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For Lagrange problems of the calculus of variations we prove wellposedness criteria in Tikhonov’s sense
and with respect to small perturbations of the boundary data. The integrand depends of the gradient
only. No convexity assumption is required in the sufficient conditions for wellposedness.
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1. Introduction

A global minimization problem is called Tikhonov wellposed if there exists a unique min-
imizer to which every minimizing sequence converges, and Hadamard wellposed if its
unique minimizer depends continuously on problem’s data. See [5] for a survey. In
[10] a new definition of wellposedness has been introduced, by requiring both Tikhonov
and Hadamard wellposedness through suitable embeddings in a parametrized family of
minimization problems.
The results of [10] show that one-dimensional Lagrange problems of the classical calculus
of variations are well posed with respect to the embedding which takes as a parameter the
boundary data, provided the integrand satisfies the classical assumptions of smoothness,
coercivity and strict convexity, and the optimal value function is differentiable (see [10,
Theorem 3]).
Purpose of this paper is to provide new sufficient or necessary conditions for wellposedness
of Lagrange problems involving integral functionals whose integrand is not convex, and
not coercive in the one-dimensional case.
Our approach parallels, up to some extent, the corresponding theory of existence of min-
imizers for non convex integrands (see [8] for a beautiful survey, and also [4, chapter 5]).
We consider the relaxed functional obtained by taking the convex envelope of the given
integrand. However the results of [10] cannot be applied to it, since the convex envelope
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is not necessarily strictly convex and possibly nonsmooth. A different approach is needed
(relying on Olech’s lemma, see [9]).
In section 2 we collect the relevant definitions and notations. We prove wellposedness for
one-dimensional problems in section 3, and for multiple integrals in section 4.

2. Preliminaries and problems statement.

We consider metric spaces X and P, a fixed point p∗ ∈ P and a given ball L around p∗

with positive radius. We are given proper extended real-valued functions

J : X → (−∞,+∞]; F : L×X → (−∞,+∞] (1)

such that
J(x) = F (p∗, x), x ∈ X. (2)

The corresponding value function is given by

V (p) = inf{F (p, x) : x ∈ X}, p ∈ L. (3)

The global optimization problem (X, J), of minimizing J(x) as x ∈ X, is called wellposed
(with respect to the embedding defined by F ) iff V (p) > −∞ for all p ∈ L, there exists a
unique

x∗ = arg min(X, J)

and for every sequences pn → p∗, xn ∈ X such that

F (pn, xn)− V (pn)→ 0 as n→ +∞ (4)

we have xn → x∗ in X.
Sequences xn as in (4) will be referred to as asymptotically minimizing (for F ) corre-
sponding to the sequence pn. (See [10] for a discussion of the definition of wellposedness).
Denote by AC (resp. Lip) the usual Banach space of all absolutely (resp. Lipschitz)
continuous functions

x : [0, 1]→ IRIN.

Given a continuous function
f : IRIN → (−∞,+∞) (5)

and a fixed point p∗ ∈ IRIN, we consider, for p close to p∗ and x ∈ AC

F (p, x) =

{∫ 1
0 f [ẋ(t)]dt if f(ẋ) ∈ L1 = L1(0, 1) and x(0) = 0, x(1) = p;

+∞ otherwise;
(6)

J(x) = F (p∗, x). (7)

By problem (p) we denote the problem of minimizing F (p, ·) on AC, that is of minimizing∫ 1
0 f [u̇(t)]dt subject to u absolutely continuous in [0, 1], u(0) = 0, u(1) = p.

According to the previous definition, problem (p∗) is wellposed iff there exists a ball L
around p∗ such that V (p) > −∞ for all p ∈ L, there exists a unique minimizer u∗ ∈ AC,
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and for every sequence pn → p∗, every asymptotically minimizing sequence xn ∈ AC with

xn(0) = 0, xn(1) = pn satisfies ẋn → u̇∗ strongly in L1.
Of course, convergence of every asymptotically minimizing sequence implies uniqueness
of the minimizer.

For a given function f : IRIN → (−∞,+∞) we denote by f ∗∗ its convex envelope and by
epif its epigraph. For set A, extrA denotes the set of its extremal points, clA the closure
and coA the convex hull. Du denotes the gradient of u.

3. Wellposedness criteria for one-dimensional integrals.

We start with the abstract setting and obtain a wellposedness criterion mimicking the
approach to existence in the calculus of variations without lower semicontinuity via the
relaxed problem (see [8, section 3]).

Given F, J, V as in (1), (2), (3) let

E : L×X → (−∞,+∞]

be such that
V (p) = inf{E(p, x) : x ∈ X}, p ∈ L, (8)

E(p, x) ≤ F (p, x) for all p, x. (9)

Proposition 3.1. Suppose that E fulfils (8) and (9). If [X,E(p∗, ·)] is wellposed with
solution u∗ and F (p∗, u∗) = E(p∗, u∗), then [X,F (p∗, ·)] is wellposed.

