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In a Banach space X , we introduce a criterion for comparing the Wijsman topologies that are induced
by two equivalent norms of X on the hyperspace of closed convex sets C(X). Thereafter, we study the
duality map associated with the unit ball of a given norm of X in relation to its composition with the
polarity map. This more geometrical description of the norm allows us to give a direct proof of a known
theorem (see [3] and [1]): If X is reflexive and the duality map is n-to-n-usco, then the Wijsman topology
coincides with the Mosco topology on C(X).

1. Introduction

Let X be a Banach space and let C(X) be the family of closed and convex subsets of
X. The Wijsman topology on C(X) is defined to be the weakest topology for which the
distance functionals d(x, .) : C(X) −→ IR are continous for all x ∈ X. This topology
can also be viewed as the union of two other topologies: the lower Vietoris which is

generated by all subsets of C(X) of the form V − = {A ∈ C(X) | A ∩ V 6= ∅}, where
V is open in X; and the upper Wijsman which is generated by all sets of the form

(Bc)++ = {A ∈ C(X) | infa∈A b∈B ‖a − b‖ = D(A,B) > 0}, where B is a homothetic
translation of the unit ball of X. Clearly the lower Vietoris depends only on the open
sets of X, hence only on the topology of X, while the upper Wijsman depends also on
the norm chosen on X. Our purpose is to give a geometric criterion for deciding when
two equivalent norms of X generate the same upper Wijsman topology on C(X) and, in
order to illustrate a possible application of this criterion, we will give another proof of a
theorem of Borwein and Fitzpatrick (see [3]). This theorem says that, if X is reflexive and
the norm p on X is sufficiently “smooth” (i.e. the duality map is n-to-n-usco), then the
Wijsman topology associated to p is the maximum of all the Wijsman topologies induced
by equivalent norms, i.e. is the Mosco topology (see [2] for this).

In the following, U and S will always denote, respectively, the closed unit ball and the
unit sphere. We will add an upper-star to objects lying in the dual space.

In the next section we illustrate a geometrical criterion involving unit balls of X which
allows us to compare the corresponding Wijsman topologies on C(X). In the third section
we study the relationship between the unit ball and the polar of its associated duality
map under the hypothesis that the duality map is norm-to-norm-upper-semicontinous and
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norm-compact valued. Finally, in section 4 we give a different proof of the theorem of
Borwein and Fitzpatrick.

2. A criterion for comparing Wijsman topologies

The criterion we propose in this section has been inspired by the one given in [4] in the
case of the hyperspace of closed subsets of a metric space. Suppose that p0 and p1 are
two equivalent norms on X. For any x∗ ∈ X∗ with ‖x∗‖1 = 1 and any ε > 0, consider the
closed half-space H(x∗, ε) = {x ∈ X | 〈x∗, x〉 ≤ 1 + ε}. Note that H(x∗, ε) contains U1,
because supx∈U1

〈x∗, x〉 = ‖x∗‖1 = 1 < 1 + ε.

Definition 2.1. We say that p0 covers p1 if, for every x∗ ∈ S∗1 and for every ε > 0,
there are x1, . . . , xn ∈ X and λ1, . . . , λn > 0 such that:

U1 ⊂
n⋃

i=1

(xi + λiU0) ⊂ H(x∗; ε)

In other words, p0 covers p1, if, whenever we choose a hyperplane with positive distance
from the ball U1, it is always possible to find a finite number of p0–balls whose union
contains U1 but does not intersect that hyperplane. The next theorem will justify the
choice of such a criterion, but first we need to state some preliminary well-known facts,
which we will prove for the sake of completeness.

Lemma 2.2.
1. If D ⊂ X, then for all x ∈ X and λ > 0: x + λ(Dc)++ = [(x + λD)c]++.

2. If Di ⊂ X for i = 1, . . . , n, then: [(∪ni=1Di)
c]++ = ∩ni=1(Dc

i )
++.

