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1. Introduction

One of the main methods of Convex Analysis is the application of conjugacy operators
which transfer a given convex object (set, function, multivalued mapping and so on ) to a
conjugate object. Several conjugacy operators are used in Convex Analysis, for instance
the operator of polarity which maps a convex closed set containing the origin to its polar
set, the operator which transfers the same set to its Minkowski gauge, the operator which
maps a convex lower semicontinuous (l.s.c.) function in its conjugate function (in the
sense of Convex Analysis). Various kinds of conjugacy operators are described in the
famous book by Rockafellar [14]. Conjugacy operators are used also in the theory of
quasiconvex functions (see for instance [5, 11, 13, 17]).

It is most convenient to study conjugacy operators within framework of lattice theory
as dual isomorphism between lattices. This approach was suggested the famous Russian
mathematician G.P.Akilov in the 1970’s. Unfortunately the important work of G.P.Akilov
was not published. Varios classes of conjugacy operators and varios aspects of the theory
of conjugacy operators are studied in framework of lattice theory by I. Singer, J.-E.
Martinez-Legaz (see for example [20, 12]) and others. There is a survey of results in this
direction in the paper [10] by J.-E. Martinez-Legaz. On the other hand a vector version of
some conjugacy operators of Convex Analysis (with substitute functionals for operators
and straight line for vector lattices) was studied by A.G.Kusraev and S.S.Kutateladze
(see for example [6, 7]).

Conjugacy operators which are studied in Convex Analysis and related areas are defined
as a rule on a lattice with multiplication by positive scalars, and these operators are
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antihomogeneous (i.e. homogeneous of degree (-1)). We are primarily concerned in this
paper with conjugacy operators possessing this antihomogeneuos property.
The aim of this paper is to give an axiomatic description of antihomogeneous conjugacy
operators and to study connections between these operators and algebraic operations
(calculus). Our viewpoint sheds some new light on the calculus and allows us to obtain
some results by the simplest way.

Examples are part and parcel of the paper.

In Section 2 we introduce so-called c2-lattices which are natural domains of antihomo-
geneous conjugacy operators. In Section 3 antihomogeneous conjugacy operators are
introduced. Sections 4 and 5 are devoted to the study of some algebraic operations and
calculus. Finally in Section 6 the operator of polarity is studied.

2. c2 -lattices.

The natural domain of an antihomogeneous conjugacy operator is a complete lattice with
multiplication by a positive scalar.

Definition 2.1. A set U is called conic complete lattice (c2-lattice) if
i) U is a conic set, i.e. multiplication by positive scalar is defined on U with properties

as follows:
1u = u;λ(µu) = (λµ)u ∀u ∈ U, ∀λ, µ > 0.

ii) U is a complete lattice i.e. U is an ordered set and there exist supremum and infimum
for an arbitrary subset of the set U .

Let us give some examples of c2-lattice. We consider three situations.

Situation 1. c2-lattices of nonnegative functions. Let R+ = [0,+∞] be the closed
ray of all nonnegative numbers together with +∞. Let us consider a set U of functions

defined on a set X and acting into the ray IR+ with properties as follows
1) 0 ∈ U ;
2) If u ∈ U, λ > 0 then λu ∈ U where (λu)(x) = λu(x) ∀x ∈ X;
3) If A ⊂ U then supA ∈ U where supA is an upper envelope of the set A, i.e.

(supA)(x) = supf∈A f(x) ∀x ∈ X.

We consider U as an ordered set with natural order relation : u1 ≥ u2 if and only if
u1(x) ≥ u2(x) ∀x ∈ X. Let A ⊂ U . Clearly the function supA is the supremum of the
set A in the ordered set U .
If f is an arbitrary function defined on X and acting into IR+ then a function coU =
sup{u ∈ U : u ≤ f} is called the U -hull of the function f .

Clearly a function coU (infA) is the infimum of the set A in the ordered set U . Here and

subsequently infA stands for the lower envelope of the set A. We will denote supA and

coU (infA) as supA and inf A accordingly. Thus U is a complete lattice. Clearly U is a

c2-lattice with regard to natural multiplication on a positive number and natural order
relation.
Let us give some concrete examples of c2-lattices which are sets of functions with properties
1) - 3) above.

1. A set F (X) of all functions defined on a set X and acting into IR+.
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2. Sets M0(X) of all increasing functions and M0(X) of all decreasing functions defined

on an ordered set X and acting into IR+.

Below we will consider only functions defined on a locally convex Hausdorff space X and

acting into IR+. Recall that a function f is called proper if there is x ∈ X such that
f(x) 6= +∞. Let us continue the list of examples.

3. A set PH(X) of all lower semicontinuous (l.s.c.) nonnegative positively homogeneous
of degree one proper functions.

4. A set SL(X) of all nonnegative proper sublinear l.s.c. functions.
5. A set CF (X) of all nonnegative proper convex l.s.c. functions f such that f(0) = 0.
6. A set Q(X) of all nonnegative quasiconvex l.s.c. functions f with property f(0) = 0.
Let us note that SL(X) = PH(X)∩CF (X). At the same time SL(X) = PH(X)∩Q(X).
This was proved by J. P. Crouzeix (see, for example, [5]).

