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1. Introduction

Dual characterizations of solvability of nonlinear inequality systems are crucial for the
development of dual necessary and sufficient conditions for local (and global) extrema
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of optimization problems. A great deal of attention has been focussed in the recent
literature of nonlinear programming and nonsmooth optimization to establishing such
characterizations in terms of subdifferentials and approximate subdifferentials (see [11,
12, 20, 21, 14]). More recently, various new forms of solvability characterizations have
been given with applications to certain classes of global optimization problems such as
convex maximization problems and minimization of the difference of sublinear functions
(see [22, 23]).

In this paper, we provide a general approach to the solvability of nonlinear inequality
systems involving two broad classes functions, here called H-convex functions and inf-
H-convex functions. The notions of H-convexity of sets and functions are given without
linearity. This concept of convexity without linearity has been studied extensively by
many authors (see, for example, [25, 4, 33, 28, 34]). Recall one of the main results of
convex analysis: a function is lower semicontinuous (l.s.c) and convex if and only if it is
the pointwise supremum of a subset of the space H of all continuous affine (i.e. linear
+ constant) functions. Thus ‘convexity without linearity’ (H-convexity) in our context
involves the taking of suprema of subsets of certain classes of functions (not necessarily
affine functions). Similarly we can consider H-concavity by taking infima and then inf-
H-convexity (i.e. the class of functions expressible as the pointwise infima of a family of
H-convex functions). This concept of inf-H-convexity is extremely broad. For example it
allows us to consider the important classes of difference convex functions which are easily
expressible as the pointwise infimum of a family of convex functions. This concept is also
applicable to certain positively homogeneous functions as we will illustrate with extensive
examples in this paper.

Two forms of dual characterizations are given for inequality systems involving H-convex
functions and inf-H-convex functions with the view to possibly applying, in particular, to
convex maximization with convex constraints and general convex minimization problems.
This approach covers corresponding recent results, presented for systems involving com-
pletely difference sublinear functions [11], difference of sublinear and convex functions
[gj2]. More importantly, it yields, a new dual characterization for inequality systems
involving functions expressible as the pointwise infima of a family of convex functions
(inf-convex functions). The role of a consistency condition required in these results is also
clarified and related to a stability property well known in Minkowski duality.

In section 2, we present the notions of H-convex functions and sets and illustrate the
broad nature of these concepts by several examples in section 3. The well known dual
correspondence between sublinear functions and support sets is now generalized using
Minkowski duality (see [25]) to H-convex functions and H-convex sets. In section 4, dual
characterizations for the solvability of H-convex inequality systems and inf-H-convex
inequality systems are given in terms of H-convex hulls. Section 5 examines ways of
characterizing H-convex hulls in terms of convex hulls and cones for certain subclasses of
H-convex functions. In section 6, solvability results are given for many important classes of
functions using the characterization of H-convex hulls in easily verifiable forms. In section
7, we show how these results can be used to provide dual conditions characterizing global
optimum. Finally, we present some open research questions for further development. The
appendix contains a new minimax result for H-convex functions.
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2. H-convex Functions and Minkowski Duality

In this section we introduce a class of generalized convex functions, here called H-convex
functions. The properties of this class of function are discussed within a general concept
of Minkowski duality. The approach is a modification of that used in [25]. We begin with
some essential definitions and an introduction to the notation to be used throughout.

Definition 2.1. Let X be an arbitrary set and Z ⊆ X a non-empty subset. Let H be
a set of functions defined on X and mapping into IR. A function p : Z → IR+∞, where
IR+∞ = IR ∪ {+∞}, is called H-convex on the set Z if there is a set U ⊆ H such that,
for all z ∈ Z,

p(z) = sup{h(z) : h ∈ U}.

Definition 2.2. Let f : Z → IR+∞, the set of H-minorants of f on Z is called the
support set of f and is denoted s(f,H, Z). Thus

s(f,H, Z) = {h ∈ H : (∀z ∈ Z) h(z) ≤ f(z)}.

The function coZH f : X → IR+∞ defined, for each z ∈ Z by

(coZH f)(z) := sup{h(z) : h ∈ s(f,H, Z)},

is called the H-convex hull of the function f .

Clearly, s(f,H, Z) = s(coZH f,H, Z).

It should be noted that Rolewicz [33] has used the expression ‘convexity without linearity’
in relation to these concepts.
To illustrate the nature of support sets we include the following simple examples. Note
that by specifying the set H we generate various special classes of function.

Example 2.3. Let ` be a continuous linear function defined on a locally convex Haus-
dorf topological vector space (l.c.H.t.v.s) X (so ` ∈ X ′, where X ′ denotes the continuous
dual (or conjugate) space to X). Then we have the following:

1. Let H = X ′, Z = X. Then s(`,X ′, X) = {`}.
2. Let H = X ′, Z = K (a closed convex cone in X) then s(`,X ′, K) = ` − K∗. Here

K∗ denotes the dual cone to K, i.e. K∗ = {` ∈ X ′ : (∀x ∈ K) `(x) ≥ 0}.
3. Let H = {h̄ : (∀x ∈ X) h̄(x) = h(x) − c, h ∈ X ′, c ∈ IR} (i.e. the set of continuous

affine functions defined on X), Z = X. Then s(`,H,X) = {` + ce : c ≤ 0}, where e
denotes the function with constant value 1 on X.

4. Let H be the set of all continuous affine functions defined on X, Z = B (the closed

unit ball in X (assumed a normed space)). Then s(`,H,B) = {(`′, c) : c ≥ ‖`′ − `‖}.
Thus s(`,H,B) is the epigraph of the function f(`′) = ‖`′ − `‖.

Clearly coZH (`) = {`} in examples 1 to 4 above.

Now we consider the function e defined above.
1. Let H = X ′, Z = K a closed convex cone. Then s(e, X ′, K) = −K∗. coZH (e) = {0}.
2. Let H = X ′, Z = B (X a normed space). Then s(e, X ′, B) = {` : (∀x ∈ B) `(x) ≤

1} = B∗ (the dual unit ball in X ′). coZH (e)(x) = ‖x‖.
3. Let H = X ′, Z an arbitrary set. Then s(e, X ′, Z) = Z◦ (the polar set of Z).
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Now we consider a l.s.c sublinear function p : X → IR+∞ where X is a l.c.H.t.v.s. Let
H = X ′ and Z = X then

s(p,X ′, X) = ∂p(0),

the subdifferential of p at zero, i.e. ∂p(0) = {h ∈ X ′ : (∀x ∈ X) p(x) ≥ h(x)}.
Similarly if Z = K, a closed convex cone in X, then

s(p,X ′, K) = cl (∂p(0)−K∗).
Here we are taking closure in the weak* topology of X ′.
Finally, consider a l.s.c convex function f : X → IR+∞ where X is a l.c.H.t.v.s. Let

H = {h̄ : (∀x ∈ X) h̄(x) = h(x)− c, h ∈ X ′, c ∈ IR} and Z = X then

s(f,H,X) = epi f ∗.

Here f∗ denotes the Fenchel conjugate of f (see [31, 32] and Definition 2.8 to follow).

Definition 2.4. A set U ⊆ H is called H-convex on Z if there is a function f such that
U = s(f,H, Z). Clearly U is H-convex if, and only if, U = s(pU , H, Z) where, for each
z ∈ Z,

pU (z) = sup{h(z) : h ∈ U} (2.1)

is a H-convex function.
For an arbitrary subset U ⊆ H the set s(pU , H, Z) (where pU is defined by (2.1)) is called

the H-convex hull of the set U and will be denoted coZH U .
The following proposition is immediate from the definitions above. Note that this simple
result illustrates the separation property for H-convex sets.

Proposition 2.5. Let U ⊆ H then U is H-convex on Z if and only if for any h′ ∈
H, h′ 6∈ U , there is a x ∈ Z such that h′(x) > suph∈U h(x).

By definition the function −∞ : z 7→ −∞ (for all z ∈ Z) is H-convex and the empty set
is clearly a H-convex set. Note that ∅ = s(−∞, H, Z).
Throughout we shall denote the set of all H-convex functions defined on Z ⊆ X by

F(H,Z). Similarly the set of all H-convex sets will be denoted S(H,Z). We shall
introduce order relations on these sets as follows:

p1, p2 ∈ F(H,Z), p1 ≥ p2 ⇐⇒ (∀z ∈ Z) p1(z) ≥ p2(z).

U1, U2 ∈ S(H,Z), U1 ≥ U2 ⇐⇒ U1 ⊇ U2.

Consider the mapping Φ : F(H,Z) → S(H,Z) defined by Φ(p) = s(p,H, Z). This
mapping is known as a Minkowski duality (see [25]). It is not difficult to show that Φ
is a one-to-one mapping and, moreover, it is an isomorphism between the ordered sets.
Minkowski duality extends the well known dual relationship between sublinear functions
and support sets to H-convex functions and H-convex sets.

It is easy to show that the mapping U 7→ coZH U defined on the set 2H is a closure in the

sense of Moore (see [5]). In particular we have the following:

(∀U ⊆ H) U ⊆ coZH U

(∀U ⊆ H) coZH (coZH U) = coZH U

U1, U2 ⊆ H, U1 ⊆ U2 =⇒ coZH U1 ⊆ coZH U2
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It follows from Moore’s theorem ([5]) that the ordered set S(H,Z) is a complete lattice

where, for an arbitrary family (Uα) (with Uα ∈ S(H,Z) for each α), we have

sup
α
Uα = coZH (∪αUα), inf

α
Uα = ∩αUα.

Since Minkowski duality is an isomorphism between the ordered sets F(H,Z) and S(H,Z)

it follows that F(H,Z) is also a complete lattice. In addition the following is valid for

any family (pα) with, for each α, pα ∈ F(H,Z):

(sup
α

pα)(·) = sup
α

pα(·)

(inf
α
pα)(·) = coZH (inf

α
pα(·))

Here (supα pα)(·) and (infα pα)(·) are boundaries in the lattice F(H,Z) and supα pα(·)
and infα pα(·) are pointwise boundaries.
Similarly we have:

s(sup
α

pα, H, Z) = coZH (∪αs(pα, H, Z))

s(inf
α
pα, H, Z) = ∩αs(pα, H, Z)

where supα and infα are boundaries in the lattice F(H,Z).

