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1. Introduction

In this paper we shall be concerned with the following nonconvex quadratic optimization
problems

(Q1) min{1

2
xTAx + bTx : ‖x‖ ≤ r}

(Q2) min{1

2
xTAx+ bTx : ‖x‖ = r}

where A is an n × n real symmetric matrix, b ∈ IRn, r is a positive number. If A
is positive semi-definite then (Q1) is a convex quadratic problem. In general (Q1) is
nonconvex. Problem (Q2), whose feasible domain is a sphere, is always nonconvex even
if A is positive semi-definite. These are among the few nonconvex optimization problems
which possess a complete characterization of their optimal solutions. These problems play
an important role in optimization and numerical analysis ([1], [4], [8], [9], [11], [12], [16]).
Golub et al. studied (Q2) from both theoretical and computational viewpoints. In [3] the
sensitivity of the solutions to primal problem was discussed.
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Very recently, a characterization of local-nonglobal minimizers of (Q1) and (Q2) are in-
vestigated in [7].
In this paper we study the stability of the Lagrangian duality and global optimality
relative to (Q1) and (Q2) in the case where their respective constraints are analytically

expressed as {x ∈ IRn : 1
2‖x‖2 ≤ 1

2r
2} and {x ∈ IRn : 1

2‖x‖2 = 1
2r

2} (although these are

one and the same problem). Their original analytical expressions will lead to a duality
gap equal to infinity. By using Lagrangian duality we obtain some basic properties on the
solutions of (Q1), (Q2) and their dual problems. We show that these nonconvex problems
have no duality gap. The optimality conditions obtained by different ways in Gay [4],
Moré-Sorensen [9], Fletcher ([2]) and Pham Dinh Tao et al. ([1], [10], [12]) immediately
follow from these results.
This paper constitutes the first part (Part I) of our work relative to nonconvex quadratic
minimization over Euclidean balls and spheres. It is organized as follows. In the next
section we collect some important problems which can be formulated in the forms of
(Q1) or (Q2). The last section is dealing with the stability of Lagrangian duality and
global optimality in (Q1) and (Q2). As direct consequences, complete characterizations
of solutions for (Q1) and (Q2) are pointed out together with detailed descriptions of
the structure of solution sets for (Q1) and (Q2). These results are essential for solution
algorithms.

2. Examples

In this section we formulate the following problems in the forms of (Q1) or (Q2).

min{1

2
xTAx+ bTx : Bx = c, ‖x‖ = 1} (Constrained Eigenvalue Problem, [3]) (2.1)

where B is (m× n) matrix (m < n) and c ∈ IRm,

min{‖Ax− b‖ :‖Cx− d‖ = r}
(Quadratically Constrained Least Squares Problem, [6])

(2.2)

min{‖Ax− b‖ : ‖Cx− d‖ ≤ r} (2.3)

where A is a (m× n) matrix, C is a (p× n) matrix, b ∈ IRm and d ∈ IRp,

min{1

2
xTAx + bTx :

1

2
xTCx + dTx ≤ r2} (2.4)

where A,C are (n× n) symmetric positive semi-definite matrices.
For problem (2.1) we assume that it has at least one solution and that rank(B) = m.

Let Z be an orthogonal basis of Ker(B). Let y ∈ Im(BT ) such that By = c (since
rank(B) = m, such a point y always exists). Thus for each x ∈ IRn there exists z ∈ IRm
such that x = y+Zz. By a simple calculation we can show that (2.1) is equivalent to the
following problem of the form (Q2):

min{1

2
zTA′z + b′T z : ‖z‖ = s}
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where A′ = ZTAZ, b′ = ZT (Ay+ c) and s2 = 1−‖y‖2. Note that, since (2.1) has at least
one solution, ‖y‖ ≤ 1. Now we show that (2.4) is of the form of (Q1). We distinguish two
cases:
Case 1. C is positive definite. In this case the equation Cx = −d has a unique solution

w = −C−1d which minimizes the function

1

2
xTCx+ dTx.

By Cholesky’s factorization we have C = RTR ([5]). Using the variable y = R(x−w) we
can write (2.4) in the form

min{1

2
yTA′y + b′T y : ‖y‖2 ≤ (1/2)s2}

where A′ = (R−1)TAR, b′ = R−1(Aw + b) and s2 = r2 + (1/2)wTCw.