Situation 2. c2-lattices of H-convex functions. Let Y be a cone in a locally
convex Hausdorff space X and H be a cone of functions defined on the Y and acting into

IR = (−∞,+∞) . A function f defined on Y and acting into IR = (−∞,+∞] is called
H-convex (see [8]) if there is a set A ⊂ H such that f(y) = suph∈A h(y) ∀y ∈ Y . We

will denote by CH(Y ) the set of all H-convex functions. It easy to check (see [8]) that

CH(Y ) is a convex cone. The set CH∗ (Y ) = CH(Y )∪{−∞}, where (−∞)(x) = −∞ ∀x
is a complete lattice as regards the natural order relation: f1 ≥ f2 if and only if

f1(y) ≥ f2(y) ∀y . Really if A ⊂ CH(Y ) then supA = supA ; if A bounded

from below by a function h ∈ H, i.e. h ≤ f ∀f ∈ A then inf A = coH infA where
coHg = sup{h ∈ H : h ≤ g} ; otherwise inf A = −∞. There are various ways in order to

introduce multiplication by a positive scalar in the lattice CH
∗ (Y ). We need the following

two methods:
(λ · f)(x) = λf(x) (1)

(λ⊗ f)(x) =
1

λ
f(λx). (2)

Accordingly we consider two c2-lattices in this case. We will write CH1 (Y ) for CH∗ (Y )

with multiplication · defined by formula (1), and CH2 (Y ) for CH∗ (Y ) with multiplication

⊗ defined by formula (2).
Let us give some examples.
1. If Y = X and H consist of all affine continuous functions defined on the space X

then CH∗ (X) is the set of all convex l.s.c. functions defined on this space.
2. Let Y be a closed cone, Y − Y = X and H be the set of all nonnegative linear

functions h defined on Y with the next property: there is a continuous linear function

ĥ on X such that h is restriction of ĥ. A sublinear l.s.c. function p̂ defined on
X is called a monotonic extension of a sublinear l.s.c. function p defined on Y if
p̂(y) = p(y) ∀y ∈ Y and p̂(x1) ≥ p̂(x2) if x1, x2 ∈ X and x1 − x2 ∈ Y . It can be

shown (see [8]) that CH(Y ) is the set of all sublinear l.s.c. functions defined on Y
which have a monotonic extension.

3. Let X be an Euclidean space with inner product [·, ·] and Y = X. Let us consider
the cone H of all quadrics h which have a form

h(x) = α ‖ x ‖2 +[l, x] + β,
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where α ≤ 0, l ∈ X, β is a scalar. Applying results of the papers [8, 2] it is easy to

check that CH(X) is the set of all l.s.c. functions defined on X and bounded from
below by a function h ∈ H.

Situation 3. c2- lattices of sets. Let U be a totality of subsets of a vector space X
such that
1) 0 ∈ Ω for all Ω ∈ U ; X ∈ U ;
2) If Ω ∈ U then λ · Ω = {λx : x ∈ Ω} ∈ U for all λ > 0 ;

3) If A ⊂ U then
⋂{Ω : Ω ∈ A} ∈ U .

If Ω is a subset of the space X and 0 ∈ Ω then U - hull of Ω, denoted by coUΩ is the set⋂{Ω′ : Ω′ ∈ U, Ω′ ⊃ Ω}.
Let us consider U as an ordered space: Ω1 ≥ Ω2 if and only if Ω1 ⊃ Ω2 . It is easy to
check that for arbitrary subset A of the set U there exist supremum and infimum of A in
the ordered set U and the next formulae hold

inf A =
⋂
{Ω : Ω ∈ A}; supA = coA

⋃
{Ω : Ω ∈ A}.

Clearly U is a c2-lattice as regards the natural multiplication of a positive number and

natural order relation. Let us give some concrete examples of c2-lattices of sets with
properties 1) - 3) above.
1. A set ST (X) of all star with regard to zero closed subsets of a locally convex space

X. Recall that a subset Ω of the space X is called star with regard to zero if relation
x ∈ Ω implies λx ∈ Ω for all λ ∈ [0, 1] .

2. A set CS(X) of all convex closed subsets of the space X such that 0 ∈ X.
3. A set Cone(X) of all closed convex cones K ⊂ X.
4. A set Lin(X) of all closed linear subspaces of the space X.

3. Antihomogeneous conjugacy operators

Definition 3.1. Let U and V be c2-lattices. A mapping P : U → V is called
antihomogeneous conjugacy operator if
1. The mapping P is a dual isomorphism of lattices U and V i.e. P is one-to-one

correspondence and inequality Pu ≥ Pv is true if and only if u ≤ v .

2. P (λu) = 1
λP (u) for all u ∈ U and λ > 0 .

Clearly if P : U → V is an antihomogeneous conjugacy operator then there exist the

inverse operator P−1 : V → U and P−1 is an antihomogeneous conjugacy operator
too.

Let us give some examples of antihomogeneous conjugacy operators. We use the denota-

tions of c2-lattices which describe above without reminding.

Example 3.2. Mappings P : F (X)→ F (X) , P : M0(X)→M0(X) , P : M0(X)→
M0(X) where P (f)(x) = 1

f(x) are antihomogeneous conjugacy operators.

Example 3.3. Let Ω be a star with regard to zero closed set and µΩ(x) = inf{λ >
0 : x ∈ λΩ} is a Minkowski gauge of Ω. (We assume that inf ∅ = +∞). The operator
P : ST (X)→ PH(X) where P (Ω) = µΩ is an antihomogeneous conjugacy operator.



