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We prove some new results about the existence of solutions of variational inequalities with quasilinear
operators having the generalized pseudo-monotone property. We also consider the case where data are

Radon measures or L1 elements.

Introduction

Let © be a bounded open subset of R", 1 < p < n, ¢» € L*®(Q2). The problem we are
going to consider, when f lies in the dual space of H&’p (€2), has the form

find we HY(Q), u>1
find ¢ € A(u) satisfying (0)
Coo—up2 {fo—u) forany veHPQ), v,

where A is a multivalued operator defined on H& P(Q) with values in its dual H *1’1’/(9)
(p = p/(p—1)). More precisely we take a multivalued map a defined on  x R x R"
with values in R", maximal monotone with respect to the last variable. Then ¢ € A(u)
if and only if ( = —div g and g is a measurable selection of the map

x € Q> a(x,u(r), Du(z)) C R™.

When a is single-valued and strictly monotone with respect to the last variable, some
particular case of this problem was developed for example by Pascali and Sburlan in [8],
ch. VI

When f € L1(Q), after a suitable formulation of the inequality in (0), various existence
results, which consider particular cases of single valued and strictly monotone operators,
were obtained for example by L. Boccardo and T. Gallouet in [2] and L. Boccardo and
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G.R. Cirmi in [3]. Another kind of existence result for single valued operators was provided
by J.M. Rakotoson in [9] for the case of f Radon measure.

In this work we first give, in section 2, an existence theorem with f in H *1’1’/(9) and a
multivalued operator A of the above kind. The form of the problem (0) is adopted for
example by R.T. Rockafellar in [10] and by G. Dal Maso - A. Defranceschi in [5].

In section 3 we deal with the cases where f is a bounded Radon measure or an L function.
In the first case we give an existence theorem for the problem stated in analogy with the

one in [9]. Then when we take f € L(Q), we prove another existence theorem after
stating the problem in analogy with the one in [2].

1. Formulation of the problem
Notation and Hypotheses

Let © be a bounded open set of R"™, n > 2, we denote by H&’p(Q), for 1 < p < oo,
the usual Sobolev space, by H _1’7’/(9) its dual; by (.,.) the scalar product on R" or

the duality between Hé’p () and H~'?'(Q). The symbol ||||z» will denote the norm in

LP(Q)™ or in LP(Q)) and xp — 2 will mean that the sequence (xp)pen of a certain dual of
a Banach space, converges to x in the weak topology.

Let a: QxR xR™ — 2" be £(Q) x B(R) x B(IR™)-measurable, namely for every open set
UcCR", a Y (U):={(z,5¢&) € QxRxR"™ Una(z,s &) # 0} € L(Q) x B(R) x B(R™).
For a single or multivalued map F' we also denote by I'(F') its graph.

We assume p € (1,n) and «, 5 € R4 such that

o p* Q /

with p* = np/(n — p), p’ = p/(p — 1). Besides we suppose a to be closed and convex
valued and satisfying the following conditions:

i) fora.e. x € Qandevery s € R, a(z,s,):R" — 2R" is maximal monotone;
ii) there exist u € Lp/(Q), ve LY=1(Q), ¢,¢1,co € Ry such that

[ < u(x) +er €~ + eaf s| €] (ii1)

(n,€) = v(x) + gl (ii2)
for a.e. x € Q, for every s € R, £ € R", n € a(z, s,§).
i) if u, v, (up)pen, N are given, being u € HyP(Q), v € HYP(Q), (up)peny in HyP ()
such that up, — u a.e. in  and n an £(£2)-measurable selection of the map
x € Q> a(r,u(r), Dv(r)) C R",
then there exists (1, )pen converging a.e. to n in €2, such that, for every h € N, np, is
an L£(§2)-measurable selection of the map = € Q +— a(x,up(x), Dv(x)) C R".

From now on “measurability” will have the meaning adopted above for the multivalued
function a.
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Remark 1.1. The assumption iii) is for instance satisfied by all multivalued functions

of the form: a(z, s,€) = ag(x, €)4-a1(z, s,€) with ag: Qx R" — 2B" 4 Ox RxR" — R"
measurable and aj(z, -, &) continuous for a.e. x € Q and every £ € R". Indeed if n is
an L£(€)-measurable selection of the map = € Q — a(z,u(z), Dv(x)) € R", the sequence
(n)hen defined by

() = n(x) — a1(x, u(x), Du(x)) + ai(z, up(z), Do(z))
satisfies iii).
Another case in which iii) is true is given by a: Q@ x R x R" — 2R defined by a(x,s,§) =
{Aap(z,5,€) + (1 — Nai(zx,s,€), A € [0,1]}, where a;: 2 x R x R" — R", i = 1,2, are
measurable functions, continuous in the second variable for a.e. z € Q and every £ € R".

Remark 1.2. Ifu:Q — R, w:Q — R" are £(2)-measurable,

T €Q a(,u,w)(r) = a(z, u(z), w(z)) € 27
turns out to be measurable as well.
Indeed, if U C IR" is an open set,

()

={reQdInelUnalzr,u(r),w(x))}

={reQanelseR e R"|(z,5&n) € (a)N(L((u,w)) x R")}

= pro(l'(a) N (I'((u,w)) x R") N (2 x R x R" x U)),
so that the assertion follows by Theorem II1.23 in [4] (here prg denotes the projection
from Q@ x R x R" x R" into Q).
Remark 1.3. If ¢:Q — 2" is a measurable selection of a(-,u, Dv), u,v € Hé’p(Q),
then g € Lp/(Q)”. Indeed, by hypothesis (iil) and Young’s inequality we have:

lg(z)| < M(l’)+cl|Dv(x)|p_1+02u|u(x)|a(p_1)/(p_1_ﬁ)+02
p

7 [Do(z)P~ (1.2)

p—1

where by (1.1.2) we have ap’(p — 1)/(p — 1 — ) < p*, so that our assertion follows by
Sobolev’s inequality.

/

Problem. Let A: HyP(Q) — 25" (9" be defined by
A(u) ={g € (LpI(Q))":g(x) € a(x,u(x), Du(z)) forae x€Q},

and A: Hé’p(Q) _oH (@) by A(u) = {—divg:g € A(u)}.

If a non-empty closed convex set K C H&’p (Q) and f € H *1’1’/(9) are given, our first
problem is stated as follows:

uec K
I
{HQGA(U) such that ((,v—wu) > (f,v —u) forevery v € K. 0
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Remark 1.4. It is easy to show that problem (I) is equivalent to the relation

fe (.A+ 8IK)u,

where Ol is the subdifferential of the indicator function g of K.