Case 2. C is positive semi-definite and d ∈ Im(C) = Ker(CT ). In this case we solve
the equation Cx = −d by procedure QR ([5]). Suppose rank(C) = m, then we can find
a submatrix CJ of rank m such that the equation Cx = −d is equivalent to CJx = −dJ .
This submatrix is given by

CTJ = [Q̄1, Q̄2]

[
R1

0

]
= Q̄1R1

where R1 is an m×m upper-triangular matrix. Noting that Q̄1 is a basis of Im(CTJ ) and

Q̄2 is basis of Ker(CJ) = Ker(C) we can write

x = Q̄1y + Q̄2z, y ∈ IRm, z ∈ IRn−m.

Let y∗ = R−T1 dJ . Then it is clear that w = Q̄1y
∗ is a solution to the equation Cx = −d

which minimizes the form

1

2
xTCx+ dTx.

Moreover Q̄1y
∗ ∈ Im(CTJ ) has the minimal norm among the elements in Im(CTJ ).

Problem (2.4) can thus be written as:

min{q(y, z) = [
1

2
yT Q̄T1 AQ̄1y + bT Q̄1y] + [

1

2
zT Q̄T2 AQ̄2z + bT Q̄2z] + zT Q̄T2 AQ̄1y}

subject to

y ∈ U = {y ∈ IRm : (y − y∗)T Q̄T1 CQ̄1(y − y∗) ≤ s2}, z ∈ IRn−m,

where s2 = r2 + 1/2y∗T Q̄T1 CQ̄1y
∗. Note that Q̄T1 CQ̄1 is positive definite and q(y, z) is a

convex function of (y, z). Hence we have

min
y∈U,z∈IRn−m

q(y, z) = min
y∈U

h(y)
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where
h(y) = min{q(y, z) : z ∈ IRn−m} (2.5)

is a convex function.
For each fixed y, z solves (2.5) if and only if

Q̄T2 AQ̄2z + Q̄T2 b = −Q̄T2 AQ̄1y. (2.6)

For simplicity we assume that A is positive definite (if A is positive semi- definite we can
use the pseudo-inverse of A to obtain an analogous formula). In this case the solution of
(2.5) takes the form

z = −(Q̄T2 AQ̄2)−1(Q̄T2 b+ Q̄T2 AQ̄1y).

Hence

h(y) =
1

2
yTGy + gTy

where
G = Q̄T1 [A− AQ̄2(Q̄T2 AQ̄2)−1Q̄T2 A]Q̄1

g = [Q̄T1 −
1

2
Q̄T1AQ̄2(Q̄T2 AQ̄2)−1Q̄T2 ]b.

Finally, setting u = y−y∗ it is easy to verify that (2.4) is equivalent to the problem given
by

min{1

2
uTA′u+ b′Tu : uTC ′u ≤ s2}

where A′ is positive semi-definite and C ′ is positive definite. The result then follows from
case 1.
Note that (2.3) is a special case of (2.4).
In a similar way we can formulate problem (2.2) in the form of (Q2).

3. Stability of the Lagrangian duality and global optimality con-
ditions for Problems (Q1) and (Q2)

3.1. Stability of the Lagrangian duality for problem (Q1)

In the first two parts of this section we study Lagrangian duality for Problems (Q1) and

(Q2) by writing their constraints in the equivalent forms {x ∈ IRn : 1
2‖x‖2 ≤ 1

2r
2} and

{x ∈ IRn : 1
2‖x‖2 = 1

2r
2}. We shall establish a characterization for the solutions of these

problems and their duals. Stability of Lagrangian duality and optimality conditions can
be easily derived from these results.
Denote by λ1 ≤ λ2 ≤ . . . ≤ λn the eigenvalues of A and by u1, u2 . . . , un their correspond-
ing eigenvectors which constitute an orthogonal basis of IRn. It is easy to see that for
λ > −λ1 the solution to the linear equation

(A+ λI)x = −b. (3.1)
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is given by

uTi x(λ) =
−uTi b
λi + λ

i = 1, . . . , n. (3.2)

Let us describe now (Q1) in the equivalent form which, for simplicity of notation, we also
denote by (Q1)

α1 = min{f(x) =
1

2
xTAx+ bTx :

1

2
‖x‖2 ≤ 1

2
r2}. (Q1)

The Lagrangian function for this problem is defined by

L1(x, λ) =

{
1
2x

TAx + bTx + λ
2 (‖x‖2 − r2) if λ ≥ 0

−∞ otherwise .