A. Rubinov / Antihomogeneous conjugacy operators in convex analysis 295

In examples below we will consider dual vector spaces X and L with a bilinear form [·, ·].
Example 3.4. 3. Mappings P : CS(X) → CS(L) , P : Cone(X) → Cone(L) and
P : Lin(X)→ Lin(L) defined by the formula P (Ω) = Ω◦ are antihomogeneous conjugacy
operators. Here Ω◦ is the polar set of Ω.

Example 3.5. Let P : SL(X)→ SL(L) be the operator defined by formula P (f) =
f◦ , where f◦ is the polar function of f . Then P is an antihomogeneous conjugacy
operator. Recall (see [14]) that

f◦(l) = inf{µ > 0 : [l, x] ≤ µf(x) ∀x}.

Example 3.6. A mapping P : CF (X)→ CF (X) where

P (f)(l) = inf{µ > 0 : [l, x] ≤ 1 + µf(x) ∀x}

is an antihomogeneous conjugacy operator. This operator was introduced and studied by
R. T. Rockafellar [14].

Example 3.7. A mapping P : Q(X)→ Q(X) where

P (f)(l) = sup
[l,x]>1

1

f(x)

is an antihomogeneous conjugacy operator. This operator was introduced and studied in
[17].

Example 3.8. Let X1 and X2 be locally convex Hausdorff spaces, Y ⊂ X1 and
H ⊂ X2 be closed convex cones. Let us consider a function (y, h) → 〈y, h〉 defined on
the Cartesian product Y ×H with properties as follows:

〈λy, h〉 = 〈y, λh〉 = λ〈y, h〉 ∀λ > 0, y ∈ Y, h ∈ H;

∀y1, y2 ∈ Y ∃h ∈ H such that 〈y1, h〉 6= 〈y2, h〉;
∀h1, h2 ∈ H ∃y ∈ Y such that 〈y, h1〉 6= 〈y, h2〉.

This function allows us to consider an element y ∈ Y as a function defined on H and an
element h ∈ H as a function defined on Y . We will write either y(h) or h(y) instead of
〈y, h〉 in these cases.

Let Y be the set of all functions f defined on H which have a form f(h) = y(h) + c

and let H be the set of all functions g defined on Y such that g(y) = h(y) + c where

y ∈ Y, h ∈ H, c ∈ R . Now we consider c2-lattices CH1 (Y ) and CY2 (H) which were
defined in the Situation 2 of the Section 2. Set

(Pf)(h) = sup
y∈Y

(〈y, h〉 − f(y)). (3)

It is well known (see for example [8, 2]) that P is a dual isomorphism of the complete

lattices CH1 (Y ) and CY2 (H). At the same time P (λ · f) = 1
λ ⊗ P (f) for all λ > 0. So P

is an antihomogeneous conjugacy operator.
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Let us return to the dual vector spaces X and L. Let X1 = X, X2 = L , Y = X and

H = L. Clearly f ∈ CH(X) if and only if f is a l.s.c. convex function defined on the
space X. In this case the function P (f) coincides with the conjugate function f ∗ in the
sense of Convex Analysis.

Example 3.9. Here we will mention antihomogeneous conjugacy operators defined on

c2-lattices of convex processes. Recall that a multivalued mapping a : X1 → X2 is called a
convex process if a(x+y) ⊃ a(x)+a(y) and a(λx) = λa(x) ∀λ > 0. Conjugacy operators
for finite dimensional convex processes were introduced and studied by R. T. Rockafellar
[14, 15]. There is a complete theory of conjugate convex processes in the paper [4] by J.
M. Borwein. (Some results from [4] were made more precisely in [21]. We consider two
pairs X1, L1 and X2, L2 of dual vector spaces and a convex process a : X1 → X2. The
convex process a∗ : L2 → L1 is called conjugate with regards to a if we have for all g ∈ L2

a∗(g) = {f ∈ L1 : [f, x] ≥ [g, y] ∀x ∈ X, y ∈ a(x)}.
It is convenient for applications to Mathematical Economics to consider only convex
processes with the following properties:
i) dom a = {x ∈ X1 : a(x) 6= ∅} coincides with a given cone K1.
ii) If x ∈ K1 then a(x) is part of a given cone K2 and a(x) is a normal set: a(x) =

cl((a(x)−K2) ∩K2).
The conjugate mapping a∗ is defined in this case only on a cone K∗2 by the formula

a∗(g) = {f ∈ K∗1 : [f, x] ≥ [g, y] ∀x ∈ K1, y ∈ a(x)}.
Here K∗ is the conjugate cone for the cone K. A conjugate mapping in this form and its

generalization are studied in detail by author [9, 16]. We must define various c2-lattices of
convex processes in order to study various kinds of conjugacy operators.

4. Calculus

The connection between an antihomogeneous conjugacy operator and multiplication by
a positive number is given in the definition of an antihomogeneous conjugacy operator.
It is easy to verify using the simplest properties of lattices (see for example [3]) that the
following is true.

Proposition 4.1. Let P : U → V be an antihomogeneous conjugacy operator and A a

subset of a c2-lattice U . Then

P (sup
u∈A

u) = inf
u∈A

P (u); P ( inf
u∈A

u) = sup
u∈A

P (u).

