w)(x) = a(x, u(x), w(x)) ∈ 2IRn

turns out to be measurable as well.

Indeed, if U ⊂ IRn is an open set,

a−1(U)

= {x ∈ Ω: ∃η ∈ U ∩ a(x, u(x), w(x))}
= {x ∈ Ω: ∃η ∈ U, s ∈ IR, ξ ∈ IRn | (x, s, ξ, η) ∈ Γ(a) ∩ (Γ((u, w))× IRn)}
= prΩ(Γ(a) ∩ (Γ((u, w))× IRn) ∩ (Ω× IR× IRn × U)),

so that the assertion follows by Theorem III.23 in [4] (here prΩ denotes the projection
from Ω× IR× IRn × IRn into Ω).

Remark 1.3. If g: Ω → 2IRn
is a measurable selection of a(·, u,Dv), u, v ∈ H1,p

0 (Ω),

then g ∈ Lp′(Ω)n. Indeed, by hypothesis (ii1) and Young’s inequality we have:

|g(x)| ≤ µ(x)+c1|Dv(x)|p−1+c2
p− 1− β
p− 1

|u(x)|α(p−1)/(p−1−β)+c2
β

p− 1
|Dv(x)|p−1 (1.2)

where by (1.1.2) we have αp′(p − 1)/(p − 1 − β) < p∗, so that our assertion follows by
Sobolev’s inequality.

Problem. Let A:H1,p
0 (Ω)→ 2L

p′(Ω)n be defined by

A(u) = {g ∈ (Lp
′
(Ω))n: g(x) ∈ a(x, u(x), Du(x)) for a.e. x ∈ Ω},

and A:H1,p
0 (Ω)→ 2H

−1,p′(Ω) by A(u) = {− div g: g ∈ A(u)}.
If a non-empty closed convex set K ⊂ H1,p

0 (Ω) and f ∈ H−1,p′(Ω) are given, our first
problem is stated as follows:

{
u ∈ K

∃ζ ∈ A(u) such that 〈ζ, v − u〉 ≥ 〈f, v − u〉 for every v ∈ K.
(I)
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Remark 1.4. It is easy to show that problem (I) is equivalent to the relation

f ∈ (A+ ∂IK)u,

where ∂IK is the subdifferential of the indicator function IK of K.

2. Existence of solutions for the problem (I)

Lemma 2.1. If ((uh, fh))h∈N is a sequence in H1,p
0 (Ω)×H−1,p′(Ω) such that fh ∈ A(uh)

for h ∈ N , uh → u ∈ H1,p
0 (Ω) strongly and fh ⇀ f ∈ H−1,p′(Ω) weakly, then f ∈ A(u).

Proof. By the definition of A, for every h ∈ N there exists gh ∈ Lp
′
(Ω)n such that

gh(x) ∈ a(x, uh(x), Duh(x)) for a.e. x ∈ Ω and fh = − div gh. Taking (1.2) and the

boundedness of (uh)h∈N in H1,p
0 (Ω) into account, we obtain that the sequence (gh)h∈N is

bounded in Lp
′
(Ω)n.

Therefore there exists g ∈ Lp
′
(Ω)n such that, by passing to a subsequence if necessary,

gh ⇀ g in Lp
′
(Ω)n. Now we prove that f = − div g and g(x) ∈ a(x, u(x), Du(x)) for

a.e. x ∈ Ω. Since 〈f, v〉 = limh→∞〈− div gh, v〉 = limh→∞
∫

Ω〈gh, Dv〉dx =
∫

Ω〈g,Dv〉dx =

〈− div g, v〉 for every v ∈ H1,p
0 (Ω), we get f = − div g.

To conclude we show that for every ξ ∈ IRn and ζ ∈ a(x, u(x), ξ) is 〈g(x)−ζ, Du(x)−ξ〉 ≥ 0
for a.e. x ∈ Ω. Then from maximal monotonicity of the map ξ ∈ IRn 7→ a(x, u(x), ξ) ∈
2IRn

for x ∈ Ω\Ω0 where Ω0 has Lebesgue measure zero, it follows that g(x) ∈ a(x, u(x),
Du(x)). Let η be a measurable selection of a(·, u, ξ). Since, by passing to a subsequence if
necessary, (uh)h∈N converges a.e. to u, by hypothesis iii), there exists a sequence (ηh)h∈N
converging a.e. to η on Ω, such that for every h ∈ N ηh is an L(Ω)-measurable selection

of the map x ∈ Ω 7→ a(x, uh(x), ξ) ∈ 2IRn
. We note first that from (ii1) it follows that

ηh → η in Lp
′
(Ω)n, indeed for every h ∈ N and a.e. x ∈ Ω we have:

|ηh(x)| ≤ µ(x) + c1|ξ|p−1 + c2|uh(x)|α|ξ|β

where the right hand side converges in Lp
′
(Ω)n as αp′ < p∗. If ϕ ∈ C(Ω), ϕ ≥ 0,

since the map ξ ∈ IRn 7→ a(x, uh(x), ξ) ∈ 2IRn
is monotone for a.e. x ∈ Ω and for every

h ∈ N , we have 0 ≤
∫

Ω〈gh−ηh, Duh−ξ〉ϕdx. Taking the convergence of (gh)h∈N , (ηh)h∈N ,

(Duh)h∈N into account, we have limh→∞
∫

Ω〈gh−ηh, Duh−ξ〉ϕdx =
∫

Ω〈g−η,Du−ξ〉ϕdx
and since ϕ is arbitrary, we obtain 〈g(x)− η(x), Du(x)− ξ〉 ≥ 0 for a.e. x ∈ Ω. But the
selection η is also arbitrary, so that from Theorem III.9 in [4], which ensures the existence
of a sequence (σh)h∈N of measurable selections of a(·, u, ξ) such that {σh(x): h ∈ N} is
dense in a(x, u(x), ξ), it follows that 〈g(x)− ζ,Du(x)− ξ〉 ≥ 0 for a.e. x ∈ Ω and every
ζ ∈ a(x, u(x), ξ).

Lemma 2.2. If u ∈ H1,p
0 (Ω) and A is the operator defined in 1.1, then A(u) is closed,

convex, nonempty and bounded. Moreover A:H1,p
0 (Ω)→ 2H

−1,p′(Ω) is a bounded operator.
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Proof. From hypothesis (ii1) about a we immediately get boundedness of A(u): indeed
if − div g ∈ A(u), g ∈ A(u), taking (1.2) and αp/(p − 1 − β) < p∗ into account, from
Sobolev’s inequality it follows that for a suitable constant K

‖g‖Lp′ ≤ K(‖µ‖Lp′ + (‖Du‖Lp)p/p
′
+ (‖Du‖Lp)α(p−1)/(p−1−β)). (2.1)

Since ‖ − div g‖H−1,p′ ≤ ‖g‖Lp′ , by (2.1) we obtain also boundedness of A. Moreover a is

convex valued, so that the same is true for A.

Now let us prove that A(u) is nonempty. a(x, u(x), ·), and consequently a(x, u(x), ·)−1,

is maximal monotone for a.e. x ∈ Ω. Moreover, by (ii1), (a(x, u(x), ·)−1)−1 is locally
bounded according to definition in [8] 2.2 ch.III, hence the theorem on page 147 in [8]

ensures that a(x, u(x), ·)−1 is surjective. Then for a.e. x ∈ Ω and every ξ ∈ IRn is
a(x, u(x), ξ) 6= ∅. Hence for a.e. x ∈ Ω is a(x, u(x), Du(x)) 6= ∅ and by Theorem 9 in
[4] ch.III there exists a measurable selection g: Ω → IRn of a(·, u,Du). By Remark 1.2
− div g ∈ A(u).

Lastly, A(u) is closed in H−1,p′(Ω): indeed if (fh)h∈N is a sequence in A(u) such that

fh ⇀ γ ∈ H−1,p′(Ω) applying Lemma 2.1 we get γ ∈ A(u).