3. If E is closed and D ⊂ X: D ⊂ E ⇐⇒ (Ec)++ ⊂ (Dc)++.

Proof.
1. Note that D(x + λA, x + λD) > 0 ⇔ infa∈A b∈D ‖(x + λa) − (x + λb)‖ > 0 ⇔

infa∈A b∈D λ‖a − b‖ > 0 ⇔ D(A,D) > 0. So x + λA ∈ [(x + λD)c]++ ⇔
A ∈ (Dc)++ ⇔ x + λA ∈ x + λ(Dc)++.

2. If A ∈ [(∪ni=1Di)
c]++, then D(A,∪ni=1Di) > 0. So D(A,Di) > 0 for all i =

1, . . . , n. Hence A ∈ (Dc
i )

++ for all i and A ∈ ∩ni=1(Dc
i )

++. Conversely, suppose

D(A,Di) > 0 for all i = 1, . . . , n. Then D(A,∪ni=1Di) = mini=1...nD(A,Di) > 0, so

A ∈ [(∪ni=1Di)
c]++.

3. Suppose D ⊂ E, then if A ∈ (Ec)++, D(A,D) ≥ D(A,E) > 0. So A ∈ (Dc)++.

Conversely, suppose (Ec)++ ⊂ (Dc)++. If D 6⊂ E, pick x ∈ D \ E. Then, since E is

closed, d(x, E) > 0. So {x} ∈ (Ec)++ ⊂ (Dc)++, hence d(x,D) > 0, but x ∈ D, and
this is a contradiction.

Theorem 2.3. For i = 0, 1, let τ+
Wpi

be the upper Wijsman topology induced by the

norm pi on C(X), the space of closed convex subsets of X. Then:

p0 covers p1 ⇐⇒ τ+
Wp0
≥ τ+

Wp1
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Proof. First we assume that p0 covers p1. It is enough to show that the subbase of τ+
Wp1

,

as defined in Section 1, is contained in τ+
Wp0

. Consider a homothetic translation of the

unit ball for the norm p1: B = x + λU1, with x ∈ X and λ > 0. By Lemma 2.2 (1),

we have x + λ(U c1)++ = [(x + λU1)c]++. Therefore, we only need to prove that (U c1)++

is open in τ+
Wp0

, because the topology τ+
Wp0

is invariant under translations and positive

dilations (this is easily checked on its subbase). So, let Â be a fixed closed convex set

in (U c1)++. Since D(Â, U1) > 0, there is δ > 0 such that (1 + δ)U1 ∩Â = ∅. Then, the
Hahn–Banach theorem gives us x∗ ∈ S∗1 such that:

sup
z∈U1

〈x∗, z〉 = 1 < 1 + δ < inf
a∈Â
〈x∗, a〉 (2.1)

We know that p0 covers p1, therefore we can cover U1 with homothetic translations of U0

without exceeding H(x∗; δ). That is to say, there are x1, . . . , xn ∈ X and λ1, . . . , λn > 0
such that:

U1 ⊂
n⋃

i=1

(xi + λiU0) ⊂ H(x∗; δ) (2.2)

Define Bi = xi + λiU0 and B = ∪ni=1Bi. We claim that (Bc)++ is an open set in τ+
Wp0

which contains Â and is contained in (U c1)++. From the second inclusion in (2.2) we

have that B ⊂ H(x∗; δ). Moreover, since H(x∗; δ) is a half-space, for any a 6∈ H(x∗; δ),
d(a,H(x∗; δ)) = 〈x∗, a〉 − (1 + δ). Hence, by the second inequality in (2.1), we have

that: D(Â, B) ≥ D(Â, H(x∗, δ)) = infa∈Â〈x∗, a〉 − (1 + δ) > 0. Therefore Â ∈ (Bc)++.

Moreover, by the first inclusion in (2.2), U1 ⊂ B, so by Lemma 2.2 (3), (Bc)++ ⊂ (U c1)++.