2. Existence of solutions for the problem (I)

Lemma 2.1. If ((up, fn))nen s a sequence in H&’p(Q) x H=17'(Q) such that f;, € A(up,)
forhe N, up — u € Hé’p(Q) strongly and fr, — f € H*Lpl(Q) weakly, then f € A(u).

Proof. By the definition of A, for every h € N there exists g, € Lp/(Q)” such that
gn(z) € a(z,up(x), Dup(z)) for a.e. = € Q and f, = —divgy. Taking (1.2) and the

boundedness of (up)pen in Hé P(Q) into account, we obtain that the sequence (gp,)pen is
bounded in Lp/(Q)".

Therefore there exists g € LpI(Q)" such that, by passing to a subsequence if necessary,
gn — g in LPI(Q)” Now we prove that f = —divg and g(x) € a(z,u(z), Du(x)) for
a.e. x € Q. Since (f,v) = limp_oo(— div gp, v) = limp, o0 [ (g, DV)dx = [(g, Dv)dz =
(—div g,v) for every v € H&’p(Q), we get f = —divyg.

To conclude we show that for every £ € R" and ¢ € a(z,u(z),§)is (g(x)—(, Du(z)—&) >0
for a.e. z € Q. Then from maximal monotonicity of the map £ € R" — a(z,u(z),§) €

2™ for z € 0\ Q where € has Lebesgue measure zero, it follows that g(z) € a(z, u(x),
Du(x)). Let n be a measurable selection of a(-, u, ). Since, by passing to a subsequence if
necessary, (up)pen converges a.e. to u, by hypothesis iii), there exists a sequence (n;,)nen
converging a.e. to n on €2, such that for every h € N n;, is an £(£2)-measurable selection

of the map = € Q — a(z, up(z), &) € 28", We note first that from (iil) it follows that
np, — 1 in LPI(Q)”, indeed for every h € N and a.e. z € 2 we have:

[ (@)] < plw) + e € + eafun(2)]*[€)°

where the right hand side converges in LP ()" as ap/ < p*. If ¢ € C(Q), ¢ > 0,
since the map £ € R" — a(z, up(z), &) € 28" is monotone for a.e. € Q and for every

h e N, wehave 0 < [, (gr,—np, Dup—E)@dx. Taking the convergence of (g )nen, (Mn)hen

(Dup)pen into account, we have limp_o [ (gh —nh, Dup, —&)de = [(g—n, Du—&)pdx
and since ¢ is arbitrary, we obtain (g(z) — n(x), Du(z) — §) > 0 for a.e. = € Q. But the
selection 7 is also arbitrary, so that from Theorem II1.9 in [4], which ensures the existence
of a sequence (0p)pen of measurable selections of a(-,u,&) such that {op(z):h € N} is
dense in a(z,u(x),§), it follows that (g(x) — (, Du(z) — &) > 0 for a.e. x €  and every

¢ €alx,u(r),f). O

Lemma 2.2. [fuc€ H&’p(Q) and A is the operator defined in 1.1, then A(u) is closed,

convex, nonempty and bounded. Moreover A: Hé’p(Q) — 9HTYQ) 4o g bounded operator.
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Proof. From hypothesis (iil) about a we immediately get boundedness of A(u): indeed
if —divg € A(u), g € A(u), taking (1.2) and ap/(p — 1 — B) < p* into account, from
Sobolev’s inequality it follows that for a suitable constant K

lgll o < Kl o + (1Dl )PP 4 (|| Dl ) * P~/ =125, (2.1)

Since || —div gl -1, < [|g] ;2> by (2.1) we obtain also boundedness of A. Moreover a is
convex valued, so that the same is true for A.

Now let us prove that A(u) is nonempty. a(x,u(z),-), and consequently a(z,u(z),-)~1,
is maximal monotone for a.e. x € . Moreover, by (iil), (a(x,u(z),-)~ 1)~ is locally

bounded according to definition in [8] 2.2 ch.III, hence the theorem on page 147 in [§]

ensures that a(z,u(x),-)~! is surjective. Then for a.e. € Q and every ¢ € R" is

a(z,u(z),&) # 0. Hence for a.e. z € Q is a(x,u(z), Du(z)) # 0 and by Theorem 9 in
[4] ch.IIT there exists a measurable selection g: Q2 — R" of a(-,u, Du). By Remark 1.2
—divg € A(u).

Lastly, A(u) is closed in H‘l’pl(Q): indeed if (f)pen is a sequence in A(u) such that
fn—7v€ H‘l’pl(Q) applying Lemma 2.1 we get v € A(u). O

Remark 2.3. Given u € H&’p(Q), as in Remark 1.3 we can see that if g: Q0 — 2" is a
measurable selection of a(-,u, Dv), v € Hé’p(Q), we have g € L' (Q)".

Therefore we may define the operator By: Hé’p(Q) L QH T ) by

Hé’p(Q) Sv— By(v):={—divn :n(z) € a(z,u(x), Dv(x)) for ae. z € Q}.

Lemma 2.1 and 2.2 hold, with analogous and more simple proof (hypothesis iii) doesn’t
need in this case), if we replace A by B,.

Definition 2.4.  ([8]) If X is a Banach space and X* its dual, then T: X — 2% is
coercive if for every selection 7: X — X* 7(z) € T'(x) for every x € X, we have

lim L—(x)’@ = 00.
lz—o0 [l

If T is single valued, “coercivity” is given by the same condition with 7(z) = T'(x).

Definition 2.5. ([8]) Let X be a reflexive Banach space.

T: X — 2% is said to have the generalized pseudo monotone property if for any sequence
((xp, fn))hen in I(T') such that xp, — zin X, f, — fin X* and for which lim sup(fp, x,—
z) <0, we have (z, f) € I(T) and (fn, zp) — (f, 2).

Definition 2.6.  ([8]) Let X be a strictly convex reflexive Banach space and X* its
dual.

a) P:X — X*is said to be smooth if it is bounded, coercive, maximal monotone.

b) T:X — 2% " with the generalized pseudo monotone property is called regularif T+ P
is surjective for any smooth operator P: X — X*.

Definition 2.7. ([8]) Let X be a reflexive Banach space and T: X — 2%
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a) The map T is upper semicontinuous in © € D(T):= {x € X:Txz # 0}, if for any
sequence (zp)pen in D(T), with z;, — x in X and for any neighbourhood V' of T'(x),
there exists hg € N such that T'(xp) C V for h > hy.

b) The map T is said to be of type (M) provided that:

M;) T(x) is bounded, convex, closed and nonempty for each = € X;

Mjy) for each sequence ((xp, fr))nen in I'(T') such that z;, = x in X, f, — fin X* and
for which limsup(fy, z;, — x) <0, we have (z, f) € T'(T);

Mj3) T is upper semicontinuous from the finite-dimensional subspaces of X to X* endowed
with the weak topology.