Remark 2.3. Given u ∈ H1,p
0 (Ω), as in Remark 1.3 we can see that if g: Ω→ 2IRn

is a

measurable selection of a(·, u,Dv), v ∈ H1,p
0 (Ω), we have g ∈ Lp′(Ω)n.

Therefore we may define the operator Bu:H1,p
0 (Ω)→ 2H

−1,p′(Ω), by

H1,p
0 (Ω) 3 v 7→ Bu(v): = {− div η : η(x) ∈ a(x, u(x), Dv(x)) for a.e. x ∈ Ω}.

Lemma 2.1 and 2.2 hold, with analogous and more simple proof (hypothesis iii) doesn’t
need in this case), if we replace A by Bu.

Definition 2.4. ([8]) If X is a Banach space and X∗ its dual, then T :X → 2X
∗

is
coercive if for every selection τ :X → X∗, τ(x) ∈ T (x) for every x ∈ X, we have

lim
‖x‖→∞

〈τ(x), x〉
‖x‖ =∞.

If T is single valued, “coercivity” is given by the same condition with τ(x) = T (x).

Definition 2.5. ([8]) Let X be a reflexive Banach space.

T :X → 2X
∗

is said to have the generalized pseudo monotone property if for any sequence
((xh, fh))h∈N in Γ(T ) such that xh ⇀ x in X, fh ⇀ f in X∗ and for which lim sup〈fh, xh−
x〉 ≤ 0, we have (x, f) ∈ Γ(T ) and 〈fh, xh〉 → 〈f, x〉.
Definition 2.6. ([8]) Let X be a strictly convex reflexive Banach space and X∗ its
dual.
a) P :X → X∗ is said to be smooth if it is bounded, coercive, maximal monotone.

b) T :X → 2X
∗

with the generalized pseudo monotone property is called regular if T +P
is surjective for any smooth operator P :X → X∗.

Definition 2.7. ([8]) Let X be a reflexive Banach space and T :X → 2X
∗
.
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a) The map T is upper semicontinuous in x ∈ D(T ): = {x ∈ X:Tx 6= ∅}, if for any
sequence (xh)h∈N in D(T ), with xh → x in X and for any neighbourhood V of T (x),
there exists h0 ∈ N such that T (xh) ⊂ V for h > h0.
b) The map T is said to be of type (M) provided that:

M1) T (x) is bounded, convex, closed and nonempty for each x ∈ X;
M2) for each sequence ((xh, fh))h∈N in Γ(T ) such that xh ⇀ x in X, fh ⇀ f in X∗ and

for which lim sup〈fh, xh − x〉 ≤ 0, we have (x, f) ∈ Γ(T );
M3) T is upper semicontinuous from the finite-dimensional subspaces ofX toX∗ endowed

with the weak topology.

Remark 2.8. If X is a reflexive Banach space, T :X → 2X
∗

is bounded and satisfies
condition M2), then it satisfies condition M3).
Indeed let xh, x ∈ Y , h ∈ N , Y be a finite dimensional subspace of X, xh → x, V
be a weakly open neighbourhood of T (x) in X∗. If for infinitely many values of h ∈ N
we have T (xh)\V 6= ∅, then there exists an increasing sequence (hk)k∈N in N such that
for every k ∈ N there exists λk ∈ T (xhk)\V . By boundedness of T , by passing to a

further subsequence if necessary, the sequence (λk)k∈N converges weakly in X∗, so that
limk→∞〈λk, xhk − x〉 = 0 and by M2) limk→∞ λk ∈ T (x) ⊂ V . This contradicts the fact

that, as λk 6∈ V for every k ∈ N , limk→∞ λk 6∈ V .

Lemma 2.9. If u0 ∈ H1,p
0 (Ω), define A0:H1,p

0 (Ω)→ 2H
−1,p′(Ω) by

A0(v) = A(v + u0).

A being the operator in (I). If P :H1,p
0 (Ω) → H−1,p′(Ω) is any smooth operator, then

P +A0 is of type (M).

Proof. From Lemma 2.2 it follows that M1) is satisfied by P +A0.
In order to obtain M2) we first establish the following propositions:

I) If u0 ∈ H1,p
0 (Ω) is given, the operator Bu0 defined in 2.3 is maximal monotone.

II) A0 satisfies M2).

Proof of I). On account of 2.3, if v ∈ H1,p
0 (Ω) then Bu0(v) is closed, convex, non empty

and bounded. Moreover it is upper semicontinuous from the line segments in H1,p
0 (Ω)

to H−1,p′(Ω) endowed with the weak topology: if V is a weakly open neighborhood of

Bu0(v) and (vh)h∈N strongly converges to v in H1,p
0 (Ω), we can find k ∈ N such that

Bu0(vh) ⊂ V when h > k. On the contrary let us suppose that for an increasing sequence

(hk)k∈N in N , be fk ∈ Bu0(vhk)\V . Being Bu0 , as remarked in 2.3, a bounded operator,

we can extract a subsequence from (fk)k∈N , whose limit, Lemma 2.1 being true with Bu0

in place of A, belongs to Bu0(v). Then it belongs to V , contrary to the fact that fk 6∈ V
for each k ∈ N . Monotonicity of Bu0 follows from the fact that a(x, u0(x), ·) is monotone

for a.e. x ∈ Ω. Then Bu0 verifies all the hypothesis of [8] theorem in 2.3 ch.III, so that it
is maximal monotone.

Proof of II). Let ((uh, fh))h∈N be a given sequence in H1,p
0 (Ω)×H−1,p′(Ω) such that fh ∈

A(uh) for h ∈ N , uh ⇀ u in H1,p
0 (Ω), fh ⇀ f in H−1,p′(Ω) and lim sup〈fh, uh − u〉 ≤ 0.
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If gh ∈ Lp
′
(Ω)n, gh(x) ∈ a(x, uh(x), Duh(x)) for a.e. x ∈ Ω and fh = − div gh, inequal-

ity (2.1) and boundedness of (uh)h∈N in H1,p
0 (Ω) guarantee that (gh)h∈N is bounded in

Lp
′
(Ω)n. Therefore there exists g ∈ Lp

′
(Ω)n such that, by extracting a subsequence if

necessary, gh ⇀ g in Lp
′
(Ω)n. In analogy to the proof in 2.1, we obtain − div g = f .

Now we conclude by proving that if v ∈ H1,p
0 (Ω) and − div η ∈ Bu(v), then 0 ≤ 〈− div g−

(− div η), u − v〉; this fact implies − div g ∈ Bu(u) = A(u) by maximal monotonicity of

Bu. Let η ∈ Lp′(Ω) be such that η(x) ∈ a(x, u(x), Dv(x)) for a.e. x ∈ Ω. By Rellich’s
theorem there exists a subsequence of (uh)h∈N converging to u strongly in Lp(Ω). Hence,
by passing to a further subsequence if necessary, we can suppose (uh)h∈N converging a.e.
on Ω to u. Let (ηh)h∈N be given by hypothesis iii) in connection with u, v, η, (uh)h∈N ,
such that ηh → η a.e. on Ω and ηh is, for each h ∈ N , an L(Ω)-measurable selection of
x ∈ Ω 7→ a(x, uh(x), Dv(x)) ∈ IRn. By (1.2) we have for h ∈ N and a.e. x ∈ Ω:

|ηh(x)| ≤ µ(x) + c1|Dv(x)|p−1 + c2
p− 1− β
p− 1

|uh(x)|α(p−1)/(p−1−β) + c2
β

p− 1
|Dv(x)|p−1.

The sequence on the right hand side converges in Lp
′
(Ω) strongly as (1.1.1) and (1.1.2)

give αp′(p− 1)/(p− 1− β) < p∗. So ηh → η in Lp
′
(Ω)n strongly.