Definition 2.6. A set A is called a semilinear space if there is a binary operation +
and the operation of multiplication by a positive scalar defined on the set A such that,
for a, a1, a2, a3 ∈ A and λ, µ > 0,

a1 + (a2 + a3) = (a1 + a2) + a3

λ(a1 + a2) = λa1 + λa2

(λµ)a = λ(µ)a

a1 + a2 = a2 + a1

(λ+ µ)a = λa+ µa

1 · a = a

It is easy to check that if the cancellation law holds in a semilinear space A, i.e a, b, c ∈
A, a+c = b+c =⇒ a = b, then there is an isomorphism between A and a convex cone in
a vector space (namely A as the convex cone embedded in the vector space A−A). Convex
sets are defined in a semilinear space in the usual way. Note that the set of all functions
f : X → IR+∞, where X is an arbitrary nonempty set, is a semilinear space (given the
usual pointwise definition of function addition and positive scalar multiplication). The
set of all l.s.c convex functions f : X → IR+∞ defined on a l.c.H.t.v.s X is a semilinear
space.
Let A be both a semilinear space and a lattice. This set will called a semilinear lattice if

(a) x ≥ y =⇒ (∀z ∈ A) x+ z ≥ y + z
(b) x ≥ y =⇒ (∀λ > 0) λx ≥ λy
(c) For arbitrary U ⊆ A and z ∈ A, sup (z + U) = z + sup U .

Let H be a semilinear space with respect to the usual operations of pointwise addition and

positive scalar multiplication. It follows in this case that F(H,Z) is a semilinear lattice.

It should be noted that F(H,Z) cannot be represented as a cone in a vector space since
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if p, p1, p2 ∈ F(H,Z), p1 + p = p2 + p and there is a subset Zo ⊆ Z such that p(z) = +∞
(for z ∈ Zo) then p1 = p2 does not necessarily hold.

Now let us consider the lattice S(H,Z). It is straightforward to verify that a H-convex set

is convex with respect to the algebraic operations on H. We define on S(H,Z) a binary

operation ⊕ and positive scalar multiplication as follows (for U1, U2, U ∈ S(H,Z), λ >
0):

U1 ⊕ U2 = coZH (U1 + U2) λU = {λu : u ∈ U}.
It is easy to verify that Minkowski duality in this case, i.e the mapping f 7→ s(f,H, Z),

is an algebraic isomorphism between F(H,Z) and S(H,Z) and therefore S(H,Z) is a
semilinear lattice.

We can define, in a symmetric manner, concepts of H-concave functions and sets. A
function q : Z → IR ∪ {−∞} is said to be H-concave if there is a set U ⊆ H such that,
for each z ∈ Z,

q(z) = inf{h(z) : h ∈ U}.
A set U ⊆ H is called H-concave if U = {h ∈ H : (∀z ∈ Z) h(z) ≥ infh′∈U h′(z)}. We
shall denote the set of H-concave functions defined on a set Z ⊆ X by F(H,Z) and the
set of all H-concave sets by S(H,Z).

We shall be particularly interested in the sequel in the class of functions expressible as
the pointwise infimum of a family of H-convex functions, in the notation above we are

refering to the class F(F(H,Z), Z). Thus we require the following definition.

Definition 2.7. Let X be an arbitrary set and Z ⊆ X a non-empty subset. Let H be
a set of functions defined on X and mapping into IR. A function q : Z → IR+∞ is called

inf-H-convex on Z if there is a set ∆ ⊆ F(H,Z) such that, for all z ∈ Z,

q(z) = inf {h(z) : h ∈ ∆}

If X is a locally convex topological vector space and H is the set of continuous affine
functions defined on X then we shall denote inf-H-convex functions as merely inf-convex
functions. Note that we can define the class of min-H-convex functions in an analogous
fashion simply replacing infimum by minimum.
This definition extends the concept of inf-convexity defined in [13] and inf-sublinearity
used in, for example, [10].
In addition to a semilinear space we shall require the weaker idea of a conic set, defined
as follows.

Definition 2.8. A set A is called a conic set if there is an operation of positive scalar
multiplication defined on A such that the following hold, for each a ∈ A, λ, µ > 0:

1 · a = a, (λµ)a = λ(µ)a.

Let H be a set of functions defined on the set Z ⊆ X and assume that H is a conic
set with respect to the usual positive scalar multiplication. Clearly if p is a H-convex

function in this case then λp is a H-convex function for all λ > 0. Thus F(H,Z) is
a conic set. Since H is a conic set it also immediately follows (defining positive scalar
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multiplication in the usual way) that S(H,Z) is also a conic set. It easily follows that

these conic sets, F(H,Z) and S(H,Z), are isomorphic where we identify support sets as

follows, for p ∈ F(H,Z) and λ > 0:

s(λp,H, Z) = λ s(p,H, Z).

We now recall the concept of a H-conjugate function (see, for example, [4, 25, 29, 34])
and develop connections between these functions and the concept of an ε-subdifferential.
In the following we shall assume that X = Z and that H is a set of real valued functions

defined on X. Let H̄ denote the set of all functions h̄ which have the form h̄(x) = h(x)−c
for some h ∈ H and c ∈ IR and every x ∈ X.

Definition 2.9. Let f : X → IR, then the H-conjugate of f , denoted f ∗, is defined by

f∗(h) = sup
x∈X

(h(x)− f(x))

for each h ∈ H.

The concept of a generalized conjugate has been studied extensively in the literature as an
extension of the classical Fenchel-Moreau conjugate of a convex function; see, for example
[28, 34, 25, 4].
The epigraph of a function f is the set epi f = {(x, α) : x ∈ domf, α ≥ f(x)}.
Proposition 2.10. For a function f : X → IR the epigraph of its H-conjugate f ∗

coincides with the support set of f with respect to H̄, i.e

epi f∗ = s(f, H̄,X).

Proof. We have the following:

(h, λ) ∈ epi f∗ ⇐⇒ λ ≥ f∗(h) ⇐⇒ (∀x ∈ X)λ ≥ h(x)− f(x)

⇐⇒ (∀x ∈ X) f(x) ≥ h(x)− λ ⇐⇒ (h, λ) ∈ s(f, H̄,X).

Definition 2.11. Let p be a H̄-convex function and ε ≥ 0. A function h ∈ H is called
an ε-subgradient of the function f at the point xo if, for all x ∈ X,

h(x)− h(xo) ≤ p(x)− p(xo) + ε.

The set ∂H, εp(xo) of all ε-subgradients of p at xo is called the ε-subdifferential of p at xo
with respect to H. Since p is H̄-convex, for each ε > 0 there is a function h ∈ H and a
λ ∈ IR such that, for all x ∈ X:

h(x)− λ ≤ p(x) and h(xo)− λ > p(xo)− ε.

Thus we have h(x)− h(xo) ≤ p(x)− p(xo) + ε. In particular ∂H, εp(xo) 6= ∅ for all ε > 0.

However it may be possible that ∂H, 0p(xo) is empty.

The ε-subdifferential, ∂H, εp(xo), is studied systematically in [34].
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Let p be a H̄-convex function. Then for each h̄ ∈ s(p, H̄,X) there are h ∈ H and λ ∈ IR

such that h̄(·) = h(·) − λ. Thus, for simplicity, we identify h̄ and the pair (h, λ) in a
natural way.

Proposition 2.12. Let p be a H̄-convex function and let xo ∈ dom p = {x ∈ X : p(x) <
+∞}. Then the following holds:

s(p, H̄,X) = ∪ε≥0{(h, λ) : h ∈ ∂H, εp(xo), λ = −(p(xo)− h(xo)) + ε}. (2.2)

Proof. Let V denote the set on the righthand side of (2.2). If (h, λ) ∈ s(p, H̄,X) then,
for all x ∈ X, p(x) ≥ h(x)−λ. In particular p(xo) ≥ h(xo)−λ. Let ε = (p(xo)−h(xo))+λ.
Then ε ≥ 0 and p(x)−p(xo) ≥ h(x)−h(xo)−ε, in particular h ∈ ∂H, εp(xo) and (h, λ) ∈ V .

Conversely, if (h, λ) ∈ V then there is an ε ≥ 0 such that h ∈ ∂H, εp(xo) and λ =

−(p(xo)− h(xo)) + ε. Thus, for all x ∈ X,

p(x) ≥ p(xo) + h(x)− h(xo)− ε and − λ = [p(xo)− h(xo)]− ε.

Thus (h, λ) ∈ s(p, H̄,X) as required.

Proposition 2.13. Let p be a H̄-convex function and ε ≥ 0. Let xo ∈ X, then

h ∈ ∂H, ε(xo) ⇐⇒ p∗(h) + p(xo)− h(xo) ≤ ε.

Proof. Follows easily from the Definition of the H-conjugate and the ε-subgradient.

3. Examples of H-convex and inf-H-convex Functions

The following examples are included to illustrate the broad nature of the classes of H-
convex and inf-H-convex functions. We begin with examples of H-convex functions for
various sets H.

Example 3.1. Let X be a locally convex topological vector space and let H = X ′ the
set of continuous linear functions defined on X. Furthermore let K be a closed convex
cone in X. It is well known that a function p defined on K is H-convex if and only if p
is l.s.c and sublinear.

Example 3.2. Let X be as in example 3.1 and suppose that Z is an arbitrary nonempty

subset of X. Let H = X ′ and so H̄ = {(`, c) : ` ∈ X ′, c ∈ IR} denotes the set of all
continuous affine functions defined on X. It is easy to check that a function f defined on

Z is H̄-convex if and only if there is a l.s.c convex function f̄ defined on the closed convex

hull of Z (cl co Z) such that, for all z ∈ Z, f(z) = f̄(z). In particular if Z is a closed

convex set then a function f is H̄-convex if and only if it is a l.s.c convex function.

Example 3.3. Let X be as above with K ⊆ X a closed convex cone. Let H be the
cone K∗ of all continuous linear functions nonnegative on K (i.e. the dual cone to K).

Let Z ⊆ K be a closed convex cone. It can be shown (see [25, 35]) that p ∈ F(K∗, Z) if
and only if there is a sublinear function p̃ : X → IR+∞ such that
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(i) for all z ∈ Z, p̃(z) = p(z), and
(ii) p̃ is K-increasing; that is if x1 ≥ x2 (i.e x1 ∈ x2 +K) then p̃(x1) ≥ p̃(x2).

Example 3.4. Let Z be subset of IRn and let H be the set of all quadratic functions,
h, defined on IRn, of the form:

h(x) = a‖x‖2 + [`, x] + c

where a ≤ 0, ` ∈ IRn ([·, ·] denotes the usual inner product), c ∈ IR. In this case it can be

shown (see [25]) that F(H,Z) is the set of all l.s.c functions, p, defined on Z such that
there is a quadratic function h with the property h(z) ≤ p(z) for all z ∈ Z. In particular

if Z is a compact set then F(H,Z) is the set of all l.s.c functions defined on Z.

In Examples 3.1 to 3.4 the set H (or H̄) is a semilinear space.