Remark 2.8. If X is a reflexive Banach space, T: X — 2% " is bounded and satisfies
condition My), then it satisfies condition M3).

Indeed let zp, © € Y, h € N, Y be a finite dimensional subspace of X, z;, — z, V
be a weakly open neighbourhood of T'(x) in X*. If for infinitely many values of h € N
we have T'(xp)\V # (), then there exists an increasing sequence (hg)ren in N such that
for every k € N there exists A\, € T(xp,)\V. By boundedness of T', by passing to a

further subsequence if necessary, the sequence (A\;)gen converges weakly in X*  so that
limy o0 (g, o, — ) = 0 and by M) limy_.oo A, € T'(x) C V. This contradicts the fact
that, as A\, € V for every k € N, limy_,oo A\ € V.

Lemma 2.9. Ifug € Hé’p(Q), define Ap: Hé’p(Q) L oHTIP(Q) by

Ao(v) = A(v + uo).

A being the operator in (I). If P: H&’p(Q) — Hil’p/(Q) is any smooth operator, then
P+ Ag is of type (M).

Proof. From Lemma 2.2 it follows that M) is satisfied by P + Ay.
In order to obtain My) we first establish the following propositions:

I) Ifupe H& P(Q) is given, the operator By, defined in 2.3 is maximal monotone.

IT) Ap satisfies Ma).

Proof of T). On account of 2.3, if v € H&’p(Q) then By, (v) is closed, convex, non empty
and bounded. Moreover it is upper semicontinuous from the line segments in H&’p (Q)
to H _l’p/(Q) endowed with the weak topology: if V is a weakly open neighborhood of
By, (v) and (vp)pen strongly converges to v in H&’p(Q), we can find £ € N such that
By, (vy) C V when h > k. On the contrary let us suppose that for an increasing sequence
(hi)ken in N, be fi, € By (vn,)\V. Being By, as remarked in 2.3, a bounded operator,
we can extract a subsequence from (f)ken, whose limit, Lemma 2.1 being true with B,,
in place of A, belongs to By, (v). Then it belongs to V, contrary to the fact that f ¢ V'
for each k € N. Monotonicity of B,,, follows from the fact that a(x, ug(x), ) is monotone

for a.e. x € Q. Then B, verifies all the hypothesis of [8] theorem in 2.3 ch.III, so that it
is maximal monotone.

Proof of II). Let ((up, fn))nen be a given sequence in Hé’p(Q) X Hil’pl(Q) such that fj, €
A(up) for h € N, up, = u in Hé’p(Q), fn— fin H‘Lp/(Q) and lim sup(fp, up, —u) < 0.
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If g5, € Lp/(Q)”, gn(x) € a(z,up(z), Dup(x)) for a.e. x € Q and f, = — div g, inequal-
ity (2.1) and boundedness of (up)pen in Hé’p(Q) guarantee that (gp,)nen is bounded in
Lp/(Q)”. Therefore there exists g € LpI(Q)” such that, by extracting a subsequence if
necessary, g — ¢ in Lp/(Q)”. In analogy to the proof in 2.1, we obtain —divg = f.

Now we conclude by proving that if v € Hé’p(Q) and — divn € By (v), then 0 < (—divg—
(—divn),u — v); this fact implies —divg € By(u) = A(u) by maximal monotonicity of

B,. Let n € LP () be such that n(z) € a(z,u(z), Dv(z)) for a.e. z € Q. By Rellich’s
theorem there exists a subsequence of (up)pen converging to u strongly in LP(€2). Hence,
by passing to a further subsequence if necessary, we can suppose (up)pen converging a.e.
on Q to u. Let (n,)nen be given by hypothesis iii) in connection with w,v,n, (up)nen,
such that n, — n a.e. on Q and n, is, for each h € N, an L(2)-measurable selection of
x € Qi a(x,up(x), Dv(x)) € R". By (1.2) we have for h € N and a.e. x € )

—1—
()] < (@) + er| Do)~ + cz%w:cww/ T e 7 Do)

The sequence on the right hand side converges in Lp/(Q) strongly as (1.1.1) and (1.1.2)
give ap/(p—1)/(p—1— ) < p*. Son, —nin LpI(Q)” strongly.
Having np,(x) € a(z, up(z), Dv(z)), from monotonicity we get:

0 < timsup | (gn(a) = ma), Dlun — v) (@)
— tmmsup ([ ton Dun e+ [ gn, Du= o)~ [ (. Dwn — )

— Timsup(fi, wn — ) + /Q ({9, D(u— v)) — (. D(u — v)))dz
< (=divg — (—divn),u — v).

This concludes that A4, and consequently Ay, satisfies condition Ms).

We return to the proof of the lemma.
Now we prove property My) for P 4+ Ay, where P is assumed to be smooth.

Let ((vp, fr))hen in H&’p(Q) x H=17 () be such that f;, € (P+.Ag)(vy) for each h € N,

vp — v in H&’p(Q), fn— fin H*Lp/(Q) and lim sup(fp, vy — v) < 0. We will show that
f € (P+Ag)(v). Taking b, € Ag(vp) so that f, = P(vy)+ by, from boundedness of P and

Ap, due to Lemma 2.2, we get b, d € H*Lp/(Q) such that, by extracting a subsequence if
necessary, by, — b and P(vp) — d. Hence from monotonicity of P we get:

lim sup(by, vy, — v) =
= limsup({P(va) + bp, vy — v) = (P(vp) = P(v), v, — v) = (P(v), v, — v))
< limsup((P(vp) + bp, vp, — v) — (P(v), vp, — v)

= limsup(fy, vy — )
0.

IN
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Proposition II) gives b € Ap(v), hence we may take v: Q2 — IR"™ measurable such that
v(z) € a(z, (v 4+ uo)(x), D(v + up)(x)) for a.e. x € Q and b = —divy. Extracting a
subsequence if necessary, we can suppose (v + ug)pen a.e. convergent to v + ug. Then,
like in the similar case shown in the proof of II) above, by iii) there exists, in connection
with v + ug, v + ug, v, (vp + uo)pen, a sequence (yp)pen converging strongly to v in

Lp/(Q)” and such that «, is, for each h € N, a measurable selection of the map

x € Q a(x, (v +ug)(z), D(v+ uo)(x)) € R™.