For each fixed λ ≥ 0 we define the problem

g1(λ) = inf
x∈IRn

{1

2
xT (A + λI)x+ bTx− λ

2
r2}. (Q1

λ)

Clearly, g1 is concave.
The dual problem of (Q1) is given as

β1 = sup{g1(λ) : λ ≥ 0}. (D1)

We denote by Q1, Q1
λ,D1 the solution sets of (Q1), (Q1

λ),(D1) respectively. First observe

the following:
• If λ > −λ1 then (3.1) admits a unique solution given by

x(λ)Tui = − bTui
λ + λi

, i = 1, . . . , n and ‖x(λ)‖2 =
n∑

i=1

(bTui)
2

(λ+ λi)2
(3.3)

• If λ = −λ1 and b ∈ Ker(A − λ1I)⊥ then P1
λ = x+ + Ker(A − λ1I) where x+ =

−(A− λ1I)+b given by ((A− λ1I)+ stands for the pseudo-inverse of (A− λ1I))

(i) If b = 0 then x+ = −(A− λ1I)+b = 0.
(ii) If b 6= 0 then the complement in {1, . . . , n} of J1 = {i = 1, . . . , n : λi = λ1} is

nonempty and

x+Tui = − bTui
λ + λi

, i /∈ J1 and ‖x+‖2 =
∑

i/∈J1

(bTui)
2

(λ+ λi)2
. (3.4)

Proposition 3.1.

(i) dom g1 = {λ ∈ IR : λ ≥ 0, λ+ λ1 ≥ 0 and b ∈ Ker(A+ λI)⊥}.
(ii)

g1(λ) =
1

2
bTx− r2

2
λ = −1

2
bT (A+ λI)+b− r2

2
λ, ∀x ∈ Q1

λ, ∀λ ∈ dom g1.
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Proof. dom g1 := {λ ≥ 0 : g1(λ) > −∞} .

(i) If λ+ λ1 < 0 then λ /∈ dom g1. Indeed x̄ ∈ Ker(A− λ1I) implies

lim
‖x̄‖→∞

〈(A+ λI)x̄, x̄〉+ 〈b, x̄〉 = lim
‖x̄‖→∞

(λ+ λ1)‖x̄‖2 + 〈b, x̄〉 = −∞.

Hence g1(λ) = −∞.

If λ ≥ 0 and λ+ λ1 ≥ 0, then (Q1
λ) is a convex problem and x̄ ∈ Q1

λ ⇔ (A+ λI)x̄ = −b.
Thus λ ∈ dom g1 if and only if (3.1) has a solution, i.e., b ∈ Ker(A+ λI)⊥.

(ii) This is immediate from the definition of g1 and the fact

∀λ ∈ dom g1 : Q1
λ = (A+ λI)+b+ Ker(A+ λI).

Set g̃1(λ) = −g1(λ). Clearly g̃1 is convex and dom g̃1 = dom g1.

The following proposition is a direct consequence of Proposition 3.1 and (3.3), (3.4):

Proposition 3.2.
(i) If λ ≥ 0 and λ+ λ1 > 0 then λ ∈ dom g̃1, and

g̃1(λ) =
1

2

n∑

i=1

(bTui)
2

λi + λ
+
r2

2
λ. (3.5)

In this case g̃1 is differentiable for every λ > 0, and

g̃′1(λ) = −1

2
‖x(λ)‖2 +

r2

2
. (3.6)

In particular, if λ1 > 0 then dom g̃1 = [0,∞[ and (3.5) is satisfied for every λ ∈ dom g̃1.
In this case g̃1 is subdifferentiable at 0, and

∂g̃1(0) =]−∞,−1

2
‖x(0)‖2 +

r2

2
].

(ii) If λ1 ≤ 0 and b ∈ Ker(A−λ1I)⊥ then dom g̃1 = [−λ1,+∞[, and for every λ ∈ dom g̃1

we have:

• If b = 0 then g̃1(λ) = r2

2 λ.