Example 3.5. Let X = Z = IRn
+, where IRn

+ is the nonnegative orthant. Let H be the

set of all functions h defined on IRn
+ generated by a vector (h1, . . . , hn) ∈ IRn

+ where

h(x) = min
i∈T (h)

hixi,

where T (h) = {i : hi > 0}. We assume that the minimum over the empty set is zero

for convenience. It can be shown (see [1, 3]) that F(H, IRn
+) is the set of all increasing

positively homogeneous functions defined on IRn
+.

Example 3.6. where H is the set defined in example 3.4 above. Thus H̄ is the set of

all functions h̄ which have the form h̄(x) = h(x) − c, h ∈ H, c ∈ IR, for every x ∈ IRn
+.

It can be shown (see [2, 3]) that F(H̄, IRn
+) is the set of all increasing convex-along-rays

functions defined on IRn
+. A function f defined on IRn

+ is said to be convex-along-rays if,

for each y ∈ IRn
+, the function fy(λ) = f(λy) is convex (for λ > 0).

Example 3.7. Let h ∈ IRn
+ and c ∈ (0,+∞). We consider the function h̃ defined on

IRn
+ by the formula:

h̃(x) = min
i∈T (h)

(hixi, c), x ∈ IRn
+

Let H̃ be the set of all functions of this form for h ∈ IRn
+ and c > 0. It can be shown

(see [3]) that a function f defined on IRn
+ is H̃-convex on a set Z ⊆ IRn

+ if and only if f

is increasing and quasihomogeneous (i.e (∀x ∈ IRn
+)(∀α ∈ [0, 1]) f(αx) ≥ αf(x)).

Example 3.8. Here we extend the collection of examples which are connected with the
operation of taking minima on the cone IRn

+. Let X = Z = IRn
+ and let h be a function

which is generated by a vector (h1, . . . , hn) ∈ int IRn
+ as follows:

h(x) = min
i=1,...,n

hixi, x ∈ IRn
+ (3.1)

Let H̃ be the union of zero (as a function defined on IRn
+) and all functions of the form

(3.1) with (h1, . . . , hn) ∈ int IRn
+. Clearly H̃ is a subset of the set H considered in example

3.5.
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Proposition 3.9. A function p defined on IRn
+ is H̃-convex on the cone Z = IRn

+ if and

only if p is increasing and positively homogeneous of degree one with p(x) = 0 for all x
lying on the boundary of the cone IRn

+ (i.e p(x) = 0 if mini xi = 0).

Proof. It is easy to check that a H̃-convex function p is increasing and positively ho-
mogeneous of degree one with p(x) = 0 whenever mini xi = 0. Conversely, suppose p is

a function with the properties mentioned above. Let x̄ ∈ int IRn
+ and hx̄ = (hx̄1 , . . . , h

x̄
n)

where hx̄i = p(x̄)/x̄i, i = 1, . . . , n. We then define the function hx on IRn
+ by (3.1). Thus

we have
hx̄(x̄) = min

i
hx̄i x̄i = p(x̄).

On the other hand if x ∈ IRn
+ and λ = mini(xi/x̄i) then x ≥ λx̄. Therefore

p(x) ≥ p(λx̄) = λp(x̄) = min
i

p(x̄)xi
x̄i

= min
i
hx̄i xi = hx̄(x).

Let U = {hx ∈ H̃ : x ∈ int IRn
+}. We have, for x ∈ int IRn

+,

p(x) = max
h∈U

h(x).

Clearly maxh∈U h(x) = 0 if mini xi = 0. Thus p(x) = maxh∈U h(x) for all x and conse-
quently p is a H-convex function.

Remark 3.10. The main notion underlying the H-convex functions discussed in ex-
amples 3.5 and 3.8 is that of a normal set. A subset U of the cone IRn

+ is called normal

if the relations x ∈ U, x′ ≤ x, x′ ∈ IRn
+ imply x′ ∈ U . It can be shown (see [35]) that

a function p defined on IRn
+ is positively homogeneous of degree one and increasing if

and only if there is a closed normal set U such that p is the Minkowski gauge of U , i.e.
p(x) = inf{λ > 0 : x ∈ λU}. Normal sets play an important role in the study of various
models in Mathematical Economics (see [35, 26]). We shall meet various modifications of
these sets when studying H-convex sets.

Example 3.11. Let X = IRn. For ` ∈ X ′ let us denote `+(x) = max {`(x), 0}. Let
us fix a natural number N and consider the set HN of all functions defined on IRn which
have the form

h(x) = min
i=1,...,N

`+i (x)

with `i ∈ X ′ (i = 1, . . . , N).

Clearly a HN -convex function is nonnegative and positively homogeneous. Applying
results by Shveidel [37] it is not difficult to show that there is a number N which depends
only on n such that the set of HN -convex functions coincides with the set of all positively
homogeneous nonnegative l.s.c functions.

Example 3.12. Let X be a locally convex topological vector space and X ′ its conjugate
space. For ` ∈ X ′ and c ≥ 0 let us consider the functions h`,c which have the form

h`,c(x) =

{
c [`, x] > 1

0 [`, x] ≤ 1
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Let H be the set of all functions h`,c for ` ∈ X ′ and c ≥ 0. Then it follows (see [36]) that

a function p defined on X is H-convex if and only if p is a l.s.c nonnegative quasiconvex
function with p(0) = 0.

Example 3.13. Let us extend example 3.12 by considering the set H of all functions
h of the form

h(x) =

{
c [`, x− xo] > 1

c′ [`, x− xo] ≤ 1

where ` ∈ X ′, xo ∈ X, c, c′ ∈ IR+∞ and c ≥ c′. It follows easily from [36] that a function
p defined on X is H-convex if and only if p is l.s.c quasiconvex and bounded from below
on X.

It is worth noting that H (or H̄) in examples 3.5 to 3.13 are conic sets.

We now consider examples of inf-H-convex functions.

Example 3.14. From the definition it is clear that every H-concave function is inf-H-
convex.

Example 3.15. Let H be a linear space. Then the difference, f1−f2, of two H-convex

functions is inf-H-convex. If f1, f2 ∈ F(H,Z) then, for each x ∈ Z,

f1(x)− f2(x) = f1(x)− sup
h∈s(f2,H,Z)

h(x)

= f1(x) + inf
h∈s(f2,H,Z)

(−h)(x)

= inf
h∈s(f2,H,Z)

(f1 − h)(x)

Since f1 − h is H-convex for each h ∈ H it follows that f1 − f2 is inf-H-convex.
In particular the difference of two l.s.c sublinear functions is inf-H-convex when H = X ′;
the difference of two l.s.c convex functions is inf-H-convex when H = X ′ × IR.

Example 3.16. Let f be a positively homogeneous (of degree one) continuous and
quasiconvex function defined on X = IRn. It can be shown (see [6]) that there are two
l.s.c sublinear functions f1, f2 such that, for each x ∈ IRn,

f(x) = min(f1(x), f2(x)).

Thus f is inf-H-convex where H = X ′ (in fact min-H-convex).

Example 3.17. Let Z be a convex subset of the space X and f : Z → IR be an u.s.c
function such that for some continuous convex function h, h(x) > f(x) for all x ∈ Z.
Then (see [13]) f is inf-convex (i.e. f is inf-H-convex with H the set of continuous affine
functions defined on X). In particular if Z is a compact convex set then every u.s.c
function defined on Z is inf-convex.

Example 3.18. Let Z be a compact convex set in IRn and let G be an open bounded
set with Z ⊆ G. We shall denote the set of all twice continuously differentiable functions

defined on the set G by C2(G). We require the following lemma:
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Lemma 3.19. Let f ∈ C2(G) and z ∈ Z. Then there is a number kz such that the
quadratic function pz defined as follows:

pz(x) = kz‖x− z‖2 + [∇f(z), x− z] + f(z) (3.2)

possesses the following properties:

pz(z) = f(z) and (∀x ∈ Z) pz(x) ≥ f(x).

Proof. Clearly pz(z) = f(z) is valid for any kz. Now let us consider the quadratic (3.2)

with an arbitrary kz ≥ 1
2‖∇2f(z)‖+m where m > 0. Let F (x) = pz(x)− f(x). We have

∇F (x) = ∇pz(x)−∇f(x) = 2kz(x− z) +∇f(z)−∇f(x).

Thus ∇2F (x) = 2kz Id − ∇2f(x), where Id denotes the identity mapping. In particular
∇F (z) = 0 and

xT∇2F (z)x = 2kz‖x‖2 − xT∇2f(z)x

≥ 2kz‖x‖2 − ‖∇2f(z)‖‖x‖2

> m‖x‖2, for all x

Therefore for an arbitrary kz >
1
2‖∇2f(z)‖ the function F (x) achieves a local maximum

at the point z, i.e. there is a neighbourhood Vz of the point z such that f(x) < pz(x) for
all x ∈ Vz (x 6= z). On the other hand since the set Z\Vz is compact it is easy to check
that for large kz, pz(x) > f(x) for all x ∈ Z\Vz.

Corollary 3.20. If f ∈ C2(G) then

f(x) = min
z∈Z

(kz‖x− z‖2 + [∇f(z), x− z] + f(z))

Thus Corollary 3.20 shows that every C2 function defined on a compact set G is inf-H-
convex (in fact min-H-convex) where H is the semilinear space of all convex quadratic
functions defined on IRn.

4. General Solvability Theorems

In this section we develop solvability theorems for infinite systems of inequalities invol-
ving H-convex functions. Furthermore we extend the recent results in [13] by establishing
very general solvability theorems for systems of inequalities involving functions express-
ible as the pointwise infimum of H-convex functions, that is functions within the class
F(F(H,Z), Z).
In the following coneV represents the conic hull of a set V , i.e.

coneV =
⋃

λ>0

λV.

This operation is well defined for a conic set.
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Theorem 4.1. Let Z be a subset of set X, let H be a conic set of functions defined
on X and let I be an arbitrary index set. Furthermore let f and, for each i ∈ I, gi be
H-convex functions defined on Z. Then the following statements are equivalent:

(i) (∀i ∈ I) gi(x) ≤ 0 =⇒ f(x) ≤ 0

(ii) s(f,H, Z) ⊆ coZH cone
⋃

i

s(gi, H, Z)

Proof. For each z ∈ Z let g(z) = supi∈I gi(z). The function g is H-convex. Define the

level sets Sg = {z : g(z) ≤ 0} and Sf = {z : f(z) ≤ 0}. Clearly statement (i) can be

written as follows:
(iii) Sg ⊆ Sf
Let δ denote the indicator function of the set Sg:

δ(z) =

{
+∞ z 6∈ Sg
0 z ∈ Sg

It is easy to check that inclusion (iii) is equivalent to the inequality f ≤ δ. In particular
if f ≤ δ then g(x) ≤ 0 implies f(x) ≤ 0. On the other hand if Sg ⊆ Sf then f(x) ≤ 0

whenever x ∈ Sg i.e. f ≤ δ.
Clearly δ = supλ>0 λg. Since H is a conic set we have that λg is a H-convex function
since g is H-convex. Therefore δ is a H-convex function as the supremum of H-convex
functions. Now let us compute the support set s(δ,H, Z) of the function δ. Since δ =
supλ>0 supi gi = supλ>0, i λgi we have

s(δ,H, Z) = coZH
⋃

λ>0, i

λs(gi, H, Z)

= coZH
⋃

λ>0

⋃

i∈I
s(gi, H, Z)

= coZH cone
⋃

i∈I
s(gi, H, Z)

Minkowski duality shows that the inequality f ≤ δ is equivalent to the inclusion

s(f,H, Z) ⊆ s(δ,H, Z) = coZH cone
⋃

i∈I
s(gi, H, Z).