Thus, we proved that Â ⊂ (Bc)++ ⊂ (U c1)++. Finally, by Lemma 2.2 (2), we have

(Bc)++ = [(∪ni=1Bi)
c]++ = ∩ni=1(Bc

i )
++, which ensures that (Bc)++ is an open set in

τ+
Wp0

. Since Â was arbitrary, (U c1)++ is also open in τ+
Wp0

. So τ+
Wp0
≥ τ+

Wp1
.

Conversely, suppose that τ+
Wp0
≥ τ+

Wp1
. Fix x∗ ∈ S∗1 and ε > 0. Then the closed half-

space A = {x ∈ X | 〈x∗, x〉 ≥ 1 + ε} belongs to (U c1)++ ∩ C(X), because D(A,U1) =

infa∈A z∈U1 ‖a−z‖ ≥ infa∈A z∈U1〈x∗, a−z〉 = infa∈A〈x∗, a〉−supz∈U1
〈x∗, z〉 = (1+ε)−1 =

ε > 0. So there is an open set B in τ+
Wp0

that contains A and is itself contained in (U c1)++.

Now, B can be chosen to be in the base of τ+
Wp0

, i.e. B = ∩ni=1(Bc
i )

++, where Bi are

homothetic translations of U0. By Lemma 2.2, ∩ni=1(Bc
i )

++ = [(∪ni=1Bi)
c]++ ⊂ (U c1)++

implies U1 ⊂ ∪ni=1Bi; while, A ∈ [(∪ni=1Bi)
c]++ implies ∪ni=1Bi ⊂ Ac ⊂ cl(Ac) = H(x∗; ε).

So U1 ⊂ ∪ni=1Bi ⊂ H(x∗; ε).

Accordingly, if a norm p covers all other equivalent norms, then the Wijsman topology
induced by p will be the maximum of all the Wijsman topologies induced by equivalent
norms. This observation will be our main tool for proving the theorem of Borwein and
Fitzpatrick. The intuition is that the unit ball U of a norm that covers any equivalent
norm cannot have “sharp corners”, i.e. must satisfy some rotundity property, in order
to finitely cover any other equivalent ball without exceeding any given hyperplane. In
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this context the right object to consider for studying the corners of U is the polar of the
duality map.

3. The unit ball and the polar of its duality map

3.1. The smallest cones containing the unit ball

Let p be a given norm on X. The duality map associated with p is a multifunction
J : S −→ S∗ defined as follows:

For all x ∈ S, J(x) = {x∗ ∈ S∗ | 〈x∗, x〉 = 1}.

Note that J has always non-empty, weak∗-compact and convex values (see [6]). Recall
that for an arbitrary set A ⊂ X∗ we can define its polar set in X to be:

A◦ = {x ∈ X | sup
a∈A
〈a, x〉 ≤ 1} =

⋂

a∈A
{x ∈ X | 〈a, x〉 ≤ 1}

Clearly, A◦ is always closed and convex. In what follows our attention will focus on the
polar set of the set J(x̄) for a fixed x̄ ∈ S. We will show that J(x̄)◦ is the smallest closed
convex cone with vertex at x̄ containing the unit ball U . But first we need to better
describe the latter.
So, fix x̄ ∈ S. Define Bλ = x̄+ λ(U − x̄), for all λ > 0, and let B = ∪λ>0Bλ.

Lemma 3.1. The Bλ form an increasing family of balls; x̄ is in every ∂Bλ = x̄+λ(S−x̄),
for all λ > 0; also B = ∪λ>0∂Bλ = x̄ + ∪λ>0λ(S − x̄); and finally, cl(B) is the smallest
closed convex cone with vertex at x̄ containing U .