Having ηh(x) ∈ a(x, uh(x), Dv(x)), from monotonicity we get:

0 ≤ lim sup

∫

Ω
〈gh(x)− ηh(x), D(uh − v)(x)〉dx

= lim sup

(∫

Ω
〈gh, D(uh − u)〉dx+

∫

Ω
〈gh, D(u− v)〉dx−

∫

Ω
〈ηh, D(uh − v)〉dx

)

= lim sup〈fh, uh − u〉+

∫

Ω
(〈g,D(u− v)〉 − 〈η,D(u− v)〉)dx

≤ 〈− div g − (− div η), u− v〉.
This concludes that A, and consequently A0, satisfies condition M2).

We return to the proof of the lemma.
Now we prove property M2) for P +A0, where P is assumed to be smooth.

Let ((vh, fh))h∈N in H1,p
0 (Ω)×H−1,p′(Ω) be such that fh ∈ (P +A0)(vh) for each h ∈ N ,

vh ⇀ v in H1,p
0 (Ω), fh ⇀ f in H−1,p′(Ω) and lim sup〈fh, vh − v〉 ≤ 0. We will show that

f ∈ (P +A0)(v). Taking bh ∈ A0(vh) so that fh = P (vh)+bh, from boundedness of P and

A0, due to Lemma 2.2, we get b, d ∈ H−1,p′(Ω) such that, by extracting a subsequence if
necessary, bh ⇀ b and P (vh) ⇀ d. Hence from monotonicity of P we get:

lim sup〈bh, vh − v〉 =

= lim sup(〈P (vh) + bh, vh − v〉 − 〈P (vh)− P (v), vh − v〉 − 〈P (v), vh − v〉)
≤ lim sup(〈P (vh) + bh, vh − v〉 − 〈P (v), vh − v〉
= lim sup〈fh, vh − v〉
≤ 0.
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Proposition II) gives b ∈ A0(v), hence we may take γ: Ω → IRn measurable such that
γ(x) ∈ a(x, (v + u0)(x), D(v + u0)(x)) for a.e. x ∈ Ω and b = − div γ. Extracting a
subsequence if necessary, we can suppose (vh + u0)h∈N a.e. convergent to v + u0. Then,
like in the similar case shown in the proof of II) above, by iii) there exists, in connection
with v + u0, v + u0, γ, (vh + u0)h∈N , a sequence (γh)h∈N converging strongly to γ in

Lp
′
(Ω)n and such that γh is, for each h ∈ N , a measurable selection of the map

x ∈ Ω 7→ a(x, (vh + u0)(x), D(v + u0)(x)) ∈ IRn.

Thus, if gh ∈ Lp
′
(Ω)n, gh(x) ∈ a(x, (vh + u0)(x), D(vh + u0)(x)) for a.e. x ∈ Ω and

bh = − div gh for h ∈ N , from monotonicity of a(x, (vh + u0)(x), ·), we get:

〈P (vh), vh − v〉 = 〈P (vh) + bh, vh − v〉 − 〈bh − (− div γh), vh − v〉+ 〈div γh, vh − v〉

= 〈P (vh) + bh, vh − v〉 −
∫

Ω
〈gh − γh, D(vh + u0 − (v + u0))〉dx

−
∫

Ω
〈γh, D(vh − v)〉dx

≤ 〈fh, vh − v〉 −
∫

Ω
〈γh, D(vh − v)〉dx

and therefore lim sup〈P (vh), vh − v〉 ≤ 0. On the other hand by Proposition in 5.2 ch.III
of [8], the operator P , being maximal monotone, satisfies M2), consequently the previous
inequality ensures that P (v) = d. Thus we conclude that f = d + b ∈ (P +A0)(v) and
P +A0 satisfies M2).
Property M3) follows from boundedness of P +A0 and Remark 2.8.

Lemma 2.10. If u0 ∈ H1,p
0 (Ω), the operator A0, defined in 2.9, is coercive.

Proof. Let G:H1,p
0 (Ω) → H−1,p′(Ω) be such that G(v) ∈ A0(v) for each v ∈ H1,p

0 (Ω),

and gv ∈ Lp
′
(Ω)n, gv(x) ∈ a(x, (v + u0)(x), D(v + u0)(x)) for a.e. x ∈ Ω, be such that

G(v) = − div gv. By (2.1) we have

‖gv‖Lp′ ≤ K(‖µ‖Lp′ + (‖v + u0‖H1,p
0

)p/p
′
+ (‖v + u0‖H1,p

0
)α(p−1)/(p−1−β)).

Then by using coercivity ii2), Sobolev’s and Hölder’s inequalities:

〈G(v), v〉 =

∫

Ω
〈gv, D(v + u0)〉dx−

∫

Ω
〈gv, Du0〉dx

≥
∫

Ω
(ν + c|D(v + u0)|p)dx− ‖gv‖Lp′‖Du0‖Lp

≥ − ‖ν‖L1 + c(‖v + u0‖H1,p
0

)p −K‖Du0‖Lp(‖µ‖Lp′ + (‖v + u0‖H1,p
0

)p/p
′
+

+ (‖v + u0‖H1,p
0

)α(p−1)/(p−1−β)),

where c > 0 is a suitable constant.
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Since from condition (1.1.3) it follows that α(p− 1)/(p− 1− β) < p, the above inequality
gives the desired result.

Definition 2.11. ([8]) Let X be a normed space and X∗ its dual. A map T :X → 2X
∗

is quasi bounded if to each M > 0 there corresponds a C > 0 such that for each x ∈ X,
‖x‖ ≤M , if f ∈ Tx satisfies 〈f, x〉 ≤M‖x‖ then ‖f‖ ≤ C.

Theorem 2.12. ([8] theorem 3.5 ch.III) Let X be a reflexive strictly convex Banach

space and X∗ its dual. If T :X → 2X
∗

is maximal monotone, 0 ∈ D(T ) and H:X → 2X
∗

is quasi bounded, regular and coercive, then T +H is surjective.

Theorem 2.13. Assuming the hypotheses described in section 1, then there exists a
solution of the problem (I).

Proof. By Remark 1.4 it suffices to prove that if f ∈ H−1,p′(Ω) is given, there exists

u ∈ H1,p
0 (Ω) such that f ∈ (A + ∂IK)u. For this purpose we show that if u0 ∈ K is

given, then Theorem 2.12 can be applied to the case X = H1,p
0 (Ω), T (v) = ∂IK(v + u0),

H(v) = A(v + u0) for every v ∈ H1,p
0 (Ω).

First we show that A has the generalized pseudo-monotone property (Def. 2.5). Let

((vh, fh))h∈N be a sequence in H1,p
0 (Ω) × H−1,p′(Ω) such that fh ∈ A(vh) for h ∈ N ,

vh ⇀ v in H1,p
0 (Ω), fh ⇀ f in H−1,p′(Ω) and lim sup〈fh, vh − v〉 ≤ 0. We proved in

Lemma 2.9 that A satisfies M2), hence f ∈ A(v). For every h ∈ N we may write
fh = − div gh, f = − div g, gh(x) ∈ a(x, vh(x), Dvh(x)), g(x) ∈ a(x, v(x), Dv(x)) for a.e.
x ∈ Ω. Like in the similar case shown in the proof of II) in Lemma 2.9, by hypothesis iii)
there exists a sequence (γh)h∈N in connection with v, v, g, (vh)h∈N , such that γh → g in

Lp
′
(Ω)n and γh is a measureable selection of the map x ∈ Ω 7→ a(x, vh(x), Dv(x)) ∈ IRn;

then, by using monotonicity of a(x, vh(x), ·) we get:

〈− div gh, vh〉 =

∫

Ω
〈gh, Dvh〉dx =

=

∫

Ω
〈gh − γh, Dvh −Dv〉dx+

∫

Ω
〈γh, Dvh −Dv〉dx+

∫

Ω
〈gh, Dv〉dx

≥
∫

Ω
〈γh, Dvh −Dv〉dx+ 〈fh, v〉.