Hence the result follows.

We shall discuss special cases of this solvability result (and Theorem 4.3 to follow) in
Section 6. It suffices to note that Theorem 4.1 is a very general nonlinear extension of
the classical Farkas lemma for finite systems of linear inequalities which is applicable
to systems involving sublinear, convex and certain quasiconvex functions for example.
The application of Theorem 4.1 to systems of quasiconvex functions raises several open
questions (see the Conclusion for a detailed discussion) related to the description of the
H-convex hull in such examples.



322 A. Rubinov, B. Glover, V. Jeyakumar / A general approach to solvability theorems

Extensions of Farkas’ lemma have been used extensively in applications to nonsmooth, and
most recently, global optimization. This type of solvability theorem provides a dual char-
acterization of inconsistency for a specific inequality system which arises when considering
a suitable first order approximation to the programming problem under consideration (see
[9, 11, 12, 20, 21]).

Proposition 4.2. Let I, and for each i ∈ I, gi be as in Theorem 4.1, then the system

(∀i ∈ I) gi(z) ≤ 0, z ∈ Z (4.1)

is inconsistent on the set Z if and only if

coZH cone
⋃

i∈I
s(gi, H, Z) = H.

Proof. Let g(z) = supi gi(z) and δ(z) = supλ>0 λg(z). Clearly the system (4.1) is

inconsistent on the set Z if and only if g(z) > 0 for all z ∈ Z. Equivalently, δ(z) = +∞
for all z ∈ Z. Thus we have

s(δ,H, Z) = coZH cone
⋃

i∈I
s(gi, H, Z)

s(+∞, H, Z) = H.

Thus the result follows.

We shall now study characterizations of solvability theorems involving functions express-
ible as the pointwise infimum of H-convex functions.
In the following let Z ⊆ X and let H be a semilinear space of functions defined on X.
Let I be an arbitrary index set with f and, for each i ∈ I, gi inf-H-convex. Thus for each

i ∈ I there is a set ∆i and a family {pαi : αi ∈ ∆i} with pαi ∈ F(H,Z) such that, for
each z ∈ Z,

gi(z) = inf
αi∈∆i

pαi(z)

In addition there is a set ∆ and a family {pα : α ∈ ∆} ⊆ F(H,Z) such that, for each
z ∈ Z,

f(z) = inf
α∈∆

pα(z).

Let (A(t))t∈T be a family of nonempty sets, then a selection function a is a function of
the form

a = (at)t∈T ∈
∏

t∈T
A(t).

Thus in particular at ∈ A(t) for each t ∈ T . We will use the notation

(at) ∈
∏

t∈T
A(t).
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Theorem 4.3. Let Z ⊆ X and let H be a semilinear space of functions defined on X.
Let I be an arbitrary index set with f and, for each i ∈ I, gi inf −H-convex. Then the
following statements are equivalent:

(i) (∀i ∈ I) gi(z) ≤ 0 =⇒ f(z) ≥ 0

(ii) For each α ∈ ∆ and (αi) ∈
∏
i∈I ∆i

0 ∈ coZH (s(pα, H, Z) + coZH cone
⋃

i∈I
s(pαi , H, Z))

Note that Theorem 4.3 extends Theorem 3.2 in [13] which was established for systems of
inf-convex functions and involved an additional boundedness assumption on the domain
of the functions involved.
We require the following lemmas (see [13] for Lemma 4.4).

Lemma 4.4. Consider a set I and a family of sets (∆i)i∈I . For convenience let S
denote the set of all selection functions a defined on I with, for each i ∈ I, a(i) = ai ∈ ∆i.
Assume that for each i ∈ I there is a function ti : ∆i → IR such that infαi∈∆i

ti(αi) > −∞.

Then for the function t : S × I → IR, t(a, i) = ti(a(i)) we have

inf
a∈S

sup
i∈I

t(a, i) = sup
i∈I

inf
a∈S

t(a, i).

Proof. Since S is the set of all selection functions we have, for all i ∈ I,

inf
a∈S

t(a, i) = inf
a∈S

ti(a(i)) = inf
αi∈∆i

ti(αi).

Let ε > 0 and, for each i ∈ I, let ᾱi ∈ ∆i be such that

ti(ᾱi) ≤ inf
αi∈∆i

ti(αi) + ε.

Define the selection function ā ∈ S by ā(i) = ᾱi for all i ∈ I. Then

sup
i∈I

t(ā, i) = sup
i∈I

ti(ᾱi)

≤ sup
i∈I

( inf
αi∈∆i

ti(αi) + ε)

= sup
i∈I

inf
a∈S

t(a, i) + ε.

Consequently,
inf
a∈S

sup
i∈I

t(a, i) ≤ sup
i∈I

t(ā, i) ≤ sup
i∈I

inf
a∈S

t(a, i) + ε.

Since ε > 0 was arbitrary it follows that inf sup ≤ sup inf. The reverse inequality is
always true and so the result follows.

Lemma 4.5. Let X, Z, H, I, gi and f be as above. Then the following statements are
equivalent:
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(i) (∀α ∈ ∆)(∀(αi) ∈
∏

i∈I
∆i) 0 ∈ coZH (s(pα, H, Z) + coZH

⋃

i

s(pαi , H, Z))

(ii) (∀z ∈ Z) f(z) + supi gi(z) ≥ 0.

Proof. Let α ∈ ∆ and a = (αi) ∈
∏
i ∆i. For convenience let

Vα, a = coZH (s(pα, H, Z) + coZH
⋃

i

s(pαi , H, Z)),

and consider the function
pα, a = pα + sup

i
pαi .

Since H is a semilinear space it follows that F(H,Z) is a semilinear lattice and therefore
pα, a is a H-convex function. Minkowski duality shows that Vα, a is the support set of the
function pα, a.

Since Vα, a = {h ∈ H : h ≤ pα, a} and 0 ∈ H we have 0 ∈ Vα, a if and only if pα, a(z) ≥ 0

for all z ∈ Z. Therefore condition (i) is equivalent to

inf
α∈∆

inf
a∈S

pα, a(z) ≥ 0, z ∈ Z

(Here S is the set of all selections of the indexed family (∆i)i∈I). To simplify this expres-
sion we note the following for each z ∈ Z:

inf
α∈∆

inf
a∈S

pα, a(z) = inf
α∈∆

inf
a∈S

(pα(z) + sup
i
pαi(z))

= inf
α∈∆

pα(z) + inf
a∈S

sup
i
pαi(z)

=f(z) + inf
a∈S

sup
i
pαi(z).

Using Lemma 4.4 with ti(αi) = pαi(z) (where αi = a(i)) we have

inf
a∈S

sup
i∈I

pαi(z) = sup
i∈I

inf
a∈S

pαi(z) = sup
i∈I

gi(z).

Hence
inf
α∈∆

inf
aS
pα, a(z) = f(z) + sup

i∈I
gi(z).

So that condition (i) is equivalent to the following:

(∀z ∈ Z) f(z) + sup
i
gi(z) ≥ 0 (4.2)

as required.

Proof of Theorem 4.3: In order to prove that (ii) implies (i) let us consider the set
I = I × (0,+∞). Define the function g̃j for each j = (i, µ) ∈ I as follows g̃j(z) = µgi(z).

Clearly statement (i) is equivalent to the following:

(i′) (∀j ∈ I) g̃j(z) ≤ 0 =⇒ f(z) ≥ 0.
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Clearly each function g̃j, j ∈ I, is inf-H-convex. Let p̄j = µpαi and with ∆̄j = ∆i for

each j = (i, µ) ∈ I. We have, for each z ∈ Z,

g̃j(z) = µgi(z) = inf
αi∈∆i

µpαi(z) = inf
ᾱj∈∆̄j

p̄ᾱj (z).

Clearly s(p̄ᾱj , H, Z) = µ s(pαi , H, Z). Let α ∈ ∆ and let ᾱ = (ᾱj)j∈I be a selection from

the set
∏
j∈I ∆̄j . Let us consider the function pα, ᾱ = pα + supj p̄ᾱj and the support set

s(pα, ᾱ, H, Z) of this function. We have

s(pα, ᾱ, H, Z) = coZH (s(pα, H, Z) + coZH
⋃

j∈I
s(p̄ᾱj , H, Z))

= coZH (s(pα, H, Z) + coZH
⋃

i∈I, µ>0

µ s(pαi , H, Z))

= coZH (s(pα, H, Z) + coZH cone
⋃

i∈I
s(pαi , H, Z))

Therefore the condition 0 ∈ s(pα, ᾱ, H, Z) is equivalent to:

0 ∈ coZH (s(pα, H, Z) + coZH cone
⋃

i∈I
s(pαi , H, Z))

Thus, by Lemma 4.5, (ii) is equivalent to the following:

(∀z ∈ Z) f(z) + sup
j∈I

g̃j(z) ≥ 0 (4.3)

However,

sup
j
g̃j(z) =

{
0 if gi(z) ≤ 0, for all i ∈ I

+∞ if there is an i ∈ I such that gi(z) > 0

We now check that (4.3) implies (i). Suppose that (4.3) is true and that (∀i ∈ I) gi(z) ≤ 0.
Then supj∈I g̃j(z) = 0 and consequently by (4.3) f(z) ≥ 0. Thus (i) is true. Hence

since (4.3) is equivalent to (ii) it follows that (ii) implies (i) as required. Similarly we

can show that (i′) implies (4.3). If (4.3) is not true then there is a z ∈ Z such that
f(z) + supj g̃j(z) < 0. In particular supj g̃j(z) < +∞ and so supj g̃j(z) = 0. Hence

f(z) < 0 and so (i′) is not true. Thus since (i) and (i′) are equivalent the result follows.