• If b 6= 0 then {1, . . . , n}\J1 is nonempty and

g̃1(λ) =
1

2

∑

i/∈J1

(bTui)
2

λi + λ
+
r2

2
λ.

In this case g̃1 is subdifferentiable at −λ1, and

∂g̃1(−λ1) =]−∞,−1

2
‖x+‖2 +

r2

2
].



P. D. Tao, L. T. H. An / Lagrangian stability in non convex quadratic minimization 269

(iii) If λ1 ≤ 0 and b /∈ Ker(A−λ1I)⊥, then dom g̃1 =]−λ1,+∞[ and for each λ ∈ dom g̃1

the function g̃1(λ) is defined by (3.5).

In this case g̃1 is differentiable at every λ ∈ dom g̃1, and g̃′1 is defined by (3.6).

Now we give some results concerning the characterizations of the solution to the dual
problem.

Theorem 3.3.
(i) D1 is a singleton.
(ii) Let λ∗ ≥ 0, λ∗ > −λ1. Then λ∗ ∈ D1 if and only if ‖x(λ∗)‖ = r. In particuliar, if

λ1 > 0 then 0 ∈ D1 if and only if ‖x(0)‖ ≤ r.

(iii) Let λ∗ = −λ1 ≥ 0. Then λ∗ ∈ D1 if and only if b ∈ Ker(A− λ1I)⊥ and ‖x+‖ ≤ r.

Proof. First we remark that (D1) is a convex program having always one solution, since
g̃1 is coercive. In fact

(D1)⇔ (D̃1) inf
λ≥0

g̃1(λ) = inf
λ∈dom g̃1

g̃1(λ)

and by (3.5), limλ→+∞ g̃1(λ) = +∞. Again by (3.5): g̃′′1 (λ) > 0, ∀λ > −λ1, i.e., g̃1 is

strictly convex in ]− λ1,+∞[, consequently (D1) contains one element. Hence (i).
(ii) and (iii) are immediate from Proposition 3.2 and from the fact λ∗ ∈ D1 ⇔ 0 ∈ ∂g̃1(λ∗).

The following corollary shows the stability of the duality for (Q1):

Corollary 3.4. α1 = β1 and

Q1 = {x∗ ∈ Q1
λ∗ : λ∗(‖x∗‖ − r) = 0, ‖x∗‖ ≤ r}, D1 = {λ∗}.

Proof. Let E = {x ∈ X : ‖x‖ ≤ r} and χE be its indicator function, i.e. χE(x) = 0 if
x ∈ E, χE(x) = +∞ otherwise. From the definition of L1(x, λ) we have sup{L1(x, λ) :
λ ≥ 0} = (f + χE)(x). Hence

α1 = inf
x∈X

(f + χE)(x) = inf
x∈X

sup
λ≥0

L1(x, λ) ≥ sup
λ≥0

inf
x∈X

L(x, λ) = sup
λ≥0

g1(λ) = β1.

Therefore to prove the Corollary it is sufficient to point out a point (x∗, λ∗) ∈ IRn × IR
satisfying L1(x∗, λ) ≤ L1(x∗, λ∗) ≤ L1(x, λ∗), ∀(x, λ) ∈ X × IR, i.e. (x∗, λ∗) is a saddle
point of L1.
Let λ∗ ∈ D1. If λ∗ > −λ1 we have from Theorem 3.3 ‖x(λ∗)‖ = r (or ‖x(λ∗)‖ ≤ r

if λ∗ = 0). Thus in this case Q1
λ∗ contains a unique point x∗ which satisfies the

complementarity condition (CP ) λ∗(‖x∗‖ − r) = 0.

If λ∗ = −λ1, again by Theorem 3.3, ‖x+‖ ≤ r and b ∈ Ker(A− λ1I)⊥ which implies

Q1
λ∗ = x+ + Ker(A− λ1I).

Hence we can choose x∗ ∈ Q1
λ∗, ‖x∗‖ = r which implies λ∗(‖x∗‖ − r) = 0.
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Consequently, in both cases we have

α1 ≤
1

2
x∗TAx∗ + bTx∗ =

1

2
x∗TAx∗ + bTx∗ +

λ∗

2
(‖x∗‖2 − r2) = β1.