It follows that lim inf〈fh, vh〉 ≥ 〈f, v〉 and thus limh→∞〈fh, vh〉 = 〈f, v〉.
It can be easily seen that the operator H, defined by H(v) = A(v+u0), has the generalized
pseudo-monotone property, too.

We finally see that H is regular. If P :H1,p
0 (Ω) → H−1,p′(Ω) is smooth, by Lemma 2.9,

P +A0 is of type (M); moreover it is coercive and bounded because P and A0 are.
Theorem in [8] 5.4, ch.III and subsequent remarks ([8] page 156) applied to P +A0 ensure
its surjectivity, so that H is regular. On the other hand H is bounded and coercive by
Lemmas 2.2 and 2.10 so that it satisfies the hypotheses in 2.12. The domain of ∂IK is K,
then by applying Proposition 2.13 of [8] ch.III, we obtain that ∂IK is maximal monotone.
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Thus the same is true for T , defined by T (u) = ∂IK(u + u0), and Theorem 2.12 can be
applied to conclude the proof.

3. Existence theorems for problems with measure or L1 data

Notation 3.1. If any ψ ∈ L∞(Ω) is given, let:

K(ψ) = {v ∈ H1,1
0 (Ω): v ≥ ψ a.e. on Ω}

and V∞0 (Ω, ψ) = {ϕ ∈ D(Ω): ∀(vh)h∈N in H1,p
0 (Ω) ∩K(ψ), ∃(ϕh)h∈N in D(Ω) such that

ϕh → ϕ in D(Ω) and vh + ϕh ∈ K(ψ)∀h ∈ N}.
For k > 0 denote τk: IR→ IR: τk(s) = (s∧ k)∨ (−k) and vk: = τk ◦ v for any v ∈ H1,1

loc (Ω).

Remark 3.2. Let g: Ω → IRn be a measurable selection of a(·, u,Du). If, together

with the assumptions in section 1 on the multivalued map a, we suppose p ∈
(
2− 1

n , n
)

and u ∈ H1,r
0 (Ω) for every r ∈

[
1,

n(p−1)
n−1

)
, then by (1.2) and (1.1.2), it turns out that

g ∈ L1(Ω).

Weakly formulated problems

Let ψ ∈ L∞(Ω) and K(ψ) like in Notation 3.1; we assume W 1,∞
0 (Ω) ∩ K(ψ) to be non

empty. We denote p0 = n(p−1)/(n−1) and assume p ∈
(
2− 1

n , n
)
. We suppose moreover

that for a: Ω × IR × IRn → 2IRn
all conditions stated in section 1 are true but replacing

(1.1.2) by:
α

p− 1− β <
n− 1

n− p. (3.1)

Problem with measure data. Let f :B(Ω) → IR be a bounded Radon measure and
V∞0 (Ω, ψ) like in Notation 3.1. We consider the following problem:





find u ∈ K(ψ), u ∈ H1,r
0 (Ω) for each r ∈ [1, p0) and

g selection of a(·, u,Du), g ∈ Lr/(p−1)(Ω)n for each r ∈ [(p− 1) ∨ 1, p0)

such that

∫

Ω
〈g,Dϕ〉 ≥

∫

Ω
ϕdf for each ϕ ∈ V∞0 (Ω, ψ).

(II)

Problem with L1 data. Let f ∈ L1(Ω). We consider the following problem:





find u ∈ K(ψ), u ∈ H1,r
0 (Ω) for each r ∈ [1, p0) and g selection of a(·, u,Du)

g ∈ Lr/(p−1)(Ω)n for each r ∈ [(p− 1) ∨ 1, p0) such that when k ≥ ‖ψ‖L∞ :

uk ∈ H1,p
0 (Ω), 〈g,Duk〉 ∈ L1(Ω),

∫

Ω
〈g,D(uk − v)〉dx ≤

∫

Ω
f(uk − v)dx

for v ∈ W 1,∞
0 (Ω) ∩K(ψ).

(III)
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Theorem 3.3. With the assumptions in subsection 3.1, let (fh)h∈N be a sequence in

H−1,p′(Ω) ∩ L1(Ω) such that sup{‖fh‖L1: h ∈ N} < ∞. For each h ∈ N let uh ∈
H1,p

0 (Ω) ∩ K(ψ) be a solution of the problem (I) relative to K = H1,p
0 (Ω) ∩ K(ψ) and

f = fh. Then (uh)h∈N is bounded in H1,r
0 (Ω) for each r ∈ [1, p0); besides if gh ∈ A(uh),

(A as defined in our first problem (I)), satisfies 〈− div gh, v− uh〉 ≥ 〈fh, v− uh〉 for every

v ∈ H1,p
0 (Ω) ∩K(ψ), then (|gh|r/(p−1))h∈N is bounded in L1(Ω). If moreover k ≥ ‖ψ‖L∞

then (ukh)h∈N is bounded in H1,p
0 (Ω).

Proof. Let Ω(h, k) = {x ∈ Ω: k ≤ |uh(x)| < k + 1}, we prove that if k ≥ ‖ψ‖L∞ it
follows that

∫

Ω(h,k)
|Duh|pdx ≤ F p where F p =

1

c

(∫

Ω
|ν|dx+ sup

{∫

Ω
|fh|dx: h ∈ N

})
; (3.2)

and:

∫

Ωh,k

|Duh|rdx ≤ H(r, k)

(∫

Ω
|uh|r

∗
dx

)(p−r)/p
, r ∈ [1, p0) (3.3)

where Ωh,k = {x ∈ Ω: |uh(x)| ≥ k} and H(r, k) = F r
(∑∞

j=k

(
1
jr
∗

)(p−r)/r)r/p
(H(r, k) is

a positive real number because r∗(p− r)/r > 1 if r ∈ [1, p0)).

For k ≥ 0 let ϕk: IR→ IR be the odd function defined by

ϕk(t) =





0 if t ∈ [0, k]

t− k if t ∈ (k, k + 1]

1 if t ∈ (k + 1,∞)

.

Observing that uh − ϕk(uh) ∈ H1,p
0 (Ω) ∩ K(ψ) if k ≥ ‖ψ‖L∞, from the inequality∫

Ω〈gh, D(uh − v)〉dx ≤
∫

Ω fh(uh − v)dx which holds for v ∈ H1,p
0 (Ω) ∩ K(ψ), h ∈ N ,

we get
∫

Ω〈gh, Dϕk(uh)〉dx ≤
∫

Ω fhϕk(uh)dx ≤
∫

Ω |fh|dx. Moreover by (ii2) we have

∫

Ω
〈gh, Dϕk(uh)〉dx =

∫

Ω
〈gh, ϕ′k(uh)Duh〉dx

=

∫

Ω(h,k)
〈gh, Duh〉dx

≥
∫

Ω(h,k)
(ν + c|Duh|p)dx,

hence
∫

Ω(h,k) |Duh|pdx ≤ 1
c

(∫
Ω |ν|dx+ sup

{∫
Ω |fh|dx: h ∈ N

})
, namely (3.2).
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Now from (3.2):

∫

Ω(h,k)
|Duh|rdx ≤

(∫

Ω(h,k)
|Duh|pdx

)r/p
|Ω(h, k)|(p−r)/p

≤ F r

(∫

Ω(h,k)
|uh|r

∗
dx

)(p−r)/p(
1

kr
∗

)(p−r)/p
.

It follows that:

∫

Ωh,k

|Duh|rdx =
∞∑

j=k

∫

Ω(h,j)
|Duh|rdx

≤ F r
∞∑

j=k

(∫

Ω(h,j)
|uh|r

∗
dx

)(p−r)/p(
1

jr
∗

)(p−r)/p

≤ F r



∞∑

j=k

∫

Ω(h,j)
|uh|r

∗
dx




(p−r)/p

∞∑

j=k

(
1

jr
∗

)(p−r)/r


r/p

≤ H(r, k)

(∫

Ω
|uh|r

∗
dx

)(p−r)/p
,

and (3.3) is proved.