It is important to note that Theorem 4.1 requires only that H is a conic set (and thus
would be applicable, for example, to the class of quasiconvex functions) whereas Theorem
4.3 requires that H be a semilinear space. It is worth noting that if H is a semilinear
space then Theorem 4.1 is a straightforward corollary of Theorem 4.3.

We now complete this section with a potentially interesting application of Theorems 4.1
and 4.3.

Let us introduce the notion of an extension of a H-convex function and show that the
solvability theorems developed above are equivalent both for H-convex systems and the
corresponding systems of H-convex extensions.
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Consider two subsets Z and Z1 of the set X with Z ⊆ Z1. Let H be a set of functions

defined on X. Let p ∈ F(H,Z) with U = s(p,H, Z) the support set of p. Now consider
the function p̄ defined on Z1 by the following for each z ∈ Z1,

p̄(z) = sup
h∈U

h(z)

Clearly the support set Ul = s(p̄, H, Z1) of the function p̄ contains the set U . On the
other hand if h ∈ Ul then

(∀z ∈ Z) h(z) ≤ p̄(z) = p(z)

and therefore h ∈ U . So U = Ul. We shall say that p̄ is a H-extension of the function p
on the set Z1.

We now assume that the conditions of Theorem 4.1 are satisfied. Let Z ⊆ Z1 and let f̄
and ḡi be H-extensions of f and gi respectively to the set Z1.

Theorem 4.6. The following statements are equivalent:

(i) z ∈ Z, (∀i ∈ I) gi(z) ≤ 0 =⇒ f(z) ≤ 0

(ii) z ∈ Z1, (∀i ∈ I) ḡi(z) ≤ 0 =⇒ f̄(z) ≤ 0

Proof. Theorem 4.1 shows that the characterization of statement (i) depends only on
the connections between the support sets s(f,H, Z) and s(gi, H, Z) (i ∈ I). Consequently
since the support sets of the given functions coincide with those of their extensions the
result follows.

Example 4.7. Let Z be the unit sphere in IRn and Z1 the unit ball. Let H be the set
of all continuous affine functions defined on IRn. It is well-known (see, for example [25])
that an arbitrary l.s.c function p defined on Z is H-convex. Let p be l.s.c on the sphere
Z and define the function p̄ on the ball Z1 as follows:

p̄(z) = inf {
m∑

i=1

αip(xi) :

m∑

i=1

αixi = z, xi ∈ Z, αi ≥ 0,

m∑

i=1

αi = 1, m = 1, 2, . . .}. (4.4)

Since each point of the sphere is an extreme point of the ball we have p(x) = p̄(x) for all
x ∈ Z. It is well known that p̄ is a l.s.c convex function and therefore p̄ is a H-convex
function on the ball Z1. Let h ∈ s(p,H, Z). If z ∈ Z, αi ≥ 0,

∑
i αi = 1,

∑
i αixi = z

then h(z) =
∑

i αih(xi) ≤
∑

i αip(xi) and therefore h(z) ≤ p̄(z), i.e. h ∈ s(p̄, H, Z1). Since

p(x) = p̄(x) on the sphere we have s(p̄, H, Z1) ⊆ s(p,H, Z). Thus s(p̄, H, Z1) = s(p,H, Z).
Hence p̄ is a H-extension of the function p.

Now we consider l.s.c functions f and gi (i ∈ I) defined on the sphere Z and functions

f̄ , ḡi (i ∈ I) defined on the ball Z1 by means of the approach illustrated in (4.4). We can
now apply Theorem 4.6.

Now let q be an inf-H-convex function defined on the set Z and {pα : α ∈ ∆} is a family of
H-convex functions such that q(z) = infα∈∆ pα(z) for all z ∈ Z. Let p̄α be a H-extension
of the function pα on the set Z1 ⊇ Z and q̄(z) = infα∈∆ p̄α(z), (z ∈ Z1). We say that q̄
is a H-extension of the function q with respect to the family (pα)α∈∆.
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Theorem 4.8. Let X, Z, H, I, gi and f be the same as in Theorem 4.3 and let ḡi be

a H-extension of gi (i ∈ I) with respect to the family (p̄αi)αi∈∆i
and f̄ be a H-extension

of the function f with respect to the family (pα)α∈∆. Then the following are equivalent:

(i) z ∈ Z (∀i ∈ I) gi(z) ≤ 0 =⇒ f(z) ≤ 0

(ii) z ∈ Z1 (∀i ∈ I) ḡi(z) ≤ 0 =⇒ f̄(z) ≤ 0

5. Characterizations of the H-Convex Hull

In order to apply the solvability theorems developed in the preceding section it is neces-

sary to describe the H-convex hull, coZH in verifiable terms (i.e. involving standard notions

of convex hull or convex cone). This is, in general, a very difficult problem, particularly

for nonconvex systems. However there are a number of cases in which coZH has a rela-

tively simple characterization. In the following we provide a detailed analysis for several
important special cases.

Example 5.1. Consider the closed convex cone K in a locally convex Hausdorff topo-
logical vector space X. Let H be the set of all continuous linear functions defined on X.

If p ∈ F(H,K) then p is a l.s.c sublinear function on K. In order to adequately describe
the H-convex sets we require the following definition.

Definition 5.2. Let L be a cone in a vector space X. A set Ω ⊆ X is called L-stable
if Ω + L = Ω.

It is well known (see [25, 35]) that a nonempty set U is H-convex in this case if and only
if U is closed convex and −K∗-stable.

It should be noted that the H-extension of a H-convex function p (i.e. p is a l.s.c sublinear
function defined on K) to the entire space X coincides with the function p̃ defined on X
by the formula:

p̃(x) =

{
p(x) x ∈ K

+∞ x 6∈ K
and the support set of p is the subdifferential of the l.s.c function p̃, defined on all of X
with the property domp̃ ⊆ K.
Now let us consider an arbitrary nonempty set U ⊆ H = X ′. Let

U` = cl (coU −K∗)

where coU denotes the convex hull of U . Clearly the set U` is closed convex and −K∗-
stable. Therefore this set is H-convex. In addition

sup
h∈U`

h(x) = sup
h∈U

h(x) x ∈ K

Therefore U` is the H-convex hull of the set U . Thus we have the following:

Proposition 5.3. Let H = X ′ be the set of all continuous linear functions defined on
X and let K be a closed convex cone in X. Then

coKH U = cl (coU −K∗)
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Remark 5.4. If U is a weak* compact convex set then coKH = U − K∗. If moreover

K = X then U is a H-convex set and coKH U = U .

More generally in this section we have developed characterizations of H-convex hulls that
involve the closure of sums (or differences) of convex sets (as in Proposition 5.3). The
question of when such sums are actually closed is difficult, for example in Proposition 5.3
(co (U) − K∗) may not be closed in general. Here are some conditions that guarantee
closedness. These conditions were given in [24]:

(i) If K and L are closed convex cones, then K ∩ (−L) = {0}, K locally compact implies
K + L closed.

(ii) Suppose that X is a Hilbert space, K and L are closed convex cones, and the angle
between K and −L is positive, i.e.

sup {[k, l] : ‖k‖ = ‖l‖, k ∈ K, l ∈ L} < 1,

then K + L is closed.
(iii) Suppose that C is a closed subspace and D is a finite dimensional subspace then

C +D is closed.
(iv) Suppose K and L are closed convex sets, 0 ∈ K, L∩ cone (K−L) a closed subspace.

Then K∗ + L∗ is closed.

Example 5.5. Now we consider closed convex cones K and Z in the l.c.H.t.v.s X such
that Z ⊆ K. Let H be the set K∗ of all continuous linear functions defined on X and
nonnegative on K. We require the following definition.

Definition 5.6. Let L1 and L2 be cones in X with L1 ⊆ L2. Then a subset U of the
cone L1 is called (L1, L2)-normal if U = cl (U − L2) ∩ L1. If U is an arbitrary subset of
the cone L1 then the set

N (U) = cl (U − L2) ∩ L1

is called the (L1, L2)-normal hull of the set U .

Normal sets play a very important role in Mathematical Economics. These sets and
normal hulls are studied in detail in [26, 35].

It can be shown ([35]) that a subset U of the cone K∗ is H-convex with respect to Z (i.e.

U ∈ S(H,Z)) if and only if this set is closed convex and (K∗, Z∗)-normal. The H-convex

hull coZH U of an arbitrary set U in K∗ has the form

coZH U = N (coU).

Example 5.7. Now we let H be the set of all continuous affine functions defined on
X. Let Z be a closed convex subset of X. Define the set

KZ = {(`, c) ∈ H : (∀x ∈ Z) `(x)− c ≤ 0}

Clearly KZ is a closed convex cone. The following proposition follows:

Proposition 5.8. Let f be a l.s.c convex function defined on X. Then

domf ⊆ Z ⇐⇒ s(f,H,X) is a KZ -stable set.
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Proof. The following holds:

domf ⊆ Z ⇐⇒ f + δZ = f ⇐⇒ (f + δ)∗ = f∗ ⇐⇒ epi (f + δZ)∗ = epi f∗ (5.1)

Here δZ denotes the indicator function of the set Z, i.e.

δZ(x) =

{
0 x ∈ Z

+∞ x 6∈ Z

If g is a convex function then g∗ is a conjugate function (see [31]).
Note that domδZ = Z ⊇ domf . Using a well known result (see for example Rockafellar
[31]) we have

(f + δZ)∗ = cl (f∗ ⊕ δ∗Z)

where⊕ denotes inf-convolution. Since the epigraph of the inf-convolution of two functions
is equal to the sum of the epigraphs of the functions it follows that

epi (f + δZ)∗ = epi (cl (f∗ ⊕ δ∗Z)) = cl (epi (f ∗ ⊕ δ∗Z)) = cl (epi f ∗ + epi δ∗Z) (5.2)

We now calculate epi δ∗Z :

epi δ∗Z = {(`, c) : c ≥ δ∗Z(`)}
= {(`, c) : c ≥ sup

z∈Z
`(z)}

= {(`, c) : (∀z ∈ Z) c ≥ `(z)}
= KZ

(5.3)

Let domf ⊆ Z. Then using (5.1), (5.2) and (5.3) we have

cl (epi f∗ +KZ) = epi f∗

and therefore epi f ∗ + KZ ⊆ epi f∗. On the other hand, since 0 ∈ KZ we have epi f ∗ +
KZ ⊇ epi f∗. Therefore epi f ∗ +KZ = epi f∗.
Conversely if epi f ∗ + KZ = epi f∗ then cl (epi f∗ + KZ) = epi f∗ + KZ = epi f∗ and
therefore epi (f + δ∗Z)∗ = epi f∗ and domf ⊆ Z.

We also require the following result.