Thus, if g, € Lp/(Q)", gn(z) € a(z, (v + up)(z), D(vy, + ug)(x)) for a.e. z € Q and
by, = —div g for h € N, from monotonicity of a(z, (v, + ug)(x),-), we get:

(P(vp), v, —v) = (P(vg) + bp,vp — v) — (b, — (= divyg), vy — v) + (divy,, vy — v)

— (P(ug) + by op — 0) /Q (g — Vs D(on + 10 — (0 + ug)))da
- / (s Do, — v))d
Q
< (fprop —0) — /Q (s D (v — 0))da

and therefore lim sup(P(vp,), vy, —v) < 0. On the other hand by Proposition in 5.2 ch.III
of [8], the operator P, being maximal monotone, satisfies My), consequently the previous
inequality ensures that P(v) = d. Thus we conclude that f =d+b € (P + Ap)(v) and
P + Ay satisfies My).

Property Ms) follows from boundedness of P + 4y and Remark 2.8. O
Lemma 2.10. Ifug € H&’p(Q), the operator Ay, defined in 2.9, is coercive.

Proof. Let G: Hl’p( Q) — (Q) be such that G(v) € Ay(v) for each v € Hé’p(Q),

and g, € Lp( )", go(T) € ( (v 4 wo)(x), D(v+ up)(z)) for a.e. = € Q, be such that
G(v) = —div gy. By (2.1) we have

lgoll o < K (llpell o + (llv + UOIIHé,p)p/p + (lv+ uOIIHéyp)“(p_”/(p_l_m)-
Then by using coercivity ii2), Sobolev’s and Holder’s inequalities:
(G(v),v) = /(gv,D(U+U0)>dl‘ —/(gv,Du0>dx
Q Q

> / (v + ¢l D(v + uo)[P)dz — {|goll 1 | Duol| e
Q

= = vl + el +uoll grn)” — Kl Duol| e (ll el + (v +UO||H57p)p/p +

+ (o + ol )20/ 01,

where ¢ > 0 is a suitable constant.
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Since from condition (1.1.3) it follows that a(p—1)/(p —1 — ) < p, the above inequality
gives the desired result. O

Definition 2.11. ([8]) Let X be a normed space and X* its dual. A map T: X — 2%
is quasi bounded if to each M > 0 there corresponds a C' > 0 such that for each x € X,
|z|| < M, if f € Tx satisfies (f, x) < M||z|| then || f| < C.

Theorem 2.12. ([8] theorem 3.5 ch.Ill) Let X be a reflexive strictly convexr Banach

space and X* its dual. If T: X — 2% is mazimal monotone, 0 € D(T) and H: X — 2 X"
1s quast bounded, reqular and coercive, then T + H is surjective.

Theorem 2.13.  Assuming the hypotheses described in section 1, then there exists a
solution of the problem (I).

Proof. By Remark 1.4 it suffices to prove that if f € Hil’p/(Q) is given, there exists
u € H&’p(Q) such that f € (A + 0lg)u. For this purpose we show that if ug € K is
given, then Theorem 2.12 can be applied to the case X = H&’p(Q), T(v) = 0Ik (v + ug),
H(v) = A(v + ug) for every v € H&’p(Q).

First we show that .4 has the generalized pseudo-monotone property (Def. 2.5). Let
((vn, fn))hen be a sequence in H&’p(Q) x H=1#'(Q) such that f, € A(v,) for h € N,
v, — v in Hé’p(Q), fn— [ in H‘l’pl(Q) and limsup(fp, vy —v) < 0. We proved in
Lemma 2.9 that A satisfies M), hence f € A(v). For every h € N we may write
fi = —divan, f = —divg, gu(x) € alx, va(z), Doa(a)), g(x) € al, v(x), Do(x) for ac.
x € Q. Like in the similar case shown in the proof of II) in Lemma 2.9, by hypothesis iii)
there exists a sequence (V;)pen in connection with v, v, g, (vp)pen, such that v, — ¢ in

L' (Q)" and v, is a measureable selection of the map = € Q — a(z, vj,(z), Dv(z)) € R
then, by using monotonicity of a(z, vy (x),-) we get:

(—div gp,vp) = /Q<9h7DUh>d5U =
B / (gn = vh, Do, — Dv)da + / (Yn, Doy, — Dv)dzx + / (g, Dv)dz
Q QO Q
= /(%, Duvy, — Dv)ydx + (fp,v).
0

It follows that liminf(fy, vy) > (f,v) and thus limp, o (fn, va) = (f,v).

It can be easily seen that the operator H, defined by H(v) = A(v+uy), has the generalized
pseudo-monotone property, too.

We finally see that H is regular. If P: H&’p(Q) — H*Lp/(Q) is smooth, by Lemma 2.9,
P + Ay is of type (M); moreover it is coercive and bounded because P and Ag are.

Theorem in [8] 5.4, ch.IIT and subsequent remarks ([8] page 156) applied to P+ .4 ensure
its surjectivity, so that H is regular. On the other hand H is bounded and coercive by
Lemmas 2.2 and 2.10 so that it satisfies the hypotheses in 2.12. The domain of 0l is K,
then by applying Proposition 2.13 of [8] ch.III, we obtain that 0l is maximal monotone.
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Thus the same is true for 7, defined by T'(u) = 0Ix (u + up), and Theorem 2.12 can be
applied to conclude the proof. O

3. Existence theorems for problems with measure or L! data
Notation 3.1. If any ¢ € L*°(Q) is given, let:

K{)={ve H&’l(Q):v > ae. on Q}
and V5 (Q,v¢) = {¢ € D(Q):V(vp)pen in Hé’p(Q) NK(¢Y), I(en)nen in D(2) such that

op — ¢ in D) and v, +¢p € K(Y)Vh € N}.
For k > 0 denote 73,: R — R:73(s) = (s Ak) V (—k) and v¥: = 7, 0 v for any v € Hlloi(Q)

Remark 3.2. Let g:Q2 — IR" be a measurable selection of a(-,u, Du). If, together
with the assumptions in section 1 on the multivalued map a, we suppose p € (2 — %, n)

and u € Hé’T(Q) for every r € [1, n(p— 1)) then by (1.2) and (1.1.2), it turns out that
g€ Li(Q).

Weakly formulated problems

Let ¢ € L>®(2) and K (%) like in Notation 3.1; we assume Wol’oo(Q) N K () to be non
empty. We denote pg = n(p—1)/(n—1) and assume p € (2 — %, n) We suppose moreover
that for a:Q x R x R™ — 2" all conditions stated in section 1 are true but replacing
(1.1.2) by:

o n—1

p_1_5<n_p. (3.1)

Problem with measure data. Let f:B(2) — R be a bounded Radon measure and
Vi (€2, ) like in Notation 3.1. We consider the following problem:

find v € K(¢),u € Hy" () for each r € [1,pp) and
g selection of a(-,u, Du), g € L™/ P~D(Q)" for each r € [(p— 1) V 1, po) (11)

such that /(g, D) > / @df for each ¢ € Vy°(Q, ).
Q Q

Problem with L! data. Let f € L!(Q). We consider the following problem:

(find u € K(¢),u € Hé’r(Q) for each r € [1,pg) and g selection of a(-, u, Du)
g e L"P=D(Q)" for each r € [(p— 1) V 1, po) such that when k > ||¢]|zo :

u ’p uk 1 uk—v x uk—v X
€ Hy"(@) 5. Dut) € L', [ (9. D~ 0o < [ b —o)a

( for v € Wy () N K ().