Now observing that uh − ukh + w ∈ H1,p
0 (Ω) ∩K(ψ) when k ≥ ‖ψ‖L∞ , we have∫

Ω〈gh, D(ukh − w)〉dx ≤
∫

Ω fh(ukh − w)dx, thus∫
Ω〈gh, Dukh〉dx ≤

∫
Ω〈gh, Dw〉dx+ (k+ ‖w‖L∞) sup{‖fh‖L1 : h ∈ N}. As p− 1 is less than

p0, to prove our theorem we may suppose r > p− 1, so that by Holder’s inequality:

∫

Ω
〈gh, Dukh〉dx ≤

(∫

Ω
|gh|

r
p−1dx

)p−1
r
(∫

Ω
|Dw|

r
r−p+1dx

) r−p+1
r

+

+ (k + ‖w‖L∞) sup{‖fh‖L1 : h ∈ N} for any k ≥ ‖ψ‖L∞.
(3.4)

By (1.2) there exists K1, K2 ∈ IR+ and m ∈ L1(Ω) such that

|gh(x)|p′ ≤ m(x) +K1|Duh(x)|p +K2|uh(x)|αp/(p−1−β) for a.e. x ∈ Ω

which by means of (ii2), letting ω = m− ν 1
cK1 and K = 1

cK1, gives

|gh(x)|p′ ≤ ω(x) +K〈gh(x), Duh(x)〉+K2|uh(x)|αp/(p−1−β) for a.e. x ∈ Ω.

Let k ≥ ‖ψ‖L∞ and r ∈ ((p− 1)∨ 1, p0) be fixed and Ωh,k = {x ∈ Ω: |uh(x)| ≤ k}, hence:

∫

Ωh,k
|gh|p

′
dx ≤

∫

Ωh,k
(ω +K〈gh, Dukh〉+K2|uh|αp/(p−1−β))dx
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and by (3.4):

∫

Ωh,k
|gh|p

′
dx ≤

≤
∫

Ω
(|ω|+K2k

αp/(p−1−β))dx+K(k + ‖w‖L∞) sup{‖fh‖L1: h ∈ N}+

+K

(∫

Ω
|gh|

r
p−1dx

) p−1
r
(∫

Ω
|Dw|

r
r−p+1dx

) r−p+1
r

.

(3.5)

On the other hand by r < p0 and p < n we have r/(p− 1) < p′, thus letting

c(k, r) = |Ω|(p−r)/p(K(k + ‖w‖L∞) sup{‖fh‖L1: h ∈ N}+

∫

Ω
(|ω|+K2k

αp/(p−1−β))dx)r/p,

c′(r) = |Ω|(p−r)/pKr/p
(∫

Ω |Dw|
r

r−p+1dx
) r−p+1

p
, it turns out that

∫

Ωh,k
|gh|

r
p−1dx ≤

(∫

Ωh,k
|gh|p

′
dx

)r/p
|Ω|(p−r)/p ≤ c(k, r) + c′(r)

(∫

Ω
|gh|

r
p−1dx

) 1
p′
.

Again by (1.2) there exist M1,M2 ∈ IR+ such that

|gh(x)|
r
p−1 ≤ |µ(x)|

r
p−1 +M1|Duh(x)|r +M2|uh(x)|αr/(p−1−β) for a.e. x ∈ Ω.

Since (3.1) gives n
(

1− p−1−β
α

)
< p0, by choosing r > n

(
1− p−1−β

α

)
, we have αr

p−1−β <

r∗. Hence by Holder’s and Sobolev’s inequalities:

(∫

Ω
|gh|

r
p−1dx

) 1
p′
≤

≤
(∫

Ω
(|µ|

r
p−1 +M1|Duh|r)dx+M3

(∫

Ω
|uh|r

∗
dx

) αr
(p−1−β)r∗

) 1
p′

≤ M0 +M

((∫

Ω
|Duh|rdx

) 1
p′

+

(∫

Ω
|Duh|rdx

) α
(p−1−β)p′

)
,

(3.6)

where M3,M,M0 ∈ IR+ are suitable constants.

In the coercivity condition (ii2) we may suppose |ν|c ≥ 1, so that
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|Duh(x)|r ≤
(

2
c

)r/(p−1)
(|gh(x)|r/(p−1) + |ν(x)|r/(p−1)) for a.e. x ∈ Ω. Then by (3.6)

∫

Ωh,k
|Duh|rdx ≤

≤
(

2

c

)r/(p−1)

[c(k, r) + c′(r)
(∫

Ω
|gh|

r
p−1dx

) 1
p′

+

∫

Ω
|ν|

r
p−1dx]

≤
(

2

c

) r
p−1

[c(k, r) + c′(r)

(
M0 +M

((∫

Ω
|Duh|rdx

) 1
p′

+

(∫

Ω
|Duh|rdx

) α
(p−1−β)p′

))

+

∫

Ω
|ν|

r
p−1dx].

By (3.3) and Sobolev’s inequality:
∫

Ωh,k
|Duh|rdx ≤ H(r, k)S

(∫
Ω |Duh|rdx

)r∗(p−r)/rp
, so

that by adding the above inequality:

∫

Ω
|Duh|rdx ≤

≤
(

2

c

) r
p−1

[c(k, r) + c′(r)

(
M0 +M

((∫

Ω
|Duh|rdx

) 1
p′

+

(∫

Ω
|Duh|rdx

) α
(p−1−β)p′

))
+

+

∫

Ω
|ν|

r
p−1dx] +H(r, k)S

(∫

Ω
|Duh|rdx

)r∗(p−r)/rp
.

Since α
(p−1−β)p′ < 1 by (1.1.3) and r∗(p − r)/rp < 1 as p < n, the last inequality gives

boundedness of
(∫

Ω |Duh|rdx
)
h∈N . Hence by Sobolev’s inequality, (uh)h∈N is bounded in

H1,r
0 (Ω) if r ∈ [1, p0).

By using (1.2) again, if M4 > 0 is a suitable constant:

∫

Ω
|gh|r/(p−1)dx ≤M4

∫

Ω
(|µ|r/(p−1) + |Duh|r + |uh|αr/(p−1−β))dx.

Now (3.1) involves that αr/(p−1−β) < p∗0, so that (|gh|r/(p−1))h∈N is bounded in L1(Ω)

if r ∈ [1, p0) as (uh)h∈N is bounded in Lq(Ω) for every q ∈ [1, p∗0).

Finally from (3.5), being k ≥ ‖ψ‖L∞, we obtain that (gh1Ωh,k)h∈N is bounded in (Lp
′
(Ω))n.

By coercivity condition ii2), the same is true for (ukh)h∈N in H1,p
0 (Ω).

Definition 3.4. ([1]) Let Ω be a bounded open set in IRn, the norm-capacity of H1,p
0 (Ω)

is the map cp: 2Ω → [0,∞] defined as follows:

cp(K) = inf{‖u‖
H1,p

0
: u ∈ C1

0 (Ω), u ≥ 0 on Ω, u ≥ 1 on K} if K ⊂ Ω is compact,

cp(U) = sup{cp(K):K compact ⊂ U} if U ⊂ Ω is open,



P. Oppezzi, A. M. Rossi / Existence of solutions for unilateral problems 255

cp(E) = inf{cp(U):U open ⊃ E} for arbitrary E ⊂ Ω.

Definition 3.5. ([1]) We say that u: Ω → IR is cp-quasicontinuous, with cp defined in

3.4, if for every ε > 0 there exists an open set Uε ⊂ Ω, with cp(Uε) < ε, such that u|Ω\Uε
is continuous.