Summation is not present in the definitions both of a c2-lattice and an antihogeneous

conjugacy operator, but there is a lot of c2-lattices with summation and it is very inter-
esting to establish connections between summation and the antihomogeneous conjugacy
operator.

At first we define multiplication by zero and +∞ . Let U be a c2-lattice and u ∈ U .
By definition

0 · u = inf
0<λ<+∞

λu, +∞ · u = sup
0<λ<+∞

λu.
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Now we introduce two algebraic operations defined on the c2-lattice U . If u, v ∈ U then
we set

u+̂v = inf
0≤α≤1

sup

(
1

α
u,

1

1− αv
)
, (4)

u⊕ v = sup
0≤α≤1

inf (αu, (1− α)v) . (5)

Let us note then these operations were introduced and studied for c2-lattice Q(X) of all
nonegative quasiconvex l.s.c.functuons q such that q(0) = 0 in [17].

Proposition 4.2. Let P : U → V be an antihomogeneous conjugacy operator. Then

P (u+̂v) = Pu⊕ Pv, P (u⊕ v) = Pu+̂Pv .

Proof. It is clear.
Let u, v ∈ IR+. It is easy to check (see for example [18]) that

inf
0≤α≤1

sup

(
1

α
u,

1

1− αv
)

= u+ v. (6)

Straightforward calculation shows also that

sup
0≤α≤1

inf (αu, (1− α)v) =
1

1
u + 1

v

. (7)

We now apply formulae (6) and (7) in order to describe the operations +̂ and ⊕ defined

on special c2-lattices of functions. We will concider a c2-lattice U of functions defined
on a set X such that
i) the order relation defined on U determined by natural way: u1 ≥ u2 if and only if

u1(x) ≥ u2(x) ∀x ∈ X;
ii) if A ⊂ U then supA = supA where supA is an upper envelope of the set A.

In the sequel U denotes the totality of all c2-lattices with properties i) and ii). Clearly if

U ∈ U and A ⊂ U then inf A ≤ infA where infA is the lower envelope of the set A. Let

us note that c2-lattices of functions which were indicated in the Section 2 (see situation
1 and situation 2 in this section) are members of the totality U .

Proposition 4.3. Let U ∈ U.

1) Suppose that the pointwise sum u1 + u2 ∈ U whenever u1, u2 ∈ U . Then u1+̂u2 =
u1 + u2 .

2) Suppose that the pointwise infimum inf(u1, u2) ∈ U whenever u1, u2 ∈ U . Then

u1 ⊕ u2 coinsides with the inverse sum u1+̇u2 where

u1+̇u2 =
1

1
u1

+ 1
u2

.

Let us note that the function u1+̇u2 belongs to U in this case.

Proof. 1) Let

wα = sup

(
1

α
u1,

1

1− αu2

)
= sup

(
1

α
u1,

1

1− αu2

)
(0 ≤ α ≤ 1).
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Formula (6) shows that u1 + u2 = inf0≤α≤1wα. Since u1 + u2 ∈ U it follows that

inf0≤α≤1wα ∈ U . Therefore

u1+̂u2 = inf
0≤α≤1

wα = inf0≤α≤1wα = u1 + u2.

2) Applying (7) we see that

u1 ⊕ u2 = sup
0≤α≤1

inf(αu1, (1− α)u2) = sup0≤α≤1inf(αu1, (1− α)u2) =
1

1
u1

+ 1
u2

.

Corollary 4.4. Let U and V be c2-lattices and P : U → V be an antihomogeneous
conjugacy operator. Then

1. If V ∈ U and V contains inf(v1, v2) whenever v1, v2 ∈ V (for example V is one of

the following c2-lattices : F (X), M0(X), M0(X), PH(X) then the operator P maps

a “sum” u1+̂u2 to the inverse sum of the functions P (u1) and P (u2).
2. If V ∈ U and V contains the pointwise sum v1 +v2 whenever v1, v2 ∈ V (for example

V is any one of the following c2-lattices : F (X), M0(X), M0(X), PH(X), SL(X),

CF (X) or c2-lattice CH1 (Y ) of H-convex functions) then the operator P maps the

“inverse sum” u1 ⊕ u2 to the pointwise sum of the functions P (u1) and P (u2).
3. If U ∈ U and U contains the pointwise sum u1 + u2 whenever u1, u2 ∈ U then the

operator P maps a pointwise sum u1 + u2 to the “inverse sum” P (u1)⊕ P (u2) .

Let us give some examples. At first we consider c2-lattices of sets. Let A,B be subsets
of a locally convex Hausdorff space X. We will use the following notation:

A+B = {a+ b : a ∈ A, b ∈ B}, A⊕̂B =
⋃

0≤α≤1

[(αA) ∩ ((1− α)B)].

It is easily seen that if A, B are closed star with regards to zero sets then A⊕̂B also is

closed and star with regards to zero, convexity of A, B implies convexity of A⊕̂B . Let

us note that operation ⊕̂ is well known in Convex Analysis (see for example [1]). This
operation was studied in [18] for special class of star with regards to zero sets. Below we
consider dual vector spaces X and L.

Example 4.5. Let ST (X) be a c2-lattice of all closed star with regards to zero subsets
of the space X. Clearly if A,B ∈ ST (X) then

A+̂B =
⋂

0≤α≤1

[(
1

α
A) ∪ (

1

1− αB)], A⊕ B = A⊕̂B.

