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The purpose of this short paper is very modest if compared with the greatness of the mathematician to
whom it is dedicated. Here, indeed, we wish only to signalize a new result on the existence of zeros for
operators taking their values in the dual of a real topological vector space. We do hope, however, that the
novelty together with the simplicity of its statement can draw the attention of other mathematicians, in
order to discover a possible variety of intermediate conditions making easier its applicability to concrete
situations.

The reader should think of our result as the extension to the general case of the following
elementary observation: if f : IR→ IR is a continuous function such that the set {(x, y) ∈
IR2 : f(x)y = 1} is disconnected, then f does vanish at some point. Indeed, if f never
vanished, that set would coincide with the graph of the continuous function 1/f which is
clearly connected.

Our result is as follows:

Theorem 1.1. Let X be a connected topological space and let E be a real topological
vector space, with topological dual E∗. Then, any operator A : X → E∗ for which the set

{y ∈ E : x→ 〈A(x), y〉 is continuous}

is dense in E and the set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}

is disconnected, does vanish at some point of X.

Proof. Denote by pX the projection from X×E onto X. Moreover, for any C ⊆ X×E,
x ∈ X, put

Cx = {y ∈ E : (x, y) ∈ C}.
Arguing by contradiction, assume that A(x) 6= 0 for all x ∈ X. Denote by Γ the set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}.
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Since Γ is disconnected, there are two open sets Ω1,Ω2 ⊆ X × E such that

Ω1 ∩ Γ 6= ∅, Ω2 ∩ Γ 6= ∅, Ω1 ∩ Ω2 ∩ Γ = ∅, Γ ⊆ Ω1 ∪ Ω2.

We now prove that pX(Ω1 ∩ Γ) is open in X. So, let (x0, y0) ∈ Ω1 ∩ Γ. Since E is locally
connected ([4], p.35), there are a neighbourhood U0 of x0 in X and an open connected
neighbourhood V0 of y0 in E such that U0 × V0 ⊆ Ω1. Since 〈A(x0), ·〉 is a non-null
continuous linear functional, it has no local extrema. Consequently, since 〈A(x0), y0〉 = 1,
the sets

{u ∈ V0 : 〈A(x0), u〉 < 1},
{u ∈ V0 : 〈A(x0), u〉 > 1}

are both non-empty and open. Then, thanks to our density assumption, there are u1, u2 ∈
V0 such that the set

{x ∈ U0 : 〈A(x), u1〉 < 1 < 〈A(x), u2〉}
is a neighbourhood of x0. Then, if x is in this set, due to the connectedness of V0, there
is some y ∈ V0 such that 〈A(x), y〉 = 1, and so, x actually lies in pX(Ω1 ∩ Γ), as desired.
Likewise, it is seen that pX(Ω2 ∩ Γ) is open. Now, observe that, for any x ∈ X, the
set {x} × Γx is non-empty and connected, and so it is contained either in Ω1 or in Ω2.
Summarizing, we then have that the sets pX(Ω1∩Γ) and pX(Ω2∩Γ) are non-empty, open,
disjoint and cover X. Hence, X would be disconnected, a contradiction.

Once Theorem 1.1 has been obtained, we can state the following formally more complete
result:

Theorem 1.2. Let X be a topological space, let E be a real topological vector space, and
let A : X → E∗ be such that the set

{y ∈ E : x→ 〈A(x), y〉 is continuous}

is dense in E.

Then, the following assertions are equivalent:
(i) The set

{(x, y) ∈ X × E : 〈A(x), y〉 = 1}
is disconnected.

(ii) The set X \ A−1(0) is disconnected.

Proof. Let (i) hold. Since

{(x, y) ∈ X × E : 〈A(x), y〉 = 1} = {(x, y) ∈ (X \ A−1(0))× E : 〈A(x), y〉 = 1},

if X \ A−1(0) were connected, we could apply Theorem 1.1 to A|(X\A−1(0)), and so A

would vanish at some point of X \ A−1(0), which is absurd.
Conversely, if (ii) holds, then (i) follows at once observing that, with the notations of the

proof of Theorem 1.1, one has X \ A−1(0) = pX(Γ).

Remark 1.3. It is worth pointing out that one can also prove Theorem 1.1 by applying
some known results of set-valued analysis. Namely, assuming, as before, that A(x) 6= 0 for
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all x ∈ X, we directly infer from Theorem 2.2 of [3] that the multifunction H : X → 2E

defined by H(x) = Γx (x ∈ X), is lower semicontinuous. Then, since X is connected and
each H(x) is non-empty and connected, Theorem 3.2 of [1] ensures that the graph of H is
connected too. But such graph is nothing else than Γ itself, and so we get a contradiction.

Remark 1.4. When X is a connected topological space, E is an infinite-dimensional
real vector space (with algebraic dual E ′), and A : X → E ′ is a σ(E′, E)-continuous
operator, one could try to apply Theorem 1.1 endowing E with the strongest vector
topology ([2], p.53).

Remark 1.5. In Theorem 1.1, the role of the constant 1 can actually be assumed by
any continuous real function on X. Precisely, we have the following

Proposition 1.6. Let X be a topological space, let E be a real topological vector space,
and let A : X → E ′. Assume that, for some continuous function α : X → IR, the set

Λ := {(x, y) ∈ X × E : 〈A(x), y〉 = α(x)}

is disconnected.
Then, either A(x) = 0 for some x ∈ X, or the set

Γ := {(x, y) ∈ X × E : 〈A(x), y〉 = 1}

is disconnected.

Proof. Assume that A−1(0) = ∅. So, pX(Γ) = X. Consider the function f : X × E →
X × E defined by putting f(x, y) = (x, α(x)y) for all (x, y) ∈ X × E. Of course, f
is continuous. Arguing by contradiction, assume that Γ is connected. Then, f(Γ) is
connected too. Now, observe that

Λ =
⋃

x∈α−1(0)

(f(Γ) ∪ ({x} × Λx)).

Furthermore, note that, if x ∈ α−1(0), then (x, 0) ∈ f(Γ) ∩ ({x} × Λx), and so f(Γ) ∪
({x} × Λx) is connected. In turn, the sets f(Γ) ∪ ({x} × Λx) (x ∈ α−1(0)) are clearly
pairwise non-disjoint, and hence Λ is connected, a contradiction.

Remark 1.7. A further reasonable remark about possible uses of Theorem 1.1 arises
from Theorem 1.2. In fact, in dealing with the existence of zeros for a given σ(E∗, E)-
continuous operator A : X → E∗, if we were trying to apply Theorem 1.1 directly to

A, we would have not only that A−1(0) 6= ∅, but also that X \ A−1(0) is disconnected,
which is a quite special property. In other words, such a direct application could imply
rather severe assumptions on A. So, it would be reasonable to find another connected
topological space T and a continuous function f : T → X in such a way to prove more
easily the disconnectedness of the set {(t, y) ∈ T × E : 〈A(f(t)), y〉 = 1}. So doing, we

would still have the requested information A−1(0) 6= ∅, the set X \A−1(0) being, however,
not necessarily disconnected.
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