Proof. Let pn → p∗ and un ∈ X be such that

F (pn, un)− V (pn)→ 0.

By (8), (9) and wellposedness we get un → u∗.
Since F (p∗, ·) and E(p∗, ·) agree on u∗ we see that

u∗ ∈ arg min[X,F (p∗, ·)].

Thus every asymptotically minimizing sequence for [X,F (p∗, ·)] converges to some mini-
mizer, whence wellposedness.

Let us consider now wellposedness of one-dimensional problems of the calculus of varia-
tions.
Given f as in (5) and the point p∗ ∈ IRIN we posit

f is continuous in IRIN and there exist a ∈ IRIN, b ∈ IR such that

f(x) ≥ a · x + b for all x.
(10)

If (10) is satisfied then

f∗∗ : IRIN → (−∞,+∞)
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is continuous everywhere. For any x ∈ AC and p ∈ IRIN consider

E(p, x) =

{∫ 1
0 f
∗∗[ẋ(t)]dt if f(ẋ) ∈ L1 and x(0) = 0, x(1) = p;

+∞ otherwise.
(11)

Write
T (p) = {x ∈ AC : x(0) = 0, x(1) = p}.

Lemma 3.2. If (10) is satisfied, for every p we have

V (p) = inf {E(p, x) : x ∈ T (p)} = f ∗∗(p).

Proof. By (10), F (p, ·) and E(p, ·) are bounded from below for every p. For any fixed p
write

T = T (p).

Then by [1, theorem 2.4 and remark 2.8] we have

inf F (p, T ) = inf F (p, T ∩ Lip),

inf E(p, T ) = inf E(p, T ∩ Lip).
(12)

Given ε > 0 let u ∈ T ∩ Lip be such that

E(p, u) < inf E(p, T ∩ Lip) + ε.

By Bogoljubov’s theorem [6, theorem 5 p.383] there exists a sequence xn ∈ C1([0, 1]) such
that xn(0) = 0, xn(1) = p, and

lim inf F (p, xn) ≤ E(p, u).

Hence for infinitely many n

V (p) ≤ F (p, xn) ≤ inf E(p, T ∩ Lip) + ε.

It follows that
V (p) ≤ inf E(p, T ∩ Lip). (13)

The opposite inequality is trivial since f ∗∗ ≤ f and (12) holds. Hence by (12) and (13)

V (p) = inf E(p, T ) = inf F (p, T ) =

= inf E(p, T ∩ Lip) = inf F (p, T ∩ Lip).
(14)

This proves the first equality. Now let x∗(t) = pt, 0 ≤ t ≤ 1. Then by Jensen’s inequality,
for every x ∈ T

∫ 1

0
f∗∗[ẋ(t)]dt ≥ f ∗∗(

∫ 1

0
ẋ(t)dt) = f ∗∗(p) =

∫ 1

0
f∗∗[ẋ∗(t)]dt

hence the conclusion by (14).



T. Zolezzi / Wellposed problems of the calculus of variations for nonconvex integrals 379

Remark 3.3. In [8, section 3] we find the conclusion of Lemma 3.2 under the assumption
of coercivity of f.

The following condition
[p∗, f∗∗(p∗)] ∈ extr epif ∗∗ (15)

will play a basic role in the next results.

Lemma 3.4. Let (10) and (15) hold. Suppose that pn → p∗ and un ∈ AC is asymptoti-
cally minimizing for E corresponding to pn. Then un converges strongly in AC.

Proof. We have
(u̇n(t), f∗∗[u̇n(t)]) ∈ epif∗∗

for all n and a.e.t. By Lemma 3.2

∫ 1

0
f∗∗[u̇n(t)]dt→ f ∗∗(p∗)

since f∗∗ = V is continuous at p∗. It follows that

(

∫ 1

0
u̇n(t)dt,

∫ 1

0
f∗∗[u̇n(t)]dt)→ [p∗, f∗∗(p∗)]

and such a limit point is extremal for

clco

∫ 1

0
epi f∗∗dt = clco (clco epi f ∗∗) = epi f∗∗.

By Olech’s Lemma [9, Lemma 1 p. 88] it follows that [u̇n, f
∗∗(u̇n)] is a Cauchy sequence

in L1, hence un converges strongly in AC (since un(0) = 0).

Theorem 3.5. Suppose that (10) and (15) hold. Then problem (p∗) is wellposed.

Proof. By Lemma 3.2, E given by (11) fulfils properties (8) and (9). Let pn → p∗ and
un be asymptotically minimizing for E corresponding to pn. By Lemma 3.4 there