Example 4.6. Let CS(X) be a c2-lattice of all closed convex containing zero subsets
of the space X. We have by definition

A+̂B =
⋂

0≤α≤1

conv[(
1

α
A) ∪ (

1

1− αB)], A⊕ B = A⊕̂B.
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where convA is a convex hull of the set A. On the other hand we can show that the next
assertion is true.

Proposition 4.7. If A,B ∈ CS(X) then A+̂B = cl(A+B) .

Proof. We apply the isomorphism ϕ of c2-lattices CS(X) and SL(L) where ϕ(A) is
the support function pA of the set A. By definition pA(l) = supx∈A[l, x]. Since ϕ is
isomorphism it follows that

ϕ(inf
α
Aα) = inf

α
ϕ(Aα), ϕ(sup

α
Aα) = sup

α
ϕ(Aα), ϕ(λA) = λϕ(A) ∀λ > 0.

We have
pA+̂B = ϕ(A+̂B)

= ϕ(inf
α

sup

(
1

α
A,

1

1− αB
)

)

= inf
α

sup

(
1

α
ϕ(A),

1

1− αϕ(B)

)

= inf
α

sup

(
1

α
pA,

1

1− αpB
)

= pA+̂pB = pA + pB.

It is well known that pA + pB = pcl(A+B) . Therefore A+̂B = cl(A+B) .

Corollary 4.8. If A, B ∈ CS(X) and if P : CS(X) → CS(L) is an antihomogeneous

conjugacy operator then P (cl(A+B)) = P (A)⊕̂P (B) and P (A⊕̂B) = cl(P (A)+P (B)) .

Example 4.9. Let us consider the c2-lattice SL(X). Proposition 4.3 shows that

p+ q = p+̂q for all p, q ∈ SL(X).

Proposition 4.10. If A,B ∈ SL(X) then

p⊕ q = sup
0≤α≤1

(αp)⊕̃((1− α)q)

where f⊕̃g is the inf-convolution of the functions f and g.

Proof. Let ∂p = {x ∈ X : [l, x] ≤ p(l) ∀l ∈ L}, the subdifferential of a sublinear function

p. Clearly ∂p = ϕ−1(p) where the mapping ϕ was defined in the proof of the proposition
4.7. We have

∂(p⊕ q) = ϕ−1(p⊕ q) = ϕ−1(sup
α

inf(αp, (1− α)q)) =

sup
α

inf(αϕ−1(p), (1− α)ϕ−1(q)) = sup
α

inf(α∂p, (1− α)∂q) = ∂p⊕ ∂q = ∂p⊕̂∂q.

It is well known ( see for instance [1]) that ∂p⊕̂∂q = ∂s where s = sup0≤α≤1(αp)⊕̃(1−
α)q. Therefore p⊕ q = s.
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Example 4.11. Let us compute a set whose gauge coincides with the sum of gauges of
given sets.

Proposition 4.12. Let A,B ∈ ST (X) and µA be the gauge of A, and µB be the gauge

of B. Then µA + µB is a gauge of the set A⊕̂B.

Proof. Let us consider the antihomogeneous conjugacy operator P : PH(X)→ ST (X)
where P (µ) = {x : µ(x) ≤ 1}. Clearly P (µA) = A, P (µB) = B. We have

P (µA + µB) = P (µA)⊕ P (µB) = A⊕ B = A⊕̂B

therefore the gauge of A⊕̂B is equal to the sum µA + µB.

Example 4.13. Now let us consider the c2-lattice CH1 (Y ) of H-convex functions

defined on the cone Y and the c2-lattice CY2 (H) of Y -convex functions defined on the

cone H (see Example 3.8 of Section 3) and the antihomogeneous conjugacy operator

P : CH1 (Y )→ CY2 (H) defined by formula (3). We have

P (f1 + f2)(x) = (P (f1)⊕ P (f2))(x) = sup
0≤α≤1

inf(α⊗ P (f1), (1− α)⊗ P (f2))(x)

= sup
0≤α≤1

coH inf [
1

α
P (f1)(αx),

1

1− αP (f2)((1− α)x)].

In particular if f1, f2 are l.s.c convex functions and P (f) coincides with the conjugate
function (in the sense of Convex Analysis) f ∗ then

(f1 + f2)∗ = sup
0≤α≤1

conv inf [
1

α
f∗1 (αx),

1

1− αf
∗
2 (1− α)x)]

where convg is the convex regularization of the function g i.e. convg(x) = sup{a(x) :
a ≤ g, a is an affine function}. By the famous Moreau -Rockafellar theorem the equality

(f1 + f2)∗ = conv(f ∗1 ⊕̃f∗2 ) holds. Therefore the following is true.

Proposition 4.14. If f1, f2 are convex l.s.c. functions then

conv(f1⊕̃f2)(x) = sup
0≤α≤1

conv inf[
1

α
f1(αx),

1

1− αf2((1− α)x)].

Let us discuss Proposition 4.14. Clearly the inf-convolution is a global operation. In other
words we must know quantities f1(y) and f2(y) for all y ∈ X in order to compute the

function f1⊕̃f2 at the given point x ∈ X. Proposition 4.14 shows that the main reason for
the global nature of inf-convolution is the use of the convex hull of a nonconvex function.