(I11)
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Theorem 3.3. With the assumptions in subsection 3.1, let (fn)hen be a sequence in
H*Lp/(Q) N LY Q) such that sup{| full;1:h € N} < oo. For each h € N let uj €
H&’p(Q) N K () be a solution of the problem (I) relative to K = Hé’p(Q) N K(Y) and

f = fn. Then (up)nen is bounded in H&’T(Q) for each r € [1,pg); besides if gp, € A(uyp),
(A as defined in our first problem (1)), satisfies (— div gn,v —up) > (fn,v —up) for every

v E H&’p(Q) N K (1), then (|gn|/ P~ hen is bounded in LY(Q). If moreover k > |||
then (uf)pen is bounded in H&’p(Q).

Proof. Let Q(h, k) = {z € Q:k < |up(z)| < k + 1}, we prove that if & > |[¢|| 1 it
follows that

1
/ |Dup|Pdz < FP  where FP = — (/ |v|dx + sup {/ | frldx:h € N}) ; (3.2)
Q(h,k) C\JQ 9)

and:

. \(@")/p
/ |\ Duy["dz < H(r, k) </ " dx) vl (3.3)
Qp ks Q

jT

N A NEs .
where Oy, = {z € O Jup(v)] > k} and H(r k) = F (552, (&) (H(r k) is

a positive real number because r*(p — r)/r > 1if r € [1, po)).

For k > 0 let ¢;: R — R be the odd function defined by
0 if t € [0, k]
ety =< t—k ifte (kk+1]
1 ift € (k+1,00)

Observing that up — pp(up) € Hé’p(Q) N K(y) if & > ||¢]|p~, from the inequality
Jolgn, D(up, — v))dz < [o fn(up — v)de which holds for v € H&’p(Q) N K(y), h € N,
we get [ (gn, Dog(up))de < [o fner(up)de < [o | faldz. Moreover by (ii2) we have

/(gh,Dwk(uh»diﬂ = /(gh,¢2(uh)DUh>d$
Q Q

= / (gh, Dup,)dx
Q(h,k)

/ (v + c|Duy|P)dz,
Q(h.k)

v

hence [q, 4y [Dun[Pdz < L ([qWldz +sup { [o | faldz: h € N}), namely (3.2).
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Now from (3.2):

r/p
/ |Dup|"dz < ( / |Duh|pd:c> 1Q(h, k)|P~7)/P
Q(h,k) Q(h.k)

=n)le )\ )/
< F" / up|” da (—*) :
Q(h.k) k"
It follows that:

/ |Duy|"dx = Z/ | Duy|"dz
O,k

00 (p—r)/p ] (r—7)/p
r S (L))
;( Q(h.j) J

(p—r)/p r/p

z; [mre) (S

‘7:
(p—7)/p
</ |up|" d$> :

Now observing that uj, — uf +w € Hé’p(Q) N K (¢) when k > ||| oo, we have

Jolgn, D(uf —w)ydzx < [ fr(uf — w)dz, thus

Jolgn, Dubydx < [o{gn, Dw)dz + (k + ||w|| zee) sup{|| fal| z1:h € N}. As p— 1 is less than
Po, to prove our theorem we may suppose r > p — 1, so that by Holder’s inequality:

and (3.3) is proved.

r—p+1

p—1
/<9h7DquL>dﬂf§ (/ ‘gh|ﬁdx> (/ \Dw|ﬁd:c> + (3.4)
Q Q 0 .

+ (k4 [Jwl[z<) sup{|[ full1: h € N} for any & = [|¢b] e~

By (1.2) there exists K1, Ky € Ry and m € L'(€) such that

gn(2)[F < m(x) + Ki|Dup(2)[P + Kolup ()| P15 for ae. 2 €9

which by means of (ii2), letting w = m — I/%Kl and K = %Kl, gives

lgn(2) [P < w(z) + K (gn(z), Dup(x)) + Kolup(2)|*?/ P18 for ae. z € Q.
Let k> ||1]|z and r € ((p — 1) V 1,pg) be fixed and Q"F = {x € Q:|up(z)| < k}, hence:

[ donlae< [ o il Dub) + Kolunl /019
Oh.k Oh.k
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and by (3.4):

/ gnl dz <
Oh.k

< /(|w| + Kok P10 g K (K + [|w]| o) sup{ || full pr: h € N+ (3.5)
Q

r—p+1

p—1
+K (/ \gh\ﬁd:ﬂ) (/ \Dw|r—;+1dx)
Q Q

On the other hand by r < pg and p < n we have r/(p — 1) < p/, thus letting

c(k,r) = QP (k + [[ewl| o) sup{||full 1: b € N} + / (| + Kok 1=\ da) /7,
Q

r—p+l

d(r) = |Q|P—")/PKT/P (fQ |Dw\r—;+1d:c) " it turns out that

, . N\"/P
L aFae< ([ aac) e < ek o) ([ i)

Again by (1.2) there exist M;, My € R such that

1
_/

|gh(:c)|zﬁ < |,u(:c)|ﬁ + M| Dup(2)|” + Ma|up(x)|*/ P~ for ae. z €.

Since (3.1) gives n (1 — %) < po, by choosing r > n (1 _ W)’ we have 9 <

=

r*. Hence by Holder’s and Sobolev’s inequalities:
1

</ |gn| 7T 1d5€) <
_r_ * (P—lofﬁ)T* Iy
< ( i 4 atipup s s ([ ol i) ) (36)
Q Q
v ( = )
7 13y
Mo+ M <</ |Duh|rdx)p + (/ |Duh|rdx) ’ ’ ) )
Q Q

where M3, M, My € R4 are suitable constants.
lv|

In the coercivity condition (ii2) we may suppose _ > 1, so that

IN
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| Dup(2)|" < (C)”” Y (1gn @)/ 4 [u(2)[/®D) for ae. # € Q. Then by (3.6)
/ | Dup,|"dx <
Oh.k

(%)T/(p_l)[ k,r)+c( (/ lgn|P—T 1d;,;) /Mp T ]
(%)ﬁ[c(hr)ﬂ’(ﬂ <M0+M ((/ |Duh|’"dx) (/ |Duh|’"dx) v mp))

+ / \u\ﬁdx].
Q

By (3.3) and Sobolev’s inequality: fQ |Dup|"dz < H(r, k)S ([ |Duh\’"d:c) ")/ , SO
that by adding the above inequality:

1
_/

IA

VAN

/ |Dup|"dzx <
Q

< (é)ﬁ le(k, 1) + ¢ (r) <M0+M <(/ |Duhvdx)
+ /Q|y|ﬁdx]+ﬂ(r,k)s </Q|Duh|’"dx)r (pfr)/rp.