Proposition 3.6. Let Ω be a bounded open set in IRn and cp the norm-capacity as in
definition 3.4.

i) If E ∈ L(Ω) and cp(E) = 0, then |E| = 0.

ii) If u ∈ H1,p
0 (Ω) there exists ũ: Ω → IR cp-quasi continuous, such that u = ũ a.e. on

Ω.

Proof. i) If E ∈ L(Ω) and |E| > 0, there exists a compact K ⊂ E with |K| > 0, hence

by definition of cp and its monotonicity cp(E) ≥ cp(K) ≥ |K|1/p.
ii) For this proof we refer to [1], Proposition 2.8, or, for a more immediate statement,

to [6] Proposition 7.7. Indeed it is possible to verify that, in the case of H1,p
0 (Ω), the

two definitions of capacity given in [1] and in [6] coincide with cp introduced above and
moreover the two quasi-continuous representatives coincide except on a set of zero capacity
at most. See also [11] and [7] for a general overview on the notion of capacity and relative
properties.

Notation 3.7. If u ∈ H1,p
0 (Ω) we denote henceforth by ũ a cp-quasi continuous repre-

sentative of u.

Definition 3.8. ([1]) A Radon measure µ:L(Ω) → IR is said to be of finite energy

relative to H1,p
0 (Ω) if it is continuous on (C1

0(Ω), ‖‖H1,p).

Proposition 3.9.

i) If µ:L(Ω)→ IR is a positive and finite energy Radon measure relative to H1,p
0 (Ω) then

µ(E) = 0 if E ∈ L(Ω) and cp(E) = 0. Moreover ũ ∈ L1(Ω, µ) for any u ∈ H1,p
0 (Ω).

ii) Let ϕ ∈ H−1,p′(Ω) be a positive functional. Then there exists a positive finite energy

Radon measure µϕ such that 〈ϕ, u〉 =
∫

Ω ũdµϕ for every u ∈ H1,p
0 (Ω).

Proof. It follows from [1], Propositions 2.20, 2.21, 2.22.

Definition 3.10. ([1]) A convex set K ⊂ H1,p
0 (Ω) is unilateral if it is closed, nonempty

and:

- u ∧ v ∈ K for every u, v ∈ K;

- u+ ṽ ∈ K for every u ∈ K, v ∈ H1,p
0 (Ω), with ṽ ≥ 0 cp − a.e.

Theorem 3.11. Let K ⊂ H1,p
0 (Ω) be an unilateral convex set.

a) There exists χ: Ω → [−∞,∞] cp-quasi upper semicontinuous (i.e. for every ε > 0

there is an open set A ⊂ Ω with cp(A) < ε such that χ|Ω\A is upper semicontinuous)

such that
K = {u ∈ H1,p

0 (Ω): ũ ≥ χ cp − a.e. on Ω}.
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b) Let f ∈ H−1,p′(Ω) be given and u ∈ H1,p
0 (Ω) be a solution of (I) where K is supposed

to be unilateral. Then if g ∈ A(u) is such that 〈− div g, v − u〉 ≥ 〈f, v − u〉 for every
v ∈ K, and χ is related to K as in a), there exists a positive and finite energy Radon
measure µ such that:

∫

Ω
ṽdµ = 〈− div g − f, v〉 for every v ∈ H1,p

0 (Ω) and

∫

Ω
(ũ− χ)dµ = 0.

Proof. See [1] Théorème 3.2 and Généralization.

Lemma 3.12. Let f ∈ H−1,p′(Ω) be given and u ∈ H1,p
0 (Ω) be a solution of the problem

(I) where K ⊂ H1,p
0 (Ω) is assumed to be an unilateral convex set. If g ∈ A(u) satisfies

〈− div g, v − u〉 ≥ 〈f, v − u〉 for every v ∈ K, then:

i)
∫

Ω〈g,D(ϕ(u− v))〉dx ≤ 〈f, ϕ(u − v)〉 for every v ∈ K and ϕ ∈ C1(Ω) ∩W 1,∞(Ω),

ϕ ≥ 0 on Ω.

ii) If v ∈ K, u− v ∈ L∞(Ω), ϕ ∈ H1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 a.e. on Ω, then ϕ(u− v) ∈

H1,p
0 (Ω) and ∫

Ω
〈g,D(ϕ(u− v))〉dx ≤ 〈f, ϕ(u− v)〉.

Proof. i) Let χ and µ be as in theorem 3.11, ϕ ∈ C1(Ω) ∩W 1,∞(Ω), ϕ ≥ 0 and v ∈ K.

It can be easily seen that ϕ(u− v) ∈ H1,p
0 (Ω), thus if χ and µ are given by Theorem 3.11:

∫

Ω
〈g,D(ϕ(u− v))〉dx = 〈− div g, ϕ(u− v)〉

= 〈− div g − f, ϕ(u− v)〉+ 〈f, ϕ(u− v)〉 =

∫

Ω
ϕ(ũ− ṽ)dµ+ 〈f, ϕ(u− v)〉

=

∫

Ω
ϕ(ũ− χ)dµ+

∫

Ω
ϕ(χ− ṽ)dµ+ 〈f, ϕ(u− v)〉 ≤ 〈f, ϕ(u− v)〉.

The last inequality depends also on Proposition 3.9i) which, by ṽ ≥ χ cp-a.e. on Ω, gives
ṽ ≥ χ µ-a.e. on Ω.

ii) If ϕ ∈ H1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 a.e. on Ω, there exists a sequence (ϕi)i∈N in C1

0 (IRn),

ϕi → ϕ in H1,p(Ω), with ‖ϕi‖L∞ ≤ ‖ϕ‖L∞, ϕi ≥ 0 for every i ∈ N . To see this
we may take ϕi = Jεi ∗ ϕ where Jεi are the usual mollifiers and εi ↘ 0. Therefore,

by passing to a subsequence if necessary, ϕi(u − v) → ϕ(u − v) in H1,p
0 (Ω). Hence

〈f, ϕi(u− v)〉 → 〈f, ϕ(u− v)〉,
∫

Ω〈g,D(ϕi(u− v))〉dx →
∫

Ω〈g,D(ϕ(u− v))〉dx and from

i) follows ii).

Remark 3.13. With the assumptions in subsection 3.1, for a given (fh)h∈N such that
sup{‖fh‖L1: h ∈ N} < ∞ let us take (uh)h∈N , (gh)h∈N as in Theorem 3.3 and fix r ∈
((p−1)∨1, p0) and k ≥ ‖ψ‖L∞. Then let u ∈ H1,r

0 (Ω) be the weak limit of a subsequence

of (uh)h∈N , Ωk = {x ∈ Ω: |u(x)| < k}, Ωh,k = {x ∈ Ω: |uh(x)| < k}, gh,k = gh1Ωh,k .
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From boundedness of (ukn)h∈N in H1,p
0 (Ω), due to Theorem 3.3, by using (1.2) it follows

that (gh,k)h∈N is bounded in Lp
′
(Ω)n. Moreover if (hj)j∈N is an increasing sequence in N

such that ghj ⇀ g in Lr/(p−1)(Ω)n, uhj ⇀ u in H1,r
0 (Ω) and ghj ,k ⇀ g̃k in Lp

′
(Ω)n, then

g̃k(x) = g(x) for a.e. x ∈ Ωk.

By Rellich’s theorem we may assume also uhj → u a.e. in Ω. Thus, if ε, δ ∈ IR+ there exists

Ω(ε) ⊂ Ωk−δ such that uhj → u uniformly on Ω(ε) and |Ωk−δ\Ω(ε)| < ε. Let jε,δ ∈ N be

such that |uhj (x)| < k when j > jε,δ and x ∈ Ω(ε), hence Ω(ε) ⊂ Ωhj ,k if j > jε,δ. Since

if x ∈ Ω(ε) is ghj ,k(x) = ghj (x), it follows that
∫
E gdx = limj→∞

∫
E ghj ,kdx =

∫
E g̃kdx for

any E ⊂ Ω(ε) measurable. Therefore g = g̃k a.e. on Ω(ε) and from the arbitrariness of

ε, δ it easily follows that g̃k = g a.e. on Ωk.