Proof. Suppose x ∈ Bλ; then x = x̄+λ(y− x̄) for some y ∈ U . Let µ > λ, then we also

have x = µ[λµy+ (1− λ
µ)x̄] + (1−µ)x̄. But 0 < λ

µ < 1, so by convexity λ
µy+ (1− λ

µ)x̄ ∈ U ,

hence x ∈ Bµ. Therefore Bλ is increasing in λ.

Next, since x̄ ∈ S, x̄ = x̄+ λ(x̄− x̄) ∈ ∂Bλ for all λ > 0.
To see that B = x̄ + ∪λ>0λ(U − x̄) = x̄ + ∪λ>0λ(S − x̄), first note that S ⊂ U . So
x̄+∪λ>0λ(S−x̄) ⊂ B. Hence, it is enough to show that B ⊂ x̄+∪λ>0λ(S−x̄). Let x ∈ B,

then x ∈ Bλ for some λ > 0. Let λ0 = inf{λ > 0 | x ∈ Bλ} = inf{λ > 0 | x−x̄λ ∈ U − x̄}.
We can suppose that x 6= x̄, so, for λ < ‖x−x̄‖

2 , we have ‖x−x̄λ ‖ > 2, i.e. x−x̄
λ 6∈ U − x̄,

thus λ0 > 0. For all λ > λ0, x−x̄λ ∈ U − x̄, but U − x̄ is closed, so x−x̄
λ0
∈ U − x̄. Moreover,

for λ < λ0, x−x̄
λ 6∈ U − x̄. Therefore, x−x̄

λ0
∈ (U − x̄) ∩ cl((U − x̄)c) = S − x̄. Hence

x ∈ x̄ + λ0(S − x̄). Thus B = x̄ + ∪λ>0λ(S − x̄).
Now let us prove that B is a convex cone with vertex in x̄. For this we show that
C = ∪λ>0λ(U − x̄) is a convex cone with vertex at the origin. Consider x1, x2 ∈ C, then
there are λ1, λ2 > 0 and y1, y2 ∈ U such that: xi = λi(yi − x̄) for i = 1, 2. Therefore:

x1 + x2 = λ1y1 + λ2y2 − (λ1 + λ2)x̄

= (λ1 + λ2)
λ1y1 + λ2y2

λ1 + λ2
− (λ1 + λ2)x̄
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Since U is convex x1 + x2 ∈ (λ1 + λ2)(U − x̄) ⊂ C. Hence, C + C ⊂ C. Thus, C is
a convex cone. Therefore, cl(B) = cl(x̄ + C) is a closed convex cone with vertex at x̄.
Moreover, all convex cones containing U − x̄ must contain λ(U − x̄) for all λ > 0, hence
must contain C. Therefore cl(B) is the smallest convex cone containing U with vertex
at x̄.

Proposition 3.2. Let x̄ ∈ S and B be defined as above. Then J(x̄)◦ = cl(B).

Proof. Consider x ∈ Bλ; then x = x̄ + λ(y − x̄) with y ∈ U . Thus, for all x∗ ∈ J(x̄),
〈x∗, x〉 = 1+λ(〈x∗, y〉−1) ≤ 1. So x ∈ J(x̄)◦. Therefore, B ⊂ J(x̄)◦, hence cl(B) ⊂ J(x̄)◦,
since, by its definition, J(x̄)◦ is closed. Conversely, suppose that x ∈ J(x̄)◦ \ cl(B). Since
cl(B) is closed and convex, by the Hahn–Banach theorem we can find d > 0 and x∗ ∈ S∗
such that: 〈x∗, x〉 > d > supb∈cl(B)〈x∗, b〉. Thus supb∈cl(B)〈x∗, b〉 <∞ and since cl(B) is

a cone with vertex at x̄, this implies that supb∈cl(B)〈x∗, b〉 = 〈x∗, x̄〉. Moreover, U ⊂ cl(B),

therefore we have:

1 ≥ 〈x∗, x̄〉 = sup
b∈cl(B)

〈x∗, b〉 ≥ sup
b∈U
〈x∗, b〉 = ‖x∗‖ = 1

So 〈x∗, x̄〉 = 1, hence x∗ ∈ J(x̄). But then 〈x∗, x〉 > d > 1 contradicts the fact that
x ∈ J(x̄)◦.