Since = ﬁ) ; < 1 by (1.1.3) and r*(p — r)/rp < 1 as p < n, the last inequality gives
boundedness of ([, [Duy|"dx)

Hy"(Q) if 7 € [1,po).
By using (1.2) again, if M4 > 0 is a suitable constant:

1
_/

(r— Oiﬁ) !
() ))-
Q

nen- Hence by Sobolev’s inequality, (up)nen is bounded in

/ /P Ve < M, / (a7 ®D 4 | Dug]” + fup |/ 1) .
Q) Q

Now (3.1) involves that ar/(p—1— ) < pjj, so that (|gs|"/®~1) e is bounded in L(9)
if r € [1,po) as (up)nen is bounded in L9(Q) for every q € [1, pj).

Finally from (3.5), being k > ||¢|| L, we obtain that (g, 1gn.k)nen is bounded in (Lp/(Q))”.
By coercivity condition ii2), the same is true for (uf)en in Hé’p (Q). O

Definition 3.4. ([1]) Let Q be a bounded open set in R", the norm-capacity of Hé’p(Q)
is the map c,: 2% — [0, 00] defined as follows:

cp(K) = inf{||u||HO1,p:u cCl),u>00n Qu>1on K} if KcCQ iscompact,

cp(U) = sup{cy(K): K compact C U} if U CQ isopen,
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cp(E) =inf{c,(U): U open D E} for arbitrary FE C .

Definition 3.5. ([1]) We say that u: Q — R is ¢p-quasicontinuous, with ¢, defined in
3.4, if for every € > 0 there exists an open set U, C Q, with ¢,(Ue) < ¢, such that u|q\p,
is continuous.

Proposition 3.6. Let Q be a bounded open set in R" and ¢, the norm-capacity as in
definition 3.4.

i) IfEe€L() and c,(E) =0, then |E| = 0.

i) Ifue Hé’p(Q) there exists u: Q2 — R c¢p-quasi continuous, such that u = @ a.e. on
Q.

Proof. i) If £ € £(Q) and |E| > 0, there exists a compact K C E with |K| > 0, hence
by definition of ¢, and its monotonicity c,(E) > ¢,(K) > |K|'/P.

ii) For this proof we refer to [1], Proposition 2.8, or, for a more immediate statement,
to [6] Proposition 7.7. Indeed it is possible to verify that, in the case of Hé’p (Q), the

two definitions of capacity given in [1] and in [6] coincide with ¢, introduced above and
moreover the two quasi-continuous representatives coincide except on a set of zero capacity
at most. See also [11] and [7] for a general overview on the notion of capacity and relative
properties. O

Notation 3.7. Ifu € H&’p (€2) we denote henceforth by @ a c,-quasi continuous repre-
sentative of u.

Definition 3.8.  ([1]) A Radon measure pu: £(£2) — R is said to be of finite energy

relative to H&’p(Q) if it is continuous on (CF(Q), ||| gr1p)-

Proposition 3.9.

i) If u: £L(2) — R is a positive and finite energy Radon measure relative to Hé’p(Q) then
w(E)=0if E € L(Q) and c,(E) = 0. Moreover & € L*(Q, u) for any u € H&’p(Q).

ii) Letye€ H‘Lp/(Q) be a positive functional. Then there exists a positive finite energy
Radon measure i, such that (¢, u) = [ udu, for every u € H&’p(Q).

Proof. Tt follows from [1], Propositions 2.20, 2.21, 2.22. O

Definition 3.10. ([1]) A convex set K C Hé’p(Q) is unilateral if it is closed, nonempty
and:

- uAveK forevery wu,veE K;
- u+veK forevery weK, vGH&’p(Q), with ©>0 ¢, —a.e.

Theorem 3.11. Let K C Hé’p(Q) be an unilateral convex set.

a) There exists x:Q — [—00,00| ¢p-quasi upper semicontinuous (i.e. for every e > 0
there is an open set A C Q with cp(A) < € such that x|o\ 4 is upper semicontinuous)

such that
K={ue Hé’p(Q):ﬁ > X ¢p— a.e onQ}.
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b) Let f € H‘l’pl(Q) be given and u € H&’p(Q) be a solution of (I) where K is supposed

to be unilateral. Then if g € A(u) is such that (—divg,v —u) > (f,v —u) for every
v € K, and x is related to K as in a), there exists a positive and finite energy Radon
measure |1 such that:

/ vdp = (—divg — f,v)  for every wve€ Hé’p(Q) and /(’ZL — x)du = 0.
Q Q

Proof. See [1] Théoreme 3.2 and Généralization. O

Lemma 3.12. Let f € Hil’pl(Q) be given and u € H&’p(Q) be a solution of the problem

(I) where K C Hé’p(Q) is assumed to be an unilateral convex set. If g € A(u) satisfies

(—divg,v—u) > (f,v—u) for every v € K, then:

i) ol D(p(u—v)))dz < (f,o(u—v)) for every v € K and p € CH(Q) N W (Q),
@ >0 on S.

i) Ifve K,u—veL®Q),pe H&’p(Q) NL®(Q), ¢ >0 a.e. on§, then p(u—v) €
Hy?(Q) and

/Q (9. D{g(u — v)))dz < {f, p(u— v)).