Theorem 3.14. With the assumptions in subsection 3.1, let (fh)h∈N , (uh)h∈N , (gh)h∈N
as in Theorem 3.3. If u ∈ H1,r

0 (Ω), g ∈ Lr/(p−1)(Ω)n for some r ∈ ((p− 1) ∨ 1, p0), and

uh ⇀ u in H1,r
0 (Ω), gh ⇀ g in Lr/(p−1)(Ω)n, then

u ∈ K(ψ) and g(x) ∈ a(x, u(x), Du(x)) for a.e. x ∈ Ω.

Proof. By passing to a subsequence if necessary, by Rellich’s theorem we may suppose
that uh → u a.e. on Ω, thus, being (uh)h∈N in K(ψ), we get u ∈ K(ψ).

Let w ∈ W 1,∞
0 (Ω) ∩ K(ψ), ϑ ∈ C1

0(Ω), ϑ ≥ 0, k ≥ ‖ψ‖L∞ and Ωk, Ωh,k, gh,k be like in
3.13.

Moreover let us consider, for ε ∈ IR+, τε: IR → IR defined as in Notation 3.1 and, for
k ∈ (1,∞), the even function σk: IR→ IR defined by

σk(t) =





1 if 0 ≤ t < k − 1

0 if t ≥ k

−t + k if k − 1 ≤ t < k

We observe that ukh = τk ◦ uh ⇀ uk = τk ◦ u in H1,p
0 (Ω). Indeed as (ukh)h∈N is bounded in

H1,p
0 (Ω), due to Theorem 3.3, every subsequence has a subsequence converging in H1,p

0 (Ω),

whose limit is uk because uh → u a.e. on Ω.

Now let ξ ∈ IRn, η be a measurable selection of a(·, uk, ξ) and (ηh)h∈N be given by

hypothesis iii) in connection with uk, (ukh)h∈N , v(x) = 〈ξ, x〉 and η, such that ηh → η a.e.

in Ω and ηh is a measurable selection of a(·, ukh, ξ) for every h ∈ N .

Letting ϕh,k = (σk ◦ uh)(σk ◦ u)ϑ, from monotonicity of a(x, uh(x), ·) for a.e. x ∈ Ω and

from definition of ϕh,k it follows that:
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0 ≤
∫

Ω
〈gh − ηh, Duh − ξ〉τ ′ε ◦ (uh − u)ϕh,kdx =

=

∫

Ω
〈gh, D(uh − u)〉τ ′ε ◦ (uh − u)ϕh,kdx +

∫

Ω
〈gh, Du〉τ ′ε ◦ (uh − u)ϕh,kdx+

−
∫

Ω
〈gh, ξ〉τ ′ε ◦ (uh − u)ϕh,kdx−

∫

Ω
〈ηh, Duh − ξ〉τ ′ε ◦ (uh − u)ϕh,kdx.

(3.7)

Now, by Proposition 3.6i), K(ψ) ∩H1,p
0 (Ω) is an unilateral convex set.

Since uh−τε◦(uh−u) ∈ K(ψ), Lemma 3.12ii) may be applied with ϕh,k, uh, uh−τε◦(uh−u)

instead of ϕ, u and v respectively, getting:
∫

Ω
〈gh, D(uh − u)〉τ ′ε ◦ (uh − u)ϕh,kdx =

∫

Ω
〈gh, Dτε ◦ (uh − u)〉ϕh,kdx

=

∫

Ω
〈gh, D(ϕh,kτε ◦ (uh − u))〉dx−

∫

Ω
〈gh,k, Dϕh,k〉τε ◦ (uh − u)dx

≤
∫

Ω
〈fh, ϕh,kτε ◦ (uh − u)〉dx−

∫

Ω
〈gh,k, (σ′k ◦ uh)Duh〉(σk ◦ u)ϑτε ◦ (uh − u)dx

−
∫

Ω
〈gh,k, (σ′k ◦ u)Du〉(σk ◦ uh)ϑτε ◦ (uh − u)dx+

−
∫

Ω
〈gh,k, Dϑ〉(σk ◦ uh)(σk ◦ u)τε ◦ (uh − u)dx

≤ ε sup
h∈N
‖fh‖L1‖ϑ‖L∞ + ε sup

h∈N
‖gh,k‖Lp′ sup

h∈N
‖Dukh‖Lp‖ϑ‖L∞+

+ ε sup
h∈N
‖gh,k‖Lp′‖Du

k‖Lp‖ϑ‖L∞ + ‖τε ◦ (uh − u)Dϑ‖Lp sup
h∈N
‖gh,k‖Lp′ ,

where, by Remark 3.13, suph∈N ‖gh,k‖Lp′ <∞.

We observe that Dukτ ′ε ◦ (uh−u)(σk ◦uh)(σk ◦u)ϑ→ Duk(σk ◦u)2ϑ a.e. on Ω and hence

strongly in Lp(Ω)n. Thus if g̃k is the weak limit in Lp
′
(Ω)n of a subsequence of (gh,k)h∈N

which we shall denote by (gh,k)h∈N as well, by Remark 3.13, we have:

lim
h→∞

∫

Ω
〈gh, Du〉τ ′ε ◦ (uh − u)ϕh,kdx

= lim
h→∞

∫

Ω
〈gh,k, Duk〉τ ′ε ◦ (uh − u)(σk ◦ uh)(σk ◦ u)ϑdx

=

∫

Ω
〈g̃k, Duk〉(σk ◦ u)2ϑdx =

∫

Ω
〈g,Duk〉(σk ◦ u)2ϑdx.

Now since gh ⇀ g in Lr/(p−1)(Ω)n, ξτ ′ε ◦ (uh − u)ϕh,k → ξ(σk ◦ u)2ϑ a.e. on Ω and

consequently in the norm of Lq(Ω)n for every q ∈ (1,∞), it follows that:

lim
h→∞

∫

Ω
〈gh,−ξ〉τ ′ε ◦ (uh − u)ϕh,kdx =

∫

Ω
〈g,−ξ〉(σk ◦ u)2ϑdx.
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The growth condition ii1) involves that

|ηhτ ′ε ◦ (uhj − u)ϕh,k| ≤ (µ+ c1|ξ|p−1 + c2|ukh|α|ξ|β)ϑ1Ωh,k a.e. on Ω.

Thus since ηhτ
′
ε ◦ (uh − u)ϕh,k → η(σk ◦ u)2ϑ a.e. on Ω such a convergence is also strong

in Lp
′
(Ω)n. On the other hand (Dukh − ξ) ⇀ (Duk − ξ) in Lp(Ω)n, so that:

lim
h→∞

∫

Ω
〈−ηh, Duh − ξ〉τ ′ε ◦ (uh − u)ϕh,kdx

= lim
h→∞

∫

Ω
〈−ηh, Dukh − ξ〉τ ′ε ◦ (uh − u)ϕh,kdx

=

∫

Ω
〈−η,Duk − ξ〉(σk ◦ u)2ϑdx =

∫

Ω
〈−η,Du− ξ〉(σk ◦ u)2ϑdx.

From (3.7) and all above inequalities, being limh→∞ ‖τε ◦ (uh − u)Dϑ‖Lp = 0, we get:

0 ≤
∫

Ω
〈g − η,Du− ξ〉(σk ◦ u)2ϑdx + ε(sup

h∈N
‖fh‖L1 + sup

h∈N
‖gh,k‖Lp′ sup

h∈N
‖Dukh‖Lp+

+ sup
h∈N
‖gh,k‖Lp′‖Duk‖Lp)‖ϑ‖L∞ .