This proposition says that J(x̄)◦ is generated by positive linear combinations of U and x̄,
so J(x̄)◦ is the smallest closed convex cone with vertex at x̄ containing U . In our “down-
to-earth” discussion we will say that J(x̄)◦ is the corner of U at x̄. Then, Proposition 3.2
can be restated by saying that the dilations of U spreading from x̄ form an exhaustion
for the corner of U at x̄.
Since in the sequel we will assume that J is norm-compact valued we need to study more
carefully the polar of a compact subset of S∗. The next section is devoted to this purpose.

3.2. The polar of a compact subset of S∗

We defined the polar of a set A to be A◦ =
⋂
x∗∈A{x ∈ X | 〈x∗, x〉 ≤ 1}. In the next

proposition we will look at the consequences of A being a compact subset of S∗. It is easy
to show that int(A◦) is weakly open in X if and only if A is bounded and finite dimensional
in S∗. Here we will show that, if A is norm compact in S∗, then the norm interior of A◦

is bounded-weakly open in X, that is to say, its intersection with any bounded set E in X
is relatively weakly open in E (see [5] p.48).

Proposition 3.3. If A is a norm-compact subset of S∗, then:
1. int(A◦) =

⋂
x∗∈A{x ∈ X | 〈x∗, x〉 < 1}.

2. int(A◦) is bounded-weakly open in X.

Proof. First suppose x ∈ int(A◦), then there is r > 0 such that x+ rU ⊂ int(A◦) ⊂ A◦.
So for all x∗ ∈ A, supy∈U 〈x∗, x+ry〉 ≤ 1, hence 〈x∗, x〉+r‖x∗‖ ≤ 1, i.e. 〈x∗, x〉 ≤ 1−r < 1.

Conversely, suppose that for all x∗ ∈ A, 〈x∗, x〉 < 1. Then, since A is norm-compact
and f(x∗) = 〈x∗, x〉 is norm-continous on X∗, we have maxx∗∈A〈x∗, x〉 = δ < 1. Let
r = 1 − δ and consider z ∈ x + rU , then z = x + ry with y ∈ U , so, for all x∗ ∈ A,
〈x∗, z〉 = 〈x∗, x〉+ r〈x∗, y〉 ≤ (1− r) + r = 1. Therefore x+ rU ⊂ A◦, i.e. x ∈ int(A◦).
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To show that int(A◦) ∩ E is relatively weakly open in E for any bounded set E, we
will show that the complement is relatively weakly closed. Suppose xα is a net in E
weakly convergent to x0 ∈ E such that, for all α, xα 6∈ int(A◦). By part (1), this means
that for all α we can find x∗α ∈ A such that 〈x∗α, xα〉 ≥ 1. Since xα is bounded, and
converges weakly to x0, this implies that 〈x∗0, x0〉 = lim〈x∗α, xα〉 ≥ 1, for some x∗0 ∈ A so

x0 6∈ int(A◦). Hence E \ int(A◦) is weakly closed in E, so int(A◦) ∩ E is weakly open in
E.

This Proposition applied to our study of the duality map tells us that, when J is compact-
valued, int(J(x̄)◦) is bounded-weakly open in X for any x̄ ∈ S. That is to say, the corner
of U at x̄ is sufficiently “flat”, since weakly open sets are in a sense “bigger” than norm-
open sets.