Proof. i) Let x and p be as in theorem 3.11, ¢ € CH(Q) NW1>2(Q), ¢ > 0 and v € K.
It can be easily seen that ¢(u—wv) € H&’p(Q), thus if x and p are given by Theorem 3.11:

/Q (g, D(p(u—v))dx = (—divg, p(u—1v))
= (—divg— f,p(u—)) + {f, p(u—1v)) = /Q (i — D)+ (f o~ v)

- / (i — )y + / o = D)dp+ {frplu—v)) < {f,o(u—1v)).
Q Q

The last inequality depends also on Proposition 3.91) which, by © > x ¢p-a.e. on €, gives
v > x p-a.e. on ).

i) If ¢ € H&’p(Q) N L®(Q), ¢ > 0 a.e. on (), there exists a sequence (p;);eny in CH(R"),
0; — @ in HYP(Q), with |||z < |l@llre, @i > 0 for every i € N. To see this
we may take ¢; = J, * ¢ where J, are the usual mollifiers and ¢; \, 0. Therefore,
by passing to a subsequence if necessary, ¢;(u — v) — @(u — v) in Hé’p(Q). Hence

(frei(u =) = (frou=v)), Jolg, D(ei(u —v)))dz — [o(g, D(¢(u — v)))dr and from
i) follows ii). O

Remark 3.13. With the assumptions in subsection 3.1, for a given (fj,)nen such that
sup{||fnllp1i:h € N} < oo let us take (up)nen, (9n)nen as in Theorem 3.3 and fix r €

((p—1)V1,po) and k > ||¢]|peo. Then let u € Hé’r(Q) be the weak limit of a subsequence
of (up)nen, O = {z € Q: |u(x)| < k}, OF = {z € O fup(2)] <k}, gng = gnlgnr.
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From boundedness of (uf),ecn in HS P(Q), due to Theorem 3.3, by using (1.2) it follows
that (gp x)nen is bounded in LpI(Q)”. Moreover if (h;);jen is an increasing sequence in N
such that g, — g in LT/(T’*U(Q)", up; — uin H&’T(Q) and gp;  — gk in Lp/(Q)", then

gp(r) = g(x) forae. x€ OF.

By Rellich’s theorem we may assume also u h; — ua.e. in Q. Thus, if €, § € IR there exists
Q(e) € QF9 such that up; — u uniformly on (e) and |QF=9\Q(e)| < €. Let jos € N be
such that |up;(z)| < k when j > je5 and @ € Q(¢), hence Q(e) C QRi* if § > j. 5. Since
if x € Q(e) is ghj7k($) = Gh, (x), it follows that fE gdzr = lim;_ fE gn; kdr = fE grdx for
any E C Q(e) measurable. Therefore g = g a.e. on €(¢) and from the arbitrariness of
€, 0 it easily follows that g, = ¢ a.e. on QF.

Theorem 3.14. With the assumptions in subsection 3.1, let (fp)nen, (Up)nen, (9n)nen
as in Theorem 3.3. If u € H&’T(Q), g e L= for somer € ((p—1)V1,p), and
up — U in Hé’r(Q), gn — g in L"/®=D(Q)" then

ue K() and g(x) € a(z,u(z), Du(x)) for a.e. x €.

Proof. By passing to a subsequence if necessary, by Rellich’s theorem we may suppose
that up, — u a.e. on €, thus, being (up)pen in K(v), we get u € K ().

Let w € Wy (Q) NK(), ¥ € CLQ), 9 >0, k > |[¢]|z= and QF, QF g, 1 be like in
3.13.

Moreover let us consider, for ¢ € R4, 7.:IR — IR defined as in Notation 3.1 and, for
k € (1,00), the even function oj: IR — IR defined by

1 it 0<t<k-—1
op(t) =140 if t>k
—t+k if k-1<t<k

We observe that qu =rpoup — uf =71, 0uin H&’p(Q). Indeed as (Uﬁ)heN is bounded in

HS P(Q), due to Theorem 3.3, every subsequence has a subsequence converging in H, 5 P(Q),
whose limit is ¥ because uj, — u a.e. on .

Now let £ € IR", n be a measurable selection of a(-,u”, &) and (n,)pen be given by
hypothesis iii) in connection with u¥, (uf)nen, v(x) = (£, z) and n, such that 1, — 7 a.e.
in 2 and 7, is a measurable selection of a(-, uﬁ, €) for every h € N.

Letting ¢p r = (0} 0 up)(0y © u)¥, from monotonicity of a(z, up(x),-) for a.e. z € 2 and
from definition of ¢y, j, it follows that:



258  P. Oppezzi, A. M. Rossi / Existence of solutions for unilateral problems

0 < /Q<gh — 1, Dup, — )78 0 (up, — u)iop pda =
= /Q(gh, D(up — w))7l o (up — u)pp pdr + /Q(gh, Du)t!o (up, — u)pppdr+  (3.7)
- /Q(gh,QTé o (up — u)pppdr — /QUIh, Duy, — &)/ 0 (up, — u)pp pdz.
Now, by Proposition 3.61), K (¢) N Hé’p(Q) is an unilateral convex set.

Since up, —T7co(up—u) € K(v), Lemma 3.12ii) may be applied with ¢y, ., up, up—7eo(up—u)
instead of ¢, u and v respectively, getting:

/Q(gh, D(up — u))1l o (up — u)pp pde = /Q(gh, Dre o (up, — u))pp pdx
= /Q<gh> D(op e © (up, —u)))dr — /Q(gh,k, Doy, ) Te © (up, — u)dx
< /Q(fh, OhkTe 0 (up, —u))dx — /Q<gh’k’ (02 o up)Dup)(oy o )7 o (up, — u)dz

— / (Gh s (02 o u)Du)(oy o up )7 o (up, — u)dr+
Q

— /Q<gh,k:> D) (op o up)(of o u)7e o (up, — u)dx

IA

esup || frll 1 19l 2o + € sup llgnell 1 sup | Dugl| o]0 o+
heN heN heN
+ e sup ||gnell || Du|| o [9]] oo + |17e © (up — w) DY Lo sup [lgnkll 1+
heN heN

where, by Remark 3.13, supen [|gnkll r < o0
We observe that Du*r! o (uy, —u)(oy oup)(op ou)d — DuF(op, ou)?d a.e. on Q and hence

strongly in LP(€2)™. Thus if §; is the weak limit in L” (2)" of a subsequence of (9nk)heN
which we shall denote by (gp, )nen as well, by Remark 3.13, we have:

lim [ (gn, Du)7( 0 (up — u)pp pdx

h—oo J
= lim [ (gns DuF)VT o (up — u)(op, 0 up) (o) 0 u)dda
h—oo Jo =7
= /(f]k, DuFY (o o w)?0da = /(g, DuFY(oy, 0 u)*dd.
Q Q

Now since g, — ¢ in L"/®=D(Q)", &7/ o (u), — w)pnr — &(ok o u)®d ae. on Q and
consequently in the norm of L4(Q2)" for every g € (1,00), it follows that:

—00

hlim {gn, &)1l o (up, — w)pp pdr = / (g,—&) (o) 0 u)Qﬁdx.
Q Q
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The growth condition iil) involves that

[l 0 (up; — wng| < (u+ P! + caluf|*|€) )0 1gne  ae. on Q.