Proposition 5.9. (see [25]) Let H = {h : h(x) = `(x) − c, ` ∈ X ′, c ∈ IR, x ∈ X} be
the set of all continuous affine functions defined on X. Then a nonempty set U 6= H is
H-convex (with respect to the entire space X) if and only if U is closed convex ({0}×IR+)-
stable and not ({0} × IR)-stable.

Clearly H and ∅ are H-convex sets.

The following holds:

Proposition 5.10. A nonempty set U 6= H is H-convex (on Z) if and only if U is
closed convex KZ-stable and not ({0} × IR)-stable.

Proof. It is easy to check that a H-convex set (on Z) is closed convex and KZ -stable.
Now let U be closed convex KZ -stable and not ({0}× IR)-stable. Since {0}× IR+ ⊆ KZ ,
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U is a ({0} × IR+)-stable set. Proposition 5.9 shows that there is a l.s.c convex function
f defined on X such that U = s(f,H,X). Applying Proposition 5.8 we have domf ⊆ Z.
Therefore U is a H-convex set (on Z).

Corollary 5.11. Let H be the set of all continuous affine functions defined on X and
let U be an arbitrary nonempty subset of H which is not ({0} × IR)-stable. Then

coZH U = cl (coU +KZ). (5.4)

Note that the set cl (coU + KZ) is closed convex KZ -stable and therefore this set is
H-convex (on Z). Since, for z ∈ Z,

sup
h∈U

h(z) = sup
h∈cl (coU+KZ)

h(z)

it follows that cl (coU + KZ) is the support set of the function z 7→ suph∈U h(z). Hence

the formula (5.4) follows.

Remark 5.12. If U is a ({0} × IR)-stable set then, for all x ∈ X,

sup
(`,c)∈U

(`(x)− c) = +∞

and therefore coZH U = H.

Proposition 5.13. Let I be an arbitrary index set and, for each i ∈ I, let gi be a l.s.c
convex function defined on X. If the following system has a solution

(∀i ∈ I) gi(x) ≤ 0

then the set U is not {0} × IR-stable, where

U = cone
⋃

i∈I
epi g∗i .

Proof. Let xo be a solution to the system and take any i ∈ I. Then, for each ` ∈ domg∗i ,
we have

g∗i (`) = sup
x∈X
{`(x)− gi(x)} ≥ `(xo)− gi(xo) ≥ `(xo).

Thus if (`, λ) ∈ epi g∗i then λ ≥ g∗i (`) ≥ `(xo). Define the evaluation function xo on X ′

by xo(`) = `(xo). By the above if (`, λ) ∈ epi g∗i then (`, λ) ∈ epi xo. Thus, for all i,

epi g∗i ⊆ epi xo. Hence ⋃

i∈I
epi g∗i ⊆ epi xo.

Since epi xo is a halfspace in X ′×IR it follows immediately that U cannot be {0}×IR-stable
as required.
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Example 5.14. Consider the set H̃ of all functions h defined on the cone IRn
+ which

are generated by a vector h = (h1, . . . , hn) ∈ int IRn
+ ∪ {0} and have the form

h(x) = min
i=1,...,n

hixi.

Clearly H̃ is a conic set. We have two alternative approaches to introducing an order

relation in H̃. Let h1 = (h1
1, . . . , h

1
n), h2 = (h2

1, . . . , h
2
n), then

(i) h1 ≥ h2 if h1(x) ≥ h2(x), i.e. mini h
1
i xi ≥ mini h

2
i xi.

(ii) h1 ≥ h2 if h1
i ≥ h2

i , for all i.

It is straightforward to check that these relations coincide.

We identify H̃ with the cone int IRn
+ ∪ {0}. However we consider this cone as an ordered

conic set without summation since H̃ is not a semilinear space. Recall that a function p

defined on IRn
+ is H̃-convex if and only if p is increasing, positively homogeneous of degree

one and p(x) = 0 if mini xi = 0.

The subset U of the cone int IRn
+ ∪ {0} is called normal if h ∈ U, h′ ∈ H̃, h′ ≤ h implies

h′ ∈ U . Compare this definition with the definitions of normal subsets of the cone IRn
+

and (L1, L2)-normal sets.

Proposition 5.15. A subset U of the cone H̃ is H̃-convex if and only if U is closed (in
the topological space int IRn

+ ∪ {0}) and a normal set.

Proof. It is easy to check that a H̃-convex set is closed and normal. Now let U be a

closed and normal subset of the cone H̃. We have to show that the inequality

(∀x ∈ IRn
+) h(x) ≤ sup

h′∈U
h′(x)

implies the inclusion h ∈ U . Equivalently we need to show that if h ∈ H̃ and h 6∈ U then
there is a x ∈ IRn

+ such that h(x) > suph′∈U h
′(x). Let us consider such a vector h 6∈ U .

Clearly h 6= 0 and therefore h ∈ int IRn
+. Since U is closed there is an ε > 0 such that

(1− ε)h 6∈ U . Let x̄ = (x̄1, . . . , x̄n) be the vector such that, for each i

x̄i =
1

(1− ε)hi
.

We have h(x̄) = mini hix̄i = 1/(1 − ε) > 1. Now let h′ ∈ U . Since U is normal the
inequality h′ ≥ (1−ε)h is not true, therefore there is an index io such that h′io < (1−ε)hio .
Hence

h′(x̄) = min
i
h′ix̄i ≤ h′iox̄io < (1− ε)hio x̄io = 1.

Thus we have constructed a vector x̄ with the property

h(x̄) > 1 ≥ sup
h′∈U

h′(x̄).
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Let U be an arbitrary subset of the cone H̃. The normal hull, N (U), of the set U is
defined as follows:

N (U) = {h ∈ H̃ : (∃h′ ∈ U) h ≤ h′}.
It is easy to check that closure of a normal set (in the topological space int IRn

+∪{0}) is a

normal set too. Therefore cl (N (U)) is a closed normal set. Thus we have the following:

Corollary 5.16. If U is an arbitrary subset of the cone IRn
+ then

coH̃ U = cl (N (U)).

Note that cl (N (U)) is a H̃-convex set. In addition, for each x ∈ IRn
+,

sup
h∈U

h(x) = sup
h∈cl (N (U))

h(x).

6. Solvability Theorems in Special Cases

In this section we consider the general solvability theorems developed in Section 4 along
with the characterizations of H-convex hull outlined in Section 5 in a number of special
cases. Namely we transform the dual conditions in Theorems 4.1 and Theorem 4.3 using
the description of the H-convex hull developed above.

6.1. Sublinear inequality systems

We begin by considering solvability theorems involving l.s.c sublinear functions f and
gi (i ∈ I) defined on a closed convex cone K. Thus we wish to characterize Theorem 4.1

(i). The set H coincides in this case with the space X ′ of all continuous linear functions
defined on X. Proposition 5.3 shows that in this case:

coKH cone
⋃

i

∂gi(0) = cl (co cone
⋃

i

∂gi(0)−K∗)

= cl (cone co
⋃

i

∂gi(0)−K∗)
(6.1)

If domgi ⊆ K (for each i) then the support set (subdifferential) of the sublinear function
gi is −K∗-stable and therefore ∂gi(0)−K∗ = ∂gi(0). The formula (6.1) has a particularly
simple form in this case

coKH cone
⋃

i

∂gi(0) = cl cone co
⋃

i

∂gi(0) (6.2)

In particular (6.2) follows if K = X. Thus statement (ii) of Theorem 4.1 can be written
in the following form in this case:

∂f(0) ⊆ cl (cone co
⋃

i

∂gi(0))
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In relation to Theorem 4.3 suppose that (pαi)i∈∆i
is a family of l.s.c sublinear functions

and pα is a l.s.c sublinear function then

coKH (∂pα(0) + coKH cone
⋃

i

∂pαi(0))

= cl (∂pα(0) + cl [co cone
⋃

i

∂pαi(0)−K∗]−K∗)

To simplify this formula we note that, in general cl (C + clD) = cl (C +D), and the set

cl (co cone
⋃

i

∂pαi(0)−K∗)

is −K∗-stable. Thus we have

coKH (∂pα(0) + coKH cone
⋃

i

∂pαi(0))

= cl (∂pα(0) + cone co
⋃

i

∂pαi(0)−K∗)
(6.3)

Once again we can remove −K∗ if dompα ⊆ K and, for each i, dompαi ⊆ K. Thus

statement (ii) of Theorem 4.3 can be written as follows in thus case:

0 ∈ cl (∂pα(0) + cone co
⋃

i

∂pαi(0)).

For a comparison of this result with known sublinear versions of Farkas’ lemma, see [8,
10].

6.2. Convex inequality systems

We now consider systems involving proper l.s.c convex functions, f and gi (i ∈ I) and
assume that the set Z is closed and convex. The set H is now the set of all continuous
affine functions defined on the space X. We will throughout assume that the system

i ∈ I, gi(x) ≤ 0

is consistent. Thus, by Proposition 5.13, the set

cone
⋃

i∈I
epi g∗i

is not {0} × IR-stable. Then using Corollary 5.11 we have

coZH cone
⋃

i

epi g∗i = cl (co cone
⋃

i

epi g∗i +KZ)

where the cone KZ is defined by the formula

KZ = {h = (`, c) ∈ H : (∀z ∈ Z) `(z)− c ≤ 0}.
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If, for each i, domgi ⊆ Z then, by applying Proposition 5.8, we can remove KZ . Therefore
statement (ii) of Theorem 4.1 has the following form:

epi f∗ ⊆ cl (co cone
⋃

i

epi g∗i ).

Now let pα and pαi be l.s.c proper convex functions. We have

coZH (epi p∗α + coZH cone
⋃

i

epi p∗αi

= cl {(epi p∗α + cl [cone co
⋃

i

epi p∗αi +KZ ]) +KZ}

= cl (epi p∗α + (cone co
⋃

i

epi p∗αi) +KZ)

and consequently statement (ii) of Theorem 4.3 has the following form:

0 ∈ cl (epi p∗α + (co cone
⋃

i

epi p∗αi) +KZ).

We can remove KZ in this case if, for all i, domgi ⊆ Z. In this case we have:

0 ∈ cl (epi p∗α + (co cone
⋃

i

epi p∗αi)).

6.3. Systems involving K-increasing sublinear functions

Let K be a closed convex cone in X. A sublinear function p defined on the space X is
called K-increasing if, for all x1, x2 ∈ X with x1 − x2 ∈ K we have p(x1) ≥ p(x2). In
addition assume that Z ⊆ K is a closed convex cone in X. We now consider H = K∗,
the set of all continuous linear functions which are nonnegative on the cone K.