3.3. A stronger continuity property for the duality map

A multivalued map F between two topological spaces T and S is said to be uppersemi-
continous if for each x ∈ T and any neighborhood V of F (x) in S there is a neighborhood
W of x in T such that F (W ) ⊂ V . Note that if S is a metric space, e.g. a normed linear
space, and F (x) is compact, then the neighborhoods V of F (x) can be assumed to be
ε-expansions of F (x): Sε[F (x)] = ∪y∈F (x){z ∈ S | d(y, z) < ε}).
Given a norm on a Banach space X, the duality map J associated with it is a multivalued
map from the sphere S to the dual sphere S∗ which is uppersemicontinous if we endow
S with the norm topology and S∗ with the weak∗-topology (see [6]). In the following
we require a stronger condition, i.e. we want J to be norm to norm uppersemiconti-
nous (S∗ endowed with the dual norm topology). Moreover, the values of J are always

weak∗compact by definition, but here we ask that J be norm-compact valued. In short
we say that J is n-to-n-usco. The next lemma is well-known.

Lemma 3.4. Suppose that J is n-to-n-usco. If {xk}, x̄ ∈ S, z∗k ∈ J(xk), and xk −→ x̄

in norm, then there is x∗0 ∈ J(x̄) such that, “up to subsequences”, z∗k −→ x∗0 in norm.

Proof. Since J(x̄) is convex and weak∗-compact, there is x∗k ∈ J(x̄) such that ‖z∗k−x∗k‖ =

d(z∗k, J(x̄)). By assumption, J(x̄) is norm-compact, so, up to subsequences, x∗k converges

in norm to x∗0 ∈ J(x̄), i.e. given ε > 0 there is k0 such that ‖x∗k − x∗0‖ ≤ ε for k ≥ k0.

Moreover, J is norm-to-norm uppersemicontinous in x̄, hence there is k1 such that for
all k ≥ k1: J(xk) ⊂ Sε[J(x̄)] = {x∗ ∈ X∗ | d(x∗, J(x̄)) < ε}. Therefore, for all k ≥ k1,
z∗k ∈ Sε[J(x̄)], i.e. ‖z∗k − x∗k‖ = d(z∗k, J(x̄)) < ε, so ‖z∗k − x∗0‖ ≤ ‖z∗k − x∗k‖ + ‖x∗k − x∗0‖ ≤
ε + ε = 2ε, for k ≥ max{k0, k1}.
The map J being n-to-n-usco has an interesting consequence for the polar of J(x̄), for a
fixed x̄ ∈ S. In Section 3.1 we showed that Bλ = x̄+ λ(U − x̄) is an increasing family of
balls such that int(J(x̄)◦) ⊂ ∪λ>0Bλ ⊂ J(x̄)◦. The same is true if we take the balls Bλ to
be open, i.e. int(Bλ) instead of Bλ. So, given any norm-compact subset K of int(J(x̄)◦),
by compactness, there is λ0 such that K is contained in int(Bλ) for all λ ≥ λ0 > 0. In
a similar way, when J is n-to-n-usco, given any weakly compact subset K of int(J(x̄)◦),
we can find λ0 so that K is contained in all the Bλ’s for λ ≥ λ0 > 0.

Proposition 3.5. Suppose J is n-to-n-usco at x̄. If K ⊂ int(J(x̄)◦) is a weakly compact
set, then there is λ0 > 0 such that K ⊂ Bλ0

= x̄+ λ0(U − x̄).
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Proof. Since X is a Banach space, by the Eberlein-Smulian Theorem (see [5] Theorem
1. p. 58), K is weakly sequentially compact. Suppose that for every natural number
n > 0 there is xn ∈ K \ Bn. Then we can extract a subsequence yk which converges
weakly to x0 ∈ K, where yk = xnk ∈ K \ Bnk . By Lemma 3.1, we have int(J(x̄)◦) =

int(cl(B)) = int(B) ⊂ x̄ + ∪λ>0λ(S − x̄), since B = ∪λ>0Bλ is convex and has non-
empty interior. For each k, yk ∈ K ⊂ int(J(x̄)◦), so we can find λk > 0 such that
yk ∈ x̄ + λk(S − x̄) ⊂ Bλk . Note that yk 6∈ Bnk , and since the sets Bλ are increasing