Since ε and ϑ are arbitrary it follows that: 0 ≤ 〈g − η,Duk − ξ〉(σk ◦ u)2 a.e. on Ω,

hence 0 ≤ 〈g − η,Duk − ξ〉 a.e. on Ωk−1. Also ξ ∈ IRn and the measurable selection η

of a(·, uk, ξ) are arbitrarily choosen, so that, like in the last part of the proof of Lemma

2.1, we get 〈g(x) − ζ,Du(x) − ξ〉 ≥ 0 for a.e. x ∈ Ωk−1, every ξ ∈ IRn and every

ζ ∈ a(x, uk(x), ξ). Finally the maximal monotonicity of a(x, u(x), ·) for a.e. x ∈ Ω,

ensures that g(x) ∈ a(x, u(x), Du(x)) for a.e. x ∈ Ωk−1, which concludes the proof as k
is also arbitrary.

Theorem 3.15. With the assumptions in subsection 3.1, there exists a solution of the
problem (II) where f :B(Ω)→ IR is a bounded Radon measure.

Proof. Let us define fh: Ω → IR by fh(x) =
∫

Ω Jεh(x − y)df(y), where Jεh are the

usual mollifiers and εh ↘ 0. Then (fh)h∈N is a sequence of H−1,p′(Ω) ∩ L1(Ω) such that
sup{‖fh‖L1: h ∈ N} < ∞ and fh → f in the distributional sense. Corresponding to

each fh, by Theorem 2.13 there exist uh ∈ H1,p
0 (Ω) ∩K(ψ) and gh ∈ A(uh), solving the

problem (I), i.e. 〈− div gh, v − uh〉 ≥ 〈fh, v − uh〉 for every v ∈ H1,p
0 (Ω) ∩ K(ψ). By

Theorem 3.3, fixing r ∈ ((p−1)∨1, p0), there exist u ∈ H1,r
0 (Ω)∩K(ψ), g ∈ Lr/(p−1)(Ω)n

and an increasing sequence (hj)j∈N in N such that uhj ⇀ u in H1,r
0 (Ω) and ghj ⇀ g in

Lr/(p−1)(Ω)n. Then for any s ∈ ((p− 1)∨ 1, p0) we have uhj ⇀ u in H1,s
0 (Ω) and ghj ⇀ g

in Ls/(p−1)(Ω)n. Indeed from every subsequence of (uhj )j∈N we can extract a further

subsequence which weakly converges in H1,s
0 (Ω), whose limit still is u, as H−1,r′(Ω) ⊂

H−1,s′(Ω). We can apply the same argument to (ghj )j∈N .
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Moreover by Theorem 3.14, g(x) ∈ a(x, u(x), Du(x)) for a.e. x ∈ Ω. Now if some
ϕ ∈ V∞0 (Ω, ψ) is given, by definition of V∞0 (Ω, ψ) there exists (ϕh)h∈N in D(Ω), ϕh → ϕ

in the topology of D(Ω), such that for every h ∈ N uh + ϕh ∈ K(ψ). Thus from∫
Ω〈gh, Dϕh〉dx ≥

∫
Ω fhϕhdx letting h→∞, we get

∫
Ω〈g,Dϕ〉dx ≥

∫
Ω ϕdf .

Theorem 3.16. With the assumptions made in subsection 3.1, there exists a solution

of problem (III) where f is supposed to be an element of L1(Ω) and ψ ∈ L∞(Ω).

Proof. Let (fh)h∈N be a sequence in H−1,p′(Ω)∩L1(Ω) such that fh → f in L1(Ω). For

every h ∈ N we consider a solution uh ∈ H1,p
0 (Ω)∩K(ψ) of problem (I) corresponding to

fh, which exists by Theorem 2.13. Then, for every h ∈ N , let gh ∈ A(uh) be such that

〈− div gh, v− uh〉 ≥ 〈fh, v− uh〉 for any v ∈ H1,p
0 (Ω)∩K(ψ). For a fixed k ≥ ‖ψ‖L∞ , like

in the proof of the previous theorem, in virtue of Theorems 3.3 and 3.14 and of Remark

3.13, there exist u ∈ H1,r
0 (Ω) and a selection g ∈ Lr/(p−1)(Ω)n of a(·, u,Du), such that,

by passing to a subsequence if necessary, uh ⇀ u in H1,r
0 (Ω) and a.e. in Ω, gh ⇀ g in

Lr/(p−1)(Ω)n for every r ∈ ((p − 1) ∨ 1, p0). Moreover, if ukh = τk ◦ uh and uh = τk ◦ u,

with τk defined as in 3.1, then ukh ⇀ uk in H1,p
0 (Ω) and a.e. on Ω. When k ≥ ‖ψ‖L∞ then

uh − ukh + v ∈ H1,p
0 (Ω) ∩K(ψ), so that for any v ∈ W 1,∞

0 (Ω) ∩K(ψ), h ∈ N :

∫

Ω
〈gh, D(ukh − v)〉dx ≤

∫

Ω
fh(ukh − v)dx. (3.8)

Like in Remark 3.13 let Ωh,k = {x ∈ Ω: |uh(x)| < k}, gh,k = gh1Ωh,k , so that

∫

Ω
〈gh, Dukh〉dx =

∫

Ω
〈gh − gh,k, Dukh〉dx+

∫

Ω
〈gh,k, Dukh〉dx =

∫

Ω
〈gh,k, Dukh〉dx.

Let now γ be a measurable selection of a(·, uk, Duk) such that γ|Ωk = g|Ωk , where Ωk =

{x ∈ Ω: |u(x)| < k}. By hypothesis (iii) for every h ∈ N we may take a measurable

selection γh of a(·, ukh, Duk) such that γh → γ a.e. in Ω.

Moreover taking monotonicity of a(x, uh(x), ·) into account:

∫

Ω
〈gh,kDukh〉dx

=

∫

Ωh,k
〈gh,k − γh, Dukh −Duk〉dx+

∫

Ω
〈gh,k, Duk〉dx+

∫

Ωh,k
〈γh, Dukh −Duk〉dx

≥
∫

Ωh,k
〈γh, Dukh −Duk〉dx+

∫

Ω
〈gh,k, Duk〉dx.

By Remark 3.13 there exists g̃k ∈ Lp
′
(Ω)n such that, by passing to a further subsequence

if necessary, gh,k ⇀ g̃k in Lp
′
(Ω)n and g̃k(x) = g(x) for a.e. x ∈ Ωk.

Hence 〈g,Duk〉 ∈ L1(Ω) and
∫

Ω〈gh,k, Duk〉dx→
∫

Ω〈g,Duk〉dx.
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Now we see that (γh)h∈N is strongly convergent to γ in Lp
′
(Ω)n: indeed from growth

condition (ii1) it follows that |γh| ≤ µ + c1|Duk|p−1 + c2|ukh|α|Duk|β a.e. on Ω and

|Duk|β ∈ Lp′(Ω) as, by (1.1.3), βp′ < p.

Moreover (Dukh−Duk)1Ωh,k ⇀ 0 in Lp(Ω)n as Duk(1Ωh,k−1Ωk)→ 0 a.e. on Ω. Therefore

lim
h→∞

∫

Ωh,k
〈γh, Dukh −Duk〉dx = 0.

Then from (3.8) it follows that for a suitable increasing sequence (hj)j∈N in N we get:

∫

Ω
〈g,D(uk − v)〉dx

= lim
h→∞

∫

Ωh,k
〈γh, Dukh −Duk〉dx+

∫

Ω
〈gh,k, Duk〉dx−

∫

Ω
〈gh, Dv〉dx ≤

≤ lim
j→∞

∫

Ω
〈ghj , D(ukhj − v)〉dx ≤ lim

j→∞

∫

Ω
fhj (u

k
hj
− v)dx =

∫

Ω
f(uk − v)dx.
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