Theorem 6.1. Let K and Z be closed convex cones in X with Z ⊆ K and suppose that
f and gi (i ∈ I) are K-increasing sublinear functions defined on X (here I is an arbitrary
index set). Then the following statements are equivalent:

(i) x ∈ Z, (∀i ∈ I) gi(x) = 0 =⇒ f(x) = 0.
(ii) ∂f(0) ⊆ N K∗, Z∗(co

⋃
i ∂gi(0)) where N K∗, Z∗ denotes the (K∗, Z∗)-normal hull (see

Example 5.5).

Proof. We begin by noting that f and gi (i ∈ I) are H-convex functions (see [25, 35])
(to be precise this applies to the restriction of the functions to the cone Z). Thus we
can use Theorem 4.1 in this case. Following Example 5.5 we have that statement (ii) of
Theorem 4.3 can be written in the form of statement (ii) above.
Note that a K-increasing function p is nonegative on K. Since Z ⊆ K the inequality
p(z) ≤ 0 (z ∈ Z) is equivalent to p(z) = 0. Therefore statement (i) of Theorem 4.1 is
equivalent to statement (i) above.
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6.4. Positively homogeneous systems

Let us consider a conic set H of positively homogeneous functions defined on a conic set

K. Let H̄ = {h̄ = (h, c) : h̄ = h(x) − c, h ∈ H, c ∈ IR}. In the following we consider
inequalities involving functions of the form p̄ where p̄(x) = p(x) − 1 with p a H-convex
function defined on a conic set Z ⊆ K. We begin with the following lemma.

Lemma 6.2. Let p be a H-convex function and p̄(x) = p(x)− 1. Then

s(p̄, H̄, Z) = s(p,H, Z)× [1,+∞).

Proof. Clearly if h(x) ≤ p(x) for each x ∈ Z and c ≥ 1 then

(∀x ∈ Z) h(x)− c ≤ p(x)− 1 (6.4)

and therefore (h, c) ∈ s(p̄, H̄, Z). Now let (h, c) ∈ s(p̄, H̄, Z), i.e. the formula (6.4) holds
for all x ∈ Z. If x = 0 then (6.4) gives c ≥ 1. If x ∈ Z, x 6= 0 then µx ∈ Z with µ > 0
and we have

µh(x)− c ≤ λp(x)− 1

or equivalently

(∀x ∈ Z) h(x)− c

µ
≤ p(x)− 1

µ
.

Letting µ→ +∞ we have h(x) ≤ p(x) for all x ∈ Z, i.e. h ∈ s(p,H, Z).

Proposition 6.3. Let g be a H-convex and nonnegative function defined on the conic
set Z with domg ⊆ Z. We define the function δ on Z as follows:

δ(x) =

{
0 g(x) ≤ 1

+∞ g(x) > 1

Then
s(δ, H̄, Z) = cone (s(g,H, Z)× [1,+∞)) ∪ V

where V = {(h, 0) ∈ H̄ : (∀x ∈ domg) h(x) ≤ 0}.

Proof. We have by the definition of δ that

s(δ, H̄, Z) = {(h, c) ∈ H̄ : h(x) ≤ 1 if g(x) ≤ 1}.

Let (h, c) ∈ s(δ, H̄, Z). Since g is a positively homogeneous function we have g(0) = 0 < 1.
Therefore −c = h(0)−c ≤ 0 and c ≥ 0. If c = 0 then h(x) ≤ 0 for all x such that g(x) ≤ 1.
Let x ∈ domg and g(x) > 0. Then g(x/g(x)) = 1 and therefore h(x) = g(x)h(x/g(x)) ≤ 0.
If g(x) = 0 then h(x) ≤ 0 also. So h(x) ≤ 0 for all x ∈ domg and so h ∈ V .

Now let c > 0. We have h(x) ≤ c if g(x) ≤ 1. In particular 1
ch(x) ≤ 1 = g(x) if g(x) = 1.

Since g is nonnegative and positively homogeneous we have 1
ch(x) ≤ g(x) for all x ∈ domg

such that g(x) > 0. If g(x) = 0 then g(λx) = 0 for all λ > 0 and therefore 1
ch(λx) ≤ 1
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for all λ > 0. We have 1
ch(x) = 0 = g(x) in this case so that 1

ch(x) ≤ g(x) for all x ∈ Z
and therefore 1

ch ∈ s(g,H, Z). Thus we have

(h, c) ∈ c [s(g,H, Z)× [1,+∞)] ⊆ cone [s(g,H, Z)× [1,+∞)].

It follows that we have proved that

s(δ, H̄, Z) ⊆ cone [s(g,H, Z)× [1,+∞)] ∪ V.
Now we establish the reverse inclusion. By definition if (h, 0) ∈ V then h(x) ≤ 0 for all

x ∈ domg and so (h, 0) ∈ s(δ, H̄, Z). If (h, c) ∈ cone [s(g,H, Z)× [1,+∞)] then there is a
λ ≥ 0 such that

(h, c) ∈ λ s(g,H, Z)× [λ,+∞).

We have c ≥ λ and h ∈ λ s(g,H, Z) = s(λg,H, Z). Therefore

h(x) ≤ λg(x) ≤ cg(x).

If g(x) ≤ 1 then h(x)− c ≤ 0, i.e. (h, c) ∈ s(δ, H̄, Z).

Theorem 6.4. Let f and gi (i ∈ I) be nonnegative H-convex functions defined on the
conic set Z. Then the following statements are equivalent:

(i) (∀i ∈ I) gi(x) ≤ 1 =⇒ f(x) ≤ 1

(ii) s(f,H, Z)× [1,+∞) ⊆ cone (coZH
⋃

i

s(gi, H, Z)× [1,+∞))

Remark 6.5. Note that the statement
(i′) (∀i ∈ I) g̃i(x) ≤ ci =⇒ f̃(x) ≤ c
where ci, c > 0, can be written in the form of statement (i) above with gi = g̃i/ci and

f = f̃ /c.

Proof. We apply Theorem 4.1 to show that statement (i) is equivalent to the following
statement
(ii′) s(f̄ , H̄, Z) ⊆ s(δ, H̄, Z)

where f̄ = f − 1 and

δ(x) =

{
0 if supi gi(x) ≤ 1

+∞ if supi gi(x) > 1

In particular if we let g = supi gi then

δ(x) =

{
0 if g(x) ≤ 1

+∞ if g(x) > 1

Applying Proposition 6.3 we have

s(δ, H̄, Z) = cone (s(g,H, Z)× [1,+∞)) ∪ V

where V = {(h, 0) ∈ H̄ : (∀x ∈ domg) h(x) ≤ 0}. However, by Lemma 6.2, we have

s(f̄ , H̄, Z) = s(f,H, Z)× [1,+∞).
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If (h, λ) ∈ s(f̄ , H̄, Z) then λ ≥ 1; if (h, λ) ∈ V then λ ≤ 0. Therefore we can say that

statement (ii′) is equivalent to the following inclusion:

s(f,H, Z)× [1,+∞) ⊆ cone (s(g,H, Z)× [1,+∞)).

Since s(g,H, Z) = s(supi gi, H, Z) = coZH
⋃
i s(gi, H, Z) we have that (ii′) is equivalent to

(ii).

We consider the following example:

Example 6.6. Let K and Z be closed convex cones in a l.c.H.t.v.s X. Let f and gi
(i ∈ I) be nonnegative l.s.c sublinear functions defined on X. Then the following are
equivalent:

(i) x ∈ Z, (∀i ∈ I) gi(x) ≤ 1 =⇒ f(x) ≤ 1

(ii) ∂f(0)× [1,+∞) ⊆ cone ([cl co
⋃

i

∂gi(0)− Z∗]× [1,+∞)).

6.5. Systems involving C2 functions

In this section we apply Theorem 4.3 to obtain a solvability result for systems involving
twice continuously differentiable functions. As in Example 3.18 let Z be a compact convex
set in IRn and let G be an open bounded set with Z ⊆ G.

Now let us consider a semilinear space P of all quadratic functions p defined on IRn which
have the form

p(x) = a‖x‖2 + [`, x] + c

where a ≥ 0, ` ∈ IRn, and c ∈ IR. Let I be an arbitrary index set with functions f , gi
(i ∈ I) such that f ∈ C2(G), gi ∈ C2(G) (i ∈ I). There are numbers kz > 0 and kiz > 0
(z ∈ Z, i ∈ I) such that

f(x) = min
z∈Z

pz(x), gi(x) = min
z∈Z

piz(x), x ∈ Z

where
pz(x) = kz‖x− z‖2 + [∇f(z), x− z] + f(z) ∈ P (6.5)

piz(x) = kiz‖x− z‖2 + [∇gi(z), x− z] + gi(z) ∈ P (6.6)

Now let H be the set of all continuous affine functions defined on IRn. Since kz > 0 and

kiz > 0 the functions pz and piz are convex and therefore H-convex.

Let p ∈ P , p(x) = a‖x − z‖2 + [`, x − z] + c. It is straightforward to compute affine
functions h(x) = [k, x− z] + b such that h(x) ≤ p(x) for all x ∈ IRn. We have

s(p,H, IRn) ={(k, b) : [k, x− z] + b ≤ a‖x− z‖2 + [`, x− z] + c}

={(k, b) : c− b ≥ 1

4a
‖k − `‖2}

Corollary 5.11 shows that

s(p,H, Z) =cl (s(p,H, IRn) +KZ)
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where KZ = {h = (`, c) ∈ H : (∀x ∈ Z) `(x) − c ≤ 0}. We can now apply Theorem 4.3
to yield necessary and sufficient conditions for the following statement:

(∀i ∈ I) gi(x) ≤ 0 =⇒ f(x) ≥ 0

6.6. Systems involving inf-convex functions

We now provide the extension of Theorem 3.2 in [13], a solvability theorem for systems of
inf-convex functions. In particular we remove a boundedness assumption on the domain
Z required in [13]. The result follows directly by Theorem 4.3. We assume now that X
is a locally convex Hausdorff topological vector space.
In the following we shall assume that f and gi (for i ∈ I) are inf-convex functions. Thus,
as for Theorem 4.3, there are families (pα)α∈∆ and, for each i ∈ I, (pαi)αi∈∆i of l.s.c
convex functions such that, for each z ∈ Z,

f(z) = inf
α∈∆

pα(z), gi(z) = inf
αi∈∆i

pαi(z).

In order to apply Theorem 4.3 and Corollary 5.11 (to characterize the H-convex hull in
this case) we require the following assumption:

Assumption 6.7. For each selection (αi), where αi ∈ ∆i for each i, the following set
is not {0} × IR-stable:

cone
⋃

i∈I
epi p∗αi .

By Proposition 5.13 this assumption is valid if, for each selection (αi), the following system
is consistent:

(∀i ∈ I) pαi(z) ≤ 0, z ∈ Z.