Thus since 7,7 0 (up, — u)pp gk — (0 0 u)*J a.e. on Q such a convergence is also strong
in Lp/(Q)”. On the other hand (Duf — &) — (DuF — ¢) in LP(Q)™, so that:

lim | (—nn, Dup, — )7/ 0 (up, — u)pp pdx
h—oo J

= lim (—77}“ D’LLZ — §>7'€/ o (Uh - U)90h7kd$

h—oo Jq
= / (—n, DuF — &)(op o u)zﬁ‘daz = / (—n, Du — &) (o) 0 u)219d3:.
Q Q

From (3.7) and all above inequalities, being limy, ., ||7¢ o (up, — u)DI||» = 0, we get:

0< / (g — 1, Du— €)(op 0 u)*Idz + e(sup || fall i + sup llgnil 1 sup [|Dub] o+
Q heN heN heN

k
+ sup [gnkll ot | DU || o) [[90]] Loe
heN

Since € and ¥ are arbitrary it follows that: 0 < (g — 1, Du* — &)(o} o u)? a.e. on Q,
hence 0 < (g —n, DuF — €) a.e. on Q1. Also € € R"™ and the measurable selection 7
of a(-,u*, €) are arbitrarily choosen, so that, like in the last part of the proof of Lemma
2.1, we get (g(z) — ¢, Du(z) — &) > 0 for a.e. z € Q1 every ¢ € R" and every
¢ € a(z,uf(x),€). Finally the maximal monotonicity of a(x,u(z),-) for a.e. z € Q,

ensures that g(z) € a(z,u(z), Du(z)) for a.e. x € Q¥ which concludes the proof as k
is also arbitrary. O

Theorem 3.15. With the assumptions in subsection 3.1, there exists a solution of the
problem (I1) where f:B(2) — R is a bounded Radon measure.

Proof. Let us define f,:Q — R by fu(z) = [ Je,( df( ), where J, are the

usual mollifiers and €, N\, 0. Then (fj)pen is a sequence of H ™~ (Q) N L'(Q) such that
sup{||fnll1:h € N} < oo and f, — f in the distributional sense. Corresponding to

each fp, by Theorem 2.13 there exist uj;, € Hé’p(Q) N K(¢) and g, € A(uy), solving the
problem (I), i.e. (=divgp,v —up) > (fn,v — up) for every v € Hé’p(Q) N K(vy). By
Theorem 3.3, fixing r € ((p—1)V 1, pp), there exist u € H&’T(Q) NK(v), g e LYP=D@Q)n
and an increasing sequence (h;)jen in N such that up, — u in Hé’r(Q) and g5, — g in
L7/(=1)(Q)". Then for any s € ((p— 1)V 1, po) we have up; — u in Hy®*(9) and gh; = g
in L3/~ (Q)". Indeed from every subsequence of (un,)jen we can extract a further
subsequence which weakly converges in H&’S(Q), whose limit still is u, as H *1’7"/(9) C

H‘le(Q). We can apply the same argument to (gp;)jen-
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Moreover by Theorem 3.14, g(z) € a(z,u(z), Du(x)) for a.e. x € . Now if some
© € V5X(Q,1) is given, by definition of V°(£2,1) there exists (¢p)nen in D(Q), p — ¢
in the topology of D(Q2), such that for every h € N up + ¢, € K(¢). Thus from
fQ<gh, Dop)dr > fQ frnendx letting h — oo, we get fQ<g, Dy)dxr > fQ pdf . O

Theorem 3.16. With the assumptions made in subsection 3.1, there exists a solution
of problem (I11) where f is supposed to be an element of L'(Q) and ¢ € L>®(Q).

Proof. Let (fn)nen be a sequence in Hil’p/(Q) N LY(Q) such that f, — f in L'(Q). For

every h € N we consider a solution uy, € Hé P(Q) N K () of problem (I) corresponding to
fn, which exists by Theorem 2.13. Then, for every h € N, let g, € A(uy) be such that

(—div gp, v —up) > (fn,v—wuy) for any v € Hé’p(Q) N K (). For a fixed k > ||| oo, like
in the proof of the previous theorem, in virtue of Theorems 3.3 and 3.14 and of Remark

3.13, there exist u € H&’T(Q) and a selection g € L™/ ®=D(Q)" of a(-,u, Du), such that,
by passing to a subsequence if necessary, uy — wu in Hé’T(Q) and a.e. in €2, g, — ¢ in
L7/ e=1(@)" for every r € ((p— 1)V 1,pg). Moreover, if u’fl = 1, o up, and ul = 73, o u,
with 75, defined as in 3.1, then uf — u* in HyP(Q) and a.e. on Q. When k > ||¢)|| 1 then
up —uf +v € Hé’p(Q) N K (1), so that for any v € WOI’OO(Q) NK(y), h e N:

/ (gn, D(uﬁ —v))dx < / fh(ufl —wv)dz. (3.8)
Q Q

Like in Remark 3.13 let Q" = {2 € Q: |uy ()| < k}, 9hk = gnlghk, so that

/Q(gh,Duldew:/Q(gh—gh,k,Dui>d$+/Q(gh,k,Duﬁ)dx:/Q(gh,k,DU@dx-

Let now v be a measurable selection of a(-,u*, Du*) such that v|qr = g|qr, where QF =
{z € Q:|u(z)] < k}. By hypothesis (iii) for every h € N we may take a measurable
selection 7y, of a(-, qu Du¥) such that 7, — v a.e. in Q.

Moreover taking monotonicity of a(z, uy(x),+) into account:

/Q (gns Dubdz

h.k

> / ('yh,Dqu — Duk)der/(gh’k,Duk)dx.
Qh.k Q

By Remark 3.13 there exists gi € Lp/(Q)” such that, by passing to a further subsequence
if necessary, g r — Ji in LPI(Q)” and g (z) = g(x) for a.e. € QF.
Hence (g, Du*) € LY(Q) and [ {gnx, Du)dz — [(g, Du”)dz.
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Now we see that (y;,)pen is strongly convergent to 7 in LpI(Q)”: indeed from growth
condition (iil) it follows that |v,| < p + c1|DuF[P~! + coluf|*|DuF|? ae. on Q and
|DuF|? € LV (Q) as, by (1.1.3), Bp’ < p.

Moreover (Duf — DuF)1gnr — 01in LP(Q)™ as DuF(1gnk —1gr) — 0 a.e. on Q. Therefore

lim (vn, Duf — DuFYdz = 0.
h—o0 JQh,k

Then from (3.8) it follows that for a suitable increasing sequence (hj)jen in N we get:

/ (g, D(uk —))dx
Q

— lim <7ml%£-DU@dx+t/(mmnDu@dx—l/Q%wade
Q Q

h—oo JQh.k
< lim [ (gn.,D(uf —ov))de < lim [ f (uf —v)de = / f(uk —v)da.
j—oo Jo J j—oo Jo o Q
o
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