Remark 3.5. We remark that in the above presentation the form {x ∈ IRn : 1
2‖x‖2 ≤

1
2r

2} is essential. If we take the equivalent constraint {x ∈ IRn : ‖x‖ ≤ r} the dual

optimal value will be −∞ if λ1 < 0. Indeed, in this case the function g1(λ) is defined by

g1(λ) = inf
x∈IRn

{1

2
〈x,Ax〉+ 〈x, b〉+

1

2
λ(‖x‖ − r)}, for λ ≥ 0.

Then if x̄ ∈ Ker(A− λ1I) we have

lim
‖x̄‖→+∞

1

2
〈x̄, Ax̄〉+ 〈x̄, b〉+ 1

2
λ(‖x̄‖− r) = lim

‖x̄‖→+∞
1

2
λ1‖x̄‖2 + 〈x̄, b〉+ 1

2
λ(‖x̄‖− r) = −∞

and therefore g1(λ) = −∞ for every λ ≥ 0. Hence β1 = −∞.

3.2. Stability of the Lagrangian duality for Problem (Q2)

The Lagrangian function of the problem

α2 = min{1

2
xTAx + bTx :

1

2
‖x‖2 =

1

2
r2} (Q2)

is

L2(x, λ) =
1

2
xTAx+ bTx +

λ

2
(‖x‖2 − r2), λ ∈ IR.

Let g2(λ) be the function on IR given by

g2(λ) = inf{L2(x, λ) : x ∈ IRn}. (Q2
λ)

Then the dual problem of (Q2) takes the form

β2 = sup{g2(λ) : λ ∈ IR}. (D2)

As before we denote by Q2, Q2
λ and D2 the solution sets of problems (Q2), (Q2

λ) and (D2)

respectively. Let g̃2(λ) = −g2(λ), ∀λ ∈ IR.
In a similar way one can show the following results concerning the stability of the La-
grangian duality for problem (Q2). The first ones correspond to Proposition 3.1 and
3.2.

Proposition 3.6.

(i) dom g2 = {λ ∈ IR : λ ≥ −λ1, and b ∈ Ker(A+ λI)⊥}.
(ii)

g2(λ) =
1

2
bTx− r2

2
λ = −1

2
bT (A + λI)+b− r2

2
λ, ∀x ∈ Q2

λ.
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Proposition 3.7.

(i) If b /∈ Ker(A− λ1I)⊥ then dom g̃2 =]− λ1,+∞[, and ∀λ ∈ dom g̃2

g̃2(λ) =
1

2

n∑

i=1

(bTui)
2

λi + λ
+
r2

2
λ.

(ii) If b ∈ Ker(A− λ1I)⊥ then dom g̃2 = [−λ1,+∞[ and for every λ ∈ dom g̃2 we have:

• If b = 0 then g̃2(λ) = r2

2 .

• If b 6= 0 then {1, . . . , n}\J1 is nonempty and

g̃2(λ) =
1

2

∑

i/∈J1

(bTui)
2

λi + λ
+
r2

2
λ.

In this case g̃2 is subdifferentiable at −λ1, and

∂g̃2(λ1) =]−∞,−1

2
‖(A− λ1I)+b‖2 +

r2

2
].

(iii) ∀λ > −λ1 we have λ ∈ dom g̃2, g̃2 is differentiable at λ, and

g̃′2(λ) = −1

2
‖x(λ)‖2 +

r2

2
.

Finally we state below the analogues of Theorem 3.3 and its Corollary.

Theorem 3.8.
(i) D2 is a singleton.
(ii) Let λ∗ > −λ1. Then λ∗ ∈ D2 if and only if ‖x(λ∗)‖ = r.

(iii) Let λ∗ = −λ1. Then λ∗ ∈ D2 if and only if b ∈ Ker(A− λ1I)⊥ and ‖x∗‖ ≤ r

Corollary 3.9. α2 = β2; Q2 = {x∗ ∈ Q2
λ∗ : ‖x∗‖ = r}, D2 = {λ∗}.

3.3. Global optimality conditions for (Q1) and (Q2)

The preceding results concerning the stability of Lagrangian duality relative to (Q1) and
(Q2) imply, as direct consequences, the following two theorems on global optimality con-
ditions for these problems.