If conv(f1⊕̃f2)(x) = (f1⊕̃f2)(x) and if we can apply the convex hull for computing the

function f1⊕̃f2 at the point x then we have to know only the quantities f1(αx) and f2(αx)
for 0 ≤ α ≤ 1.



A. Rubinov / Antihomogeneous conjugacy operators in convex analysis 301

5. Properties of the operations +̂ and ⊕
Let U be a c2-lattice with the following properties:
i) If 0 < λ < +∞ and Ω is a subset of U then

sup{λu : u ∈ Ω} = λ sup{u : u ∈ Ω}, inf{λu : u ∈ Ω} = λ inf{u : u ∈ Ω}.

ii) If 0 < λ, µ < +∞ and u ∈ U then

sup(λu, µu) = sup(λ, µ)u, inf(λu, µu) = inf(λ, µ)u.

Let us study some algebraic properties of the operations +̂ and ⊕ defined by formulae (4)
and (5) accordingly. Clearly these operations are commutative:

u+̂v = v+̂u, u⊕ v = v ⊕ u.

Now let us clear up the connections between multiplication by a positive scalar and the

operations +̂ and ⊕. We have with 0 < λ < +∞

λu+̂λv = inf
0≤α≤1

sup

(
λ

α
u,

λ

1− αv
)

= λ(u+̂v),

λu⊕ λv = sup
0≤α≤1

inf(λαu, λ(1− α)v) = λ(u⊕ v).

Applying (6) we have also

λu+̂µu = inf
0≤α≤1

sup

(
λ

α
u,

µ

1− αu
)

= inf
0≤α≤1

sup

(
λ

α
,

µ

1− α

)
u = (λ+ µ)u. (8)

In the same manner we can see applying (7) that

λu⊕ µu =
1

1
λ + 1

µ

u. (9)

We see that the c2-lattice U generates two algebraical systems. The first of them is U

with operations +̂ and · , the second is U with operations ⊕ and � where λ� u = 1
λ · u.

We showed that commutative and distributive laws hold in these systems. Clearly a

conjugacy operator P : U → V is an isomorphism between (U, +̂, ·) and (V,⊕,�).

Unfortunately associativity does not hold without additional assumptions in the alge-
braical systems under consideration. Let us give an example.

Example 5.1. Let us consider the c2-lattice Q(IR2) of all nonnegative l.s.c. vanishing

at zero and quasiconvex functions defined on the plane IR2 (see Situation 1 of Section 2).
We set for x = (x1, x2)

q1(x) =
{

1 if x1 ≥ 1
0 if x1 < 1

q2(x) =
{

1 if x2 ≥ 1
0 if x2 < 1
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q3(x) =

{
+∞ x 6= λ(1, 1) (λ ≥ 0)
λ x = λ(1, 1) (λ ≥ 0)

Clearly qi ∈ Q(IR2), i = 1, 2, 3. Let E = {x = (x1, x2) : x1 ≤ 1, x2 ≤ 1}. Since

(q1+̂q2) = co
Q(IR2

)
(q1 + q2) we can compute that

(q1+̂q2)(x) =
{

1 x ∈ R2 \ E
0 x ∈ E

Therefore q1+̂q2 6= q1 + q2. On the other hand (q1+̂q2)+̂q3 = (q1+̂q2)+ q3 and q1+̂(q2+̂q3)
= q1 + (q2 + q3). Applying these equalities we can show that

(q1+̂q2)+̂q3 6= q1+̂(q2+̂q3).

There are many c2-lattices where the operation +̂ and ⊕ are associative. By proposition
3 we have: if U ∈ U and u1 + u2 ∈ U whenever u1, u2 ∈ U then associativity holds for

operation +̂; if U ∈ U and inf(u1, u2) ∈ U whenever u1, u2 ∈ U then associativity holds
for operation ⊕. Let us give one more condition which guarantees associativity.

Proposition 5.2. If U is a c2-lattice with distributive laws: for all u ∈ U and for an
arbitrary family (vξ)ξ ∈ U the following equalities hold

inf(u, sup
ξ
vξ) = sup

ξ
inf(u, vξ) (10)

sup(u, inf vξ) = inf
ξ

sup(u, vξ) (11)

then operations +̂ and ⊕ are associative.

Proof. We first compute (u⊕ v)⊕w. Let us take the formula (10) for this purpose. We
have

(u⊕ v)⊕ w = sup
0≤γ≤1

inf(γ(u⊕ v), (1− γ)w) =

sup
0≤γ≤1

inf[ sup
0≤α≤1

inf(γαu, γ(1− α)v), (1− γ)w] =

sup
0≤γ≤1

sup
0≤α≤1

inf(γαu, γ(1− α)v, (1− γ)w) =

sup
λ,µ,ν≥0;λ+µ+ν=1

inf(λu, µv, νw).

In the same manner we can see that

u⊕ (v ⊕ w) = sup
λ,µ,ν≥0;λ+µ+ν=1

inf(λu, µv, νw).

Therefore associativity holds for the operation ⊕. Applying (11) we obtain associativity

for the operation +̂.

Proposition 5.3. If U, V are c2-lattices and if there is an antihomogeneous conjugacy
operator P : U → V then the following are equivalent:
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i) associativity holds for operation +̂ in the U ,
ii) associativity holds for operation ⊕ in the V .

Proof. This is clear.

Let us give some examples.