with λ, we must have λk > nk, so λk converges to infinity. Moreover, we can write
yk = x̄+λk(zk− x̄) for some zk ∈ S. Now recall that K is weakly compact in X and that
X is a Banach space so K is norm-bounded by a constant M > 0, so that zk converges

in norm to x̄, because ‖zk − x̄‖ =
‖yk−x̄‖
λk

≤ M+‖x̄‖
λk

−→ 0, as k −→ ∞. For each k pick

z∗k ∈ J(zk) 6= ∅. Then by Lemma 3.4, there is x∗0 ∈ J(x̄) so that, up to a subsequence,

z∗k −→ x∗0 in norm. Now, we compute 〈x∗0, x0〉. Given ε > 0, eventually

〈x∗0, x0〉 ≥ 〈x∗0, yk〉 − ε (yk → x0 weakly)

= 〈z∗k, yk〉+ 〈x∗0 − z∗k, yk〉 − ε
≥ 〈z∗k, x̄+ λk(zk − x̄)〉 − ‖x∗0 − z∗k‖‖yk‖ − ε
≥ λk〈z∗k, zk〉+ (1− λk)〈z∗k, x̄〉 − εM − ε
≥ λk + (1− λk)− ε(M + 1) = 1− ε(M + 1)

The last line follows from the fact that 〈z∗k, x̄〉 ≤ 1 and 1 − λk < 0. Now, since ε is

arbitrary, we get 〈x∗0, x0〉 ≥ 1. But x0 ∈ K ⊂ int(J(x̄)◦), so, by Proposition 3.3, this is
a contradiction. Therefore there is n0 ∈ IN such that K ⊂ Bn0, hence K ⊂ Bλ for all
λ ≥ n0.

The Proposition we just proved tells us that, when J is n-to-n-usco, the corners of U are
“nicely” exhausted by the dilations of U itself.
With this more thorough description of the duality map at hand we are now able to prove
the theorem of Borwein and Fitzpatrick in one direction.

4. Another proof of the B-F theorem

The idea of the proof is based on the fact that, when J is n-to-n-usco, the corners of the
unit ball U are sufficiently flat (i.e. bounded-weakly open) and are nicely exhausted by
the dilations of U (i.e. any weakly compact subset of int(J(x̄)◦) is in reality contained in
one dilated ball Bλ), together with the fact that in a reflexive space any equivalent ball
is weakly compact. But first recall the following fact.

Lemma 4.1. If Y is a compact Hausdorff space and V1, . . . , Vn are open sets that cover
Y , then there is a finite refinement {Wj} of {Vi} with W1, . . . ,Wj closed in Y .

Proof. For each y ∈ Y , we have y ∈ Vi for some i. Since Y is compact, Y \ Vi is
compact, and since Y is regular, there is an open neighborhood Gy of y such that y ∈
Gy ⊂ cl(Gy) ⊂ Vi. By compactness, Y = ∪mj=1Gyj for some y1, . . . , ym in Y . Set

Wj = cl(Gyj ). Then {Wj} is a closed finite refinement of {Vi}.
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Theorem 4.2. If X is reflexive, with norm p and J its duality map, let π be the set
of norms that are equivalent to p and C(X) be the set of closed and convex subsets of X;
then:

J n-to-n-usco =⇒ τWp = sup
p′∈π

τWp′ on C(X)

Proof. We must show that for every norm p′ equivalent to p we have τ+
Wp
≥ τ+

Wp′
.