Theorem 3.10. ([4]) x∗ is an optimal solution to Problem (Q1) if and only if there
exists λ∗ ≥ 0 such that
(i) (A+ λ∗I) is positive semi-definite,
(ii) (A+ λ∗I)x∗ = −b,
(iii) λ∗(‖x∗‖ − r) = 0, ‖x∗‖ ≤ r. This λ∗ is unique.

We note that (Q2) is equivalent to the following problem of the form (Q1):

min{1

2
xT (A+ γI)x + bTx : ‖x‖ ≤ r}, (3.8)
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where γ is a real number so that A+ γI is nonpositive semi- definite.
Indeed, (Q2) is equivalent to

min{1

2
xT (A+ γI)x+ bTx : ‖x‖ = r} (3.9)

because 〈x, γx〉 = γr2 if ‖x‖ = r.
On the other hand, if A + γI is nonpositive semi-definite, then the solution set of (3.1)
is necessarily contained in the boundary {x : ‖x‖ = r}, according to Theorem 3.10. It
implies the equivalence of Problems (3.1) and (3.2).
In [16] Sorensen gave a sufficient condition for optimality to problem (Q2). In [10] Pham
Dinh Tao proved that this condition is necessary and sufficient. This result was also given
partly in Fletcher ([2]) by using the optimality condition for (Q1).

Theorem 3.11. ([10], [2], [12]) x∗ is an optimal solution to (Q2) if and only if there
exists λ∗ such that
(i) (A+ λ∗I) is positive semi-definite
(ii) (A+ λ∗I)x∗ = −b,
(iii) ‖x∗‖ = r. This number λ∗ is unique.

3.4. More on the structure of solution sets for (Q1) and (Q2)

Let us consider now the following two functions φ and ψ definied on IR\{−λi : i = 1, . . . , n}

φ(λ) = ‖x(λ)‖
where x(λ) is the solution of (A+ λI)x = −b,

ψ(λ) =
1

r
− 1

φ(λ)
if b 6= 0.

Numerical approaches by Moré & Sorensen [9], Pham Dinh Tao [10] – [12] and Golub
et al [6] for solving (Q1) and (Q2) involve the following equation (referred to as secular
equation by Golub et al. [6] in case there is λo ≥ 0, λo > −λ1 such that φ(λo) ≥ r (such
a case implies b 6= 0):

φ(λ) = r. (3.10)

The Safeguarding by Moré & Sorensen and the Dichotomy algorithm use, for solving
(3.10), an adapted Newton-like algorithm (called Hebden algorithm) which is nothing
else than the Newton method applied to solving

ψ(λ) = 0.

The hard case corresponds to the situation where λ∗ = −λ1. One must then adapt other
techniques to compute primal and dual solutions.
The stability of Lagrangian duality relative to (Q1) and the main properties of φ, ψ given
below show that solving (3.10) amounts to computing the dual solution λ∗ (of (D1))
and the corresponding primal solution x(λ∗) (of (Q1)). Moreover in the hard case, φ is
multivalued at λ∗ = −λ1 since g̃1 is no longer differentiable at −λ1.
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Proposition 3.12. Assume that b 6= 0, then

(i) φ ∈ C∞(IR\{−λi : i = 1, . . . , n}) is strictly convex on each open interval contained
in IR\{−λi : i = 1, . . . , n} and strictly decreasing on (−λ1,+∞). More precisely one has,
for λ /∈ {−λi : i = 1, . . . , n},

φ′(λ) = − 1

φ(λ)

n∑

i=1

(bTui)
2

(λi + λ)3
(3.11)

φ′′(λ) =
2

φ(λ)

n∑

i=1

(bTui)
2

(λi + λ)3
+

1

φ(λ)





n∑

i=1

(bTui)
2

(λi + λ)4
− 1

φ2(λ)

[
n∑

i=1

(bTui)
2

(λi + λ)3

]2


 (3.12)

If b /∈ IN(A− λ1I)⊥ then limλ↓−λ1
φ(λ) = +∞.