Example 5.4. Operation ⊕ is associative in the c2-lattices SL(X), CF (X), CS(X),
and ST (X).

Example 5.5. Since there is an antihomogeneous conjugacy operator P : Q(X) →
Q(X) operation ⊕ is not associative in the Q(X).

Example 5.6. Let U be a c2-lattice such that at least one of the operations +̂ and ⊕
is associative. Then there is no antihomogeneous conjugacy operator P : Q(X)→ U .

6. Operator of polarity

In this section we consider the operator of polarity π : CS(X)→ CS(X ′) where X is a

locally convex Hausdorff space with conjugate space X ′. We consider X and X ′ as dual
vector spaces, in particular we assume that weak∗ topology is introduced in the space X ′.
By definition π(A) = A◦ where A◦ is the polar set of a set A. Let T : X → X be a weakly
continuous linear operator. It is well known that

π ◦ T = (T ∗)−1 ◦ π

where T ∗ is the conjugate operator with regard to T . So we are interested in operators
P : CS(X)→ CS(X ′) such that

P ◦ T = (T ∗)−1 ◦ P. (12)

As it turns out an antihomogeneous conjugacy operator P : CS(X) → CS(X ′) is the
operator of polarity if equality (12) holds only for the class of simplest operators T and
besides there is the unique set A such that P (A) = π(A).

Let l ∈ X ′ and u ∈ X such that [l, u] = 1. Set Tl,u(x) = x− [l, x]u for all x ∈ X. Clearly

Tl,u is a projection from X on hyperplane H = l−1(0). On the other hand if H = l−1(0) is

a hyperplane and T is a projection from X on H then there is a vector u ∈ X such that
[l, u] = 1 and T = Tl,u. Let τ be the set of all projections from X on closed hyperplanes.

We have the following:

Proposition 6.1. Let P : CS(X) → CS(X ′) be an antihomogeneous conjugacy oper-
ator. Assume that (12) is true for all T ∈ τ ∪ {−Id} where Id is the identity and there
is a nonzero vector v ∈ X such that P (s[0, v]) = π(s[0, v]) where s[0, v] is the segment
{λv : 0 ≤ λ ≤ 1}. Then P = π.

Proof. Let us consider w ∈ X, w 6= λv for all real λ and an operator T ∈ τ such that
T (v) = w. For example T (x) = x − [l, x](v − w) with L ∈ X ′, [l, v] = 1, [l, w] = 0. We
have

P (s[0, w]) = P (T (s[0, v]) = (T ∗)−1P (s[0, v]) = (T ∗)−1π(s[0, v]) = π(s[0, w]).
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In the same manner we can see that P (s[0,−v]) = π(s[0,−v]). Since P and π are
antihomogeneous conjugacy operators we have P (s[0, λv]) = π(s[0, λv]) for all real λ.
Now let A ∈ CS(X). We have A = ∪x∈A[0, x] and therefore

P (A) =
⋂

x∈A=

P (s[0, x]) =
⋂

x∈A
π(s[0, x]) = π(A).

Sometimes we can consider a more interesting set instead of a segment s[0, v]. Let H
be a Hilbert space. It is well known that the unit ball B is the unique fixed point of
the polarity operator π : CS(H) → CS(H). An antihomogeneous conjugacy operator
P : CS(H)→ CS(H) with the property P (B) = π(B) has been considered in the paper
[19] and conditions which guarantee either equality P = π or equality P = −π were given
in that paper. Unfortunately there is a minor defect in the proof of the theorem in [19].
Below we will consider a set B in a locally convex Hausdorff space X with the following
properties:
i) B is a symmetrical closed convex set and intB 6= ∅;
ii) there is a linear function l ∈ X ′ and projection T0 from X on H = l−1(0) such that

T0(B) ⊂ B;
iii) there is an element y ∈ B such that [l, y] = supx∈B[l, x].

Clearly the unit ball of a Hilbert space possesses properties i) - iii); there are many sets
with properties i) - iii) in a finite - dimensional space. A strip {x : −1 ≤ [l, x] ≤ 1} in the

locally convex space X where l ∈ X ′ has these properties also.
We will denote by τ1 the set of all linear projections from X on a straight line. Clearly
T ∈ τ1 if and only if there are l ∈ X ′ and u ∈ X such that T (x) = [l, x]u.

Theorem 6.2. Let P : CS(X) → CS(X ′) be an antihomogeneous conjugacy operator.
Assume that the formula (12) is true for all T ∈ τ ∪ τ1 ∪ {−Id} and there is a subset
B of the space X such that P (B) = π(B) and properties i) - iii) above hold. Then either
P = π or P = −π, where −π(A) = −A◦

Proof. Let the projector T0 (see ii) above) have a form T0(x) = x− [l, x]u with [l, u] = 1.
We will prove that either P (s[0, u]) = π(s[0, u]) or P (s[0, u]) = −π(s[0, u]) and then apply
Proposition 6.1. The proof will be divided into four steps.
1. Let us consider the sets C = {x ∈ B : [l, x] = 0} = B∩H and C ′ = {f ∈ B◦ : [f, u] =

0} = B◦ ∩H ′ . Here H ′ = u−1(0). We first show that the equality P (C) = C ′+ IRl holds
where IRl is a line (λl)−∞<λ<+∞. It is easy to check that the conjugate with regard to

T0, operatorT ∗0 , is a projection from X ′ on H ′ which has the form T ∗0 (f) = f − [f, u]l . It

is easily seen that (T ∗0 )−1(f) = f + IRl. Let us check the equality T0(B) = C. Applying

inclusions T0(B) ⊂ B and T0(B) ⊂ H we obtain T0(B) ⊂ C. On the other hand inclusion
B ⊃ C implies T0(B) ⊃ T0(C) = C. Since T0(B) = C and T0 ∈ τ we have

P (C) = (T ∗0 )−1P (B) = (T ∗0 )−1(B◦) = (T ∗0 )−1(C ′) = C ′ + IRl.