Therefore, by Theorem 2.3, it’s enough to show that p covers every equivalent norm p′.
So, let U ′ be the unit ball of the norm p′. Fix x∗ ∈ S′∗ and ε > 0. Then U ′ ⊂ H(x∗, ε) =

{x ∈ X | 〈x∗, x〉 ≤ 1 + ε}. We must show that U ′ can be covered by a finite number of p-
balls which remain contained in H(x∗, ε). As a matter of notation, let N be the hyperplane
{x ∈ X | 〈x∗, x〉 = 1 + ε}, that is the boundary of H(x∗, ε). Since the Wijsman topology
is invariant for homothetic norms we can suppose, by dilating U if necessary, that the
unit ball of the norm p is such that supx∈U 〈x∗, x〉 = 1 + ε, so that U is also contained

in H(x∗, ε). Also, since X is reflexive, there is x̄ ∈ S such that 〈x∗, x̄〉 = 1 + ε, so that
x̄ ∈ N .

By Proposition 3.2, the corner of U at x̄, J(x̄)◦, is the smallest closed convex cone with
vertex at x̄ that contains U , therefore J(x̄)◦ ⊂ H(x∗, ε), because H(x∗, ε) is a closed
convex cone containing U and has vertex at x̄, since x̄ ∈ N . Then, for each x ∈ N ,
consider the open cone Vx = int(J(x̄)◦) + (x− x̄), i.e. the corner of U at x̄ translated so
that its vertex is still in N . Since J(x̄)◦ ⊂ H(x∗, ε), every Vx is also contained in H(x∗, ε).
The fact that, when J is n-to-n-usco, the corner of U at x̄ is sufficiently flat comes to use
in the next Claim.

Claim: U ′ ⊂ ∪ni=1Vxi, for some x1, . . . , xn ∈ N .

Consider y ∈ U ′. Then 〈x∗, y〉 = k ≤ 1, because x∗ ∈ S′∗. Let x = y + (1− k
1+ε)x̄. Then

〈x∗, x〉 = 〈x∗, y〉+ (1− k
1+ε)〈x∗, x̄〉 = k + (1− k

1+ε)(1 + ε) = 1 + ε. So x ∈ N . Note that

we can write y = k
1+ε x̄+ (x− x̄). Moreover, for all y∗ ∈ J(x̄) ⊂ S∗, 〈y∗, k

1+ε x̄〉 = k
1+ε < 1,

and since J(x̄) is norm-compact in X∗, Proposition 3.3 (1) applied to J(x̄)◦, tells us that
k

1+ε x̄ ∈ int(J(x̄)◦). Therefore y ∈ Vx. So U ′ ⊂ ∪x∈NVx. Now, since U ′ is bounded (in

every equivalent norm), Proposition 3.3 (2) says that, for each x ∈ N , Vx ∩ U ′ is weakly

open in U ′. So
⋃
x∈N (Vx ∩U ′) is a relatively weakly open cover of U ′. But X is reflexive,

so U ′ is weakly-compact. Therefore, we can find x1, . . . , xn ∈ N such that U ′ ⊂ ∪ni=1Vxi.

Now, by Lemma 4.1, we can find a finite refinement {Wj}mj=1 of the cover {Vxi} where

the Wj ’s are relatively weakly closed in U ′. Hence, for each j = 1, . . . , m, Wj ⊂ Vxij ,

for some 1 ≤ ij ≤ n, and Wj is weakly compact. Proposition 3.5 says that each Wj is

in fact contained in a p-ball, i.e. there is λj > 0 such that Wj ⊂ Bλj + (xij − x̄) =

λjU+(1−λj)x̄+(xij − x̄) = (xij −λj x̄)+λjU . Call these p-balls Dj = (xij −λj x̄)+λjU .

Then, U ′ ⊂ ∪mj=1Wj ⊂ ∪mj=1Dj ⊂ ∪mj=1Vxij ⊂ H(x∗, ε). Hence U ′ ⊂ ∪mj=1Dj ⊂ H(x∗; ε).

Since x∗ ∈ S′∗ and ε > 0 were arbitrarily fixed, the hypothesis of Theorem 2.3 are satisfied,

thus τ+
Wp
≥ τ+

Wp′
. So τWp = supp′∈π τWp′ .
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