If b ∈ IN(A − λ1I)⊥ then φ(λ) = ‖(A − λ1I)+b‖ for λ > −λ1 and limλ↓−λ1
φ(λ) =

‖(A− λ1I)+b‖.
(ii) ψ ∈ C∞(IR\{−λi : i = 1, . . . , n}) is strictly convex on each open interval contained
in IR\{−λi : i = 1, . . . , n} and strictly decreasing on (−λ1,+∞). More precisely, if
θ(λ) = −1/φ(λ) = ψ(λ)− (1/r) then one has for λ /∈ {−λi : i = 1, . . . , n}

θ′(λ) = φ(λ)−2φ′(λ), (3.13)

θ′′(λ) =
3

φ(λ)3





n∑

i=1

(bTui)
2

(λi + λ)4
− 1

φ(λ)2

[
n∑

i=1

(bTui)
2

(λi + λ)3

]2


 . (3.14)

(iii) For λ ∈ dom g̃1 such that λ ≥ −λ1, one has

φ2(λ) =
r2

2
− g̃1(λ), if λ > −λ1.

So φ(λ) can be extended at λ = −λ1 ∈ dom g̃1 by

φ2(−λ1) = [‖(A− λ1I)+b‖2,+∞).

Proof. It suffices to prove that φ′′(λ) ≥ 0 and θ′′(λ) ≥ 0 for λ /∈ {−λi : i = 1, . . . , n}.
The other results are either direct computational derivatives or direct consequences of
Proposition 2. For this we shall prove that

n∑

i=1

(bTui)
2

(λi + λ)4
− 1

φ2(λ)
[

n∑

i=1

(bTui)
2

(λi + λ)3
]2 ≥ 0

for λ /∈ {−λi : i = 1, . . . , n}.
We can write for such a λ

n∑

i=1

(bTui)
2

(λi + λ)3
=

n∑

i=1

bTui
(λi + λ)2

bTui
λi + λ
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So by Schwarz’s inequality we obtain

n∑

i=1

(bTui)
2

(λi + λ)3
≤ [

n∑

i=1

(bTui)
2

(λi + λ)4
]1/2[

n∑

i=1

(bTui)
2

(λi + λ)2
]1/2

that is equivalent to the above inequality.

Remark 3.13. If b = 0 then φ(λ) = 0 for every λ /∈ {−λi : i = 1, . . . , n} and ψ(λ) is no
longer defined for such λ. In this case the solution set of (Q1) will be given in Proposition
3.14

Now let us deduce from the preceding results some direct consequences about the structure
of primal and dual solutions of (Q1) (resp. (Q2)) and (D1) (resp. (D2)). These properties
are of great usefulness for their solution methods.

Proposition 3.14.
1. Assume that b 6= 0.
(i) If λ1 > 0 (i.e. A is positive definite) one has

• If ‖A−1b‖ ≤ r then D1 = {λ∗ = 0} and Q1 = {x(0) = −A−1b}.
• If ‖A−1b‖ = r then D1 = D2 = {λ∗ = 0} and Q1 = Q2 = {x(0) = −A−1b}.
• If ‖A−1b‖ < r then

(a) If b /∈ Ker(A−λ1I)⊥ or b ∈ Ker(A−λ1I)⊥ and ‖(A−λ1I)+b‖ > r then D2 = {λ∗}
with −λ1 < λ∗ < 0 and Q2 = {x(λ∗) = −(A + λ∗I)−1b}, where λ∗ is the unique solution
of the equation

φ(λ) = r. (3.15)

(b) If b ∈ Ker(A− λ1I)⊥ and ‖(A− λ1I)+b‖ ≤ r then D2 = {λ∗ = −λ1} and

Q2 = {x = −x+ + u : ‖x‖2 = ‖x+‖2 + ‖u‖2 = r2}.

• If ‖A−1b‖ > r then D1 = D2 = {λ∗ > 0} where λ∗ is the unique solution of (3.15)

and Q1 = Q2 = {x(λ∗) = −(A + λ∗I)−1b}.
(ii) If λ1 = 0 (i.e. A is positive semi-definite ) one has

• If ‖A+b‖ ≤ r and b ∈ Ker(A)⊥ then D1 = D2 = {0}

Q1 = {x = −x+ + u, u ∈ Ker(A) such that ‖x‖2 = ‖x+‖2 + ‖u‖2 ≤ r2},

Q2 = {x = −x+ + u, u ∈ Ker(A) such that ‖x‖2 = ‖x+‖2 + ‖u‖2 = r2}.