2. Let W = {x ∈ B : [l, x] ≥ 0} and

Z+ = B◦ + IR+l, Z− = B◦ − IR+l. (13)

where IR+l is the ray (λl)λ≥0. Since B is a symmetrical set it follows that B◦ is a

symmetrical set too. Therefore Z− = −Z+. Now we prove that either P (W ) = Z+
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or P (W ) = Z−. We will denote P (W ) by Z. Since B is a symmetrical set we have
−W = {x ∈ B : [l, x] ≤ 0}. Therefore

W ∪ (−W ) = B W ∩ (−W ) = C.

On the other hand P (−W ) = P ((−Id)W ) = −Z. As P is an antihomogeneous conjugacy

operator and P (C) = C ′ + IRl we have the next system of two equations with regard to
an unknown convex w∗-closed set Z:

Z ∩ (−Z) = B◦ (14)

cl conv(Z ∪ (−Z)) = C ′ + IRl. (15)

We will show that there are only two solutions of the system (14) - (15): one of them is
Z+ and the other is Z− = −Z+, where Z+, Z− are defined by formula (13).
First of all let us note that assumption intB 6= ∅ implies w∗ -compactness of the set
B◦ and therefore the set C ′ is w∗ -compact. Let K be the recession cone of the set Z.
Applying (15) and weak* - compactness of C ′ we conclude that K ⊂ IRl. Clearly −K
is a recession cone of (−Z) so (14) shows that K 6= IRl. Our next goal is to show that
K 6= {0}.
Let q denote the function defined on the set C ′ by formula

q(f) = sup{λ : f + λl ∈ Z}

Since Z is a convex w∗ -closed set it follows that q is a concave and w∗ -upper semicon-
tinuous function. Assume that K = {0}. We have q(f) < +∞ for all f ∈ C ′ in this case.

The w∗ -compactness of the set C ′ implies that the functuon q is bounded from above on
this set. Thus

sup
f∈C′

sup{λ : f + λl ∈ Z} < +∞.

In the same manner we can conclude that

sup
f∈C′

sup{λ : f + λl ∈ (−Z)} < +∞.

From (15) we obtain that cl conv(Z ∪ (−Z)) ⊂ C ′ + IRl. Since [f, u] = 0 ∀f ∈ C ′ and
[l, u] = 1 we have

sup{[g, u] : g ∈ cl conv(Z ∪ (−Z)}
= sup{[g, u] : g ∈ (Z ∪ (−Z)}

= sup{[f + λl, u] : f ∈ C ′, f + λl ∈ Z ∪ (−Z)}

= sup{λ : f ∈ C ′, f + λl ∈ Z ∪ (−Z)} < +∞ (16)

On the other hand applying (15) we can assert that

sup{[g, u] : g ∈ cl conv(Z ∪ (−Z))} = sup{[g, u] : g ∈ C ′ + IRl} = +∞

which contradict the formula (16).
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Thus K ⊂ IRl, K 6= IRl and K 6= {0}. Therefore K is either IR+l or −IR+l. Assume that
K = IR+l. It follows from (14) that B◦ ⊂ Z. By the definition of recession cone we have

Z+ = B◦ + IRl ⊂ Z + IRl = Z

Let us show that Z+ = Z in this case. Let f ∈ Z. Applying (15) we can find g ∈ C ′ and

a real µ such that f = g + µl. If µ ≥ 0 then f ∈ C ′ + IR+l ⊂ B◦ + IR+l = Z+. Now let
us assume µ < 0. We have in this case

−f = −g + (−µ)l ⊂ C ′ + IR+l ⊂ Z+ ⊂ Z.

Therefore f ∈ −Z and f ∈ (−Z) ∩ Z. Applying (14) we have

f ∈ B◦ ⊂ B◦ + IR+l = Z+.

The equality Z = Z+ is proved. In the same manner we can see that Z = Z− if K = −IR+

3. Let us compute π(W ). We will denote by H+ the half-space {x : [l, x] ≥ 0} of the
space X. Clearly π(H+) = −IR+l . Since W = B ∩H+ we have

π(W ) = conv(B◦ ∪ (−IR+l)) = B◦ − IR+l = Z−.

It follows that either P (W ) = π(W ) or P (W ) = −π(W ).

4. Let T∗ be the projection operator from X on the line Ru which is defined by formula
T∗(x) = [l, x]u. If P (W ) = π(W ) then

P (s[0, λu]) = P (T∗(W )) = T−1
∗ P (W ) = T−1

∗ π(W ) = π(T∗(W )) = π(s[0, λu]).

In the same manner we can see that P (s[0, λu]) = −π(s[0, λu]) if P (W ) = −π(W ).
Now we can use either Proposition 6.1 itself or a version of this proposition for the operator
−π in order to complete the proof.
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