Theorem 6.8. Let Z ⊆ X be a convex set. Let I be an arbitrary index set with
f : Z → IR+∞ and, for each i ∈ I, gi : Z → IR+∞ inf-convex. Furthermore assume
Assumption 6.7 is valid. Then the following statements are equivalent:

(i) (∀i ∈ I) gi(z) ≤ 0 =⇒ f(z) ≥ 0
(ii) For each α ∈ ∆ and (αi) ∈

∏
i∈I ∆i

0 ∈ cl (epi p∗α + (co cone
⋃

i∈I
epi p∗αi) +KZ)

Note that if f and, for each i, gi are continuous convex functions with domf and domgi
contained in Z then (ii) becomes

0 ∈ cl (epi f∗ + (co cone
⋃

i∈I
epi g∗i )) (6.7)

As a special case of Theorem 4.1 let f and, for each i ∈ I, let gi be a continuous convex
functions defined on X. Then the following holds:

Corollary 6.9. Let f and, for each i ∈ I, gi be continuous convex functions defined on
X and suppose the system

i ∈ I, gi(x) ≤ 0
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is consistent. Then the following statements are equivalent:

(i) (∀i ∈ I) gi(x) ≤ 0 =⇒ f(x) ≤ 0

(ii) epi f∗ ⊆ cl co cone
⋃

i∈I
epi g∗i

We complete this section with the following result, a direct corollary of Corollary 6.9,
which extends a result in Gwinner [14] and Ha [15].

Corollary 6.10. Let I and J be nonempty index sets and let, for each j ∈ J and i ∈ I,
fj and gi be continuous convex functions defined on X with the system

i ∈ I, gi(x) ≤ 0

consistent. Then the following statements are equivalent:

(i) (∀i ∈ I) gi(x) ≤ 0 =⇒ (∀j ∈ J) fj(x) ≤ 0

(ii)
⋃

j∈J
epi f∗j ⊆ cl co cone

⋃

i∈I
epi g∗i

Proof. Follows immediately by Corollary 6.9 with f = supj fj .

It is straightforward, using Example 3.15 and Theorem 4.3, to establish a solvability
theorem for systems involving DC (difference convex) functions.

7. Applications to Global Optimization with Convex Constraints

In this section we will consider the direct application of the solvability theorems developed
in the preceding sections to convex minimization and convex maximization problems. The
latter class of programming problem provide an important class of global optimization
problems which have received considerable recent attention in the literature (see, for
example, [16, 17, 19]). We are able to obtain characterizations of optimality in both
cases involving epigraphs of Fenchel conjugates via the application of Theorem 6.8 and
Corollary 6.9 respectively.
We begin by considering the following programming problem

(P1) min f(x) subject to gi(x) ≤ 0, i ∈ I.

Here f and, for all i ∈ I, gi are continuous convex functions defined on a Banach space X.
The set I is a possibly infinite index set. Thus (P1) is a standard convex minimization
problem. Thus a ∈ X is optimal for (P1) if and only if

(∀i ∈ I) gi(x) ≤ 0 =⇒ f(x) ≥ f(a). (7.1)

Now, by a direct application of Theorem 6.8 (using (6.7)), we find that (7.1) is equivalent
to the following

0 ∈ cl (epi f∗ + (0, f(a)) + (co cone
⋃

i∈I
epi g∗i )) (7.2)

Note that we are using the fact that for a continuous convex function f and α ∈ IR,
epi (f − α)∗ = epi f∗ + (0, α).
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To understand the significance of (7.2) let us assume that the set

epi f∗ + (0, f(a)) + (co cone
⋃

i∈I
epi g∗i )

is closed and, for convenience f(a) = 0. Thus there exists (finitely many) λij > 0

(j = 1, . . . , n) such that

0 ∈ epi f∗ +
∑

j

λij epi g∗ij . (7.3)

Since, for continuous convex functions g, k and h and λ > 0, we have λ epi k∗ = epi (λk)∗

and epi (g + h)∗ = epi (g∗ ⊕ h∗) = cl [epi g∗ + epi h∗], (7.3) becomes

0 ∈ epi (f +
∑

j

λijgij )
∗ (7.4)

Thus (7.4) is equivalent to the following:

0 ≥ (f +
∑

j

λijgij )
∗(0)

⇐⇒ 0 ≥ sup
x∈X

(−(f +
∑

j

λijgij (x))

=⇒ (∀x ∈ X) f(x) +
∑

j

λijgij )(x) ≥ 0 ≥ f(a) +
∑

j

λijgij (a)

(7.5)

Thus (7.3), under any condition which guarantees closure in the dual condition, implies the
well known Lagrangian saddlepoint condition for a convex minimization problem. Thus
the condition (7.3) is a generalization of the Lagrangian saddlepoint characterization of
optimality for a convex mimimization problem.
Now consider the convex maximization (P2), where f , gi and I are as defined above.

(P2) max f(x) subject to gi(x) ≤ 0, i ∈ I.

In this case we consider −f as an inf-convex function, since every concave function is
expressible as the pointwise infimum of its affine majorants. Thus by a direct application
of Corollary 6.9, a is optimal for (P2) if and only if the following holds:

epi f∗ + (0, f(a)) ⊆ cl co cone
⋃

i∈I
epi g∗i . (7.6)

This condition provides a characterization of global optimality for the convex maximiza-
tion problem (P2). By a direct application of Proposition 2.12 we can express (7.6) in
terms of ε-subdifferentials. This approach, using the ε-subdifferential, to characterizing
global optimality has been used recently in [22, 23, 16, 17]. It should be noted that
convex maximization problems have received considerable recent attention (see [19]) in
the literature. Such problems arise frequently in applications. It is straightforward to
obtain characterizations of global optimality for a range of related problems such as DC
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(difference convex) programming problems by a suitable application of Theorem 6.8 and
Proposition 2.12.

8. Conclusion and Open Questions

In this paper we have given a general framework for studying dual characterizations of
solvability of nonlinear inequality systems. We have presented solvability results for a
wide range of both convex and nonconvex inequality systems. Moreover, our framework
provides a unified approach for developing global optimality conditions for many classes
of nonlinear minimization problems as well as maximization problems.

Our approach to dual characterizations of solvability of inequality systems raises a number
of potentially interesting open questions. These questions involve the problem of charac-
terizing the H-convex hull, as outlined in Section 5, for various special classes H. Some
questions related to this problem are as follows:

1. Let H be the set described in Example 3.12. The set F(H,X) consists of all nonneg-
ative l.s.c quasiconvex functions q such that q(0) = 0. If, in this case, one could give
a verifiable description of H-convex hull with H as in Example 3.12 then it would
be possible to extend this description to the set H described in Example 3.13. So,
Theorem 4.1 will be applicable to give verifiable dual conditions characterizing the
solvability of inequality systems involving l.s.c. quasiconvex functions. Hence, the
following question arises: Is it possible, using the construction suggested in [36], to
give a verifiable description of the H-convex hull in this case? More generally the H-
convexity of l.s.c quasiconvex functions has been discussed in [30, 27] using a different
set H. In this case is it possible to apply Theorem 4.1?

2. Let H̄ be the set described in Example 3.6. Let x ∈ IRn
+ and f be H̄-convex (in-

creasing convex-along-rays) defined on IRn
+. A function h ∈ s(f, H̄, IRn

+) with the

property h(x) = f(x) has found application in [1, 3]. (The set sx(f, H̄, IRn
+) = {h ∈

s(f, H̄, IRn
+) : h(x) = f(x)} 6= ∅ for such functions). We can describe s(f, H̄, IRn

+)

by applying functions h ∈ sx(f, H̄, IRn
+). Is it possible in this case to describe the

H̄-convex hull?

3. Let H be the set of quadratic functions defined on IRn
+, considered in Example 3.4,

and let Z be a compact subset of IRn. Note that H is a very thin subset of the
space of all continuous functions C(IRn

+), it is isomorphic to a halfspace of an n+ 2-

dimensional space. Is it possible to apply the geometry of IRn in order to describe
the H-convex hull (with respect to the compact set Z). If such a description exists
then we can apply Theorem 4.3 to study solvability theorems for systems involving
arbitrary l.s.c functions.

9. Appendix - Minimax results for H-convex functions

We conclude this paper with a minimax result for H-convex functions.
Let H be a set of functions defined on X such that the following hold:

1. 0 ∈ H
2. If h ∈ H and λ ∈ IR then h+ λe ∈ H. (Here e(x) = 1 for all x ∈ X.)
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Theorem 9.1. Let Z be an arbitrary subset of X and let U be a H-convex set with
respect to Z. If

inf
z∈Z

sup
h∈U

h(z) < +∞

then
inf
z∈Z

sup
h∈U

h(z) = sup
h∈U

inf
z∈Z

h(z).

Proof. The following inequality is always valid:

sup
h∈U

inf
z∈Z

h(z) ≤ inf
z∈Z

sup
h∈U

h(z). (9.1)

Let v = infz∈Z suph∈U h(z). Consider the following two cases:

1. v = 0. Let ψ(z) = suph∈U h(z). We have infz∈Z ψ(z) = 0. Therefore ψ(z) ≥ 0 for

all z ∈ Z and 0 ∈ s(ψ,H, Z). Since U is H-convex we have s(ψ,H, Z) = U . Hence
0 ∈ U and suph∈U infz∈Z h(z) ≥ 0.

2. Now assume v 6= 0. The result holds trivially if v = −∞ by (9.1). By assumption v <

+∞. Thus we have infz∈Z suph∈U (h(z)− v) = 0. Let h′(z) = h(z)− v = (h− ve)(z)

and U ′ = {h′ : h′ = h− ve, h ∈ U}. Let ψ′(z) = ψ(z)− v.

Clearly U ′ = s(ψ′, H, Z) (since h + λe ∈ H for each h ∈ H and λ ∈ IR). Note this

follows since h ∈ U =⇒ h ≤ ψ =⇒ h − v ≤ ψ′ and h̃ ∈ s(ψ′, H, Z) =⇒ (∀z ∈
Z) h̃(z) ≤ ψ′(z) =⇒ h̃ + ve ≤ ψ =⇒ h̃+ ve ∈ U =⇒ h̃ = h− ve ∈ U ′.
Therefore U ′ is a H-convex set. We have

inf
z∈Z

sup
h′∈U ′

h′(z) = 0.

Therefore suph′∈U ′ infz∈Z h′(z) = 0 and so suph∈U infz∈Z h(z) = v as required.

Corollary 9.2. Let Z be an arbitrary set, U be a closed convex subset of the space H of
all continuous affine functions defined on X, and let U be KZ-stable (see Section 5) and
assume

inf
z∈Z

sup
h∈U

h(z) < +∞

then
inf
z∈Z

sup
h∈U

h(z) = sup
h∈U

inf
z∈Z

h(z).
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