• If b /∈ Ker(A)⊥ or b ∈ Ker(A)⊥ and ‖A+b‖ > r then D1 = D2 = {λ∗ > 0} where λ∗

is the unique solution of (3.15) and Q1 = Q2 = {x(λ∗) = −(A+ λ∗I)−1b}.
(iii) If λ1 < 0 (i.e. A is nonpositive semi-definite) then

• If ‖(A− λ1I)+b‖ ≤ r and b ∈ Ker(A− λ1I)⊥ then D1 = D2 = {−λ1} and

Q1 = Q2 = {x = −x+ + u, u ∈ Ker(A− λ1I), such that ‖x‖2 = ‖x+‖2 + ‖u‖2 = r2}

• If b /∈ Ker(A − λ1I)⊥ or b ∈ Ker(A − λ1I)⊥ and ‖(A − λ1I)+b‖ > r then D1 =
D2 = {λ∗ > 0} where λ∗ is the unique solution of (3.15) and Q1 = Q2 = {x(λ∗) =

−(A + λ∗I)−1b}.
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2. Assume that b = 0.
(i) If λ1 > 0 then D1 = {0},Q1 = {0}, D2 = {−λ1} and Q2 = {x ∈ Ker(A − λ1I) :
‖x‖ = r} .

(ii) If λ1 = 0 then D1 = {0}, Q1 = {x ∈ Ker(A) : ‖x‖ ≤ r}, D2 = {0}, Q2 = {x ∈
Ker(A) : ‖x‖ = r}.

(iii) If λ1 < 0 then Q1 = Q2 = {x ∈ N (A− λ1I) : ‖x‖ = r}.

Remark 3.15. It is worth noting that (A−λ1I)(A−λ1I)+b = b⇔ b ∈ Ker(A−λ1I)⊥.
The following result concerning finiteness of the solution set to (Q1) is very useful for

proving the convergence of the whole sequence {xk} (generated by DCA) to a solution of
(Q1).

Corollary 3.16. Q1 is finite if and only if Q1 is a singleton. More precisely Q1 is finite

if and only if ‖(A+ λ∗I)+b‖ = r where D1 = {λ∗}. In this case we have

Q1 = {−(A + λ∗I)+b} (3.16)

Q2 is finite if and only if either of the following properties holds:

(i) ‖A+ λ∗I)+b‖ = r where D2 = {λ∗}.
This condition is in fact necessary and sufficient for D2 to be a singleton:

Q2 = {−(A+ λ∗I)+b} (3.17)

(ii) ‖A+ λ∗I)+b‖ < r where λ∗ ∈ D2 and Ker(A+ λ∗I) is a one dimensional subspace.
This condition is in fact necessary and sufficient for | D2 | to be equal to 2. (| D2 |
denotes the number of elements in D2).

Finally the following nice result which has been stated very recently by Martinez [7]
strengthens the ability for DCA to reach a solution (global minimum) of (Q1):

Theorem 3.17.
(i) If x∗ is local-nonglobal minimum for (Q1) or (Q2) then (A + λ∗I)x∗ = −b with

λ∗ ∈]− λ2,−λ1[ and φ′(λ∗) ≥ 0.
If x∗ is a local-nonglobal minimum for (Q1) then λ∗ ≥ 0.

(ii) There exists at most one local-nonglobal minimum for (Q1) or (Q2).

(iii) If ‖x∗‖ = r, (A + λ∗I)x∗ = −b for some λ∗ ∈]− λ2,−λ1[ and φ′(λ∗) > 0 then x∗ is
a strict local minimum for (Q2).
If, in addition, λ∗ > 0, x∗ is also a strict local minimum for (Q1).

(iv) If b is orthogonal to some eigenvector associated with λ1, then there are no local-
nonglobal minimum for (Q1) and (Q2).

Conclusion.
We have completed a thorough study on the stability of Lagrangian duality and global
optimality conditions for nonconvex quadratic minimization over Euclidean balls and
spheres. These results, especially the main properties, in Proposition 3.12, of φ and ψ,
the detailed description of solution sets for (Q1) and (Q2) in Proposition 3.14 and the
finiteness of their solution sets in Corollary 3.16, should be essential for devising solution
algorithms.
This paper constitutes the theoretical part (Part I) of our work relative to nonconvex
quadratic minimization over Euclidean balls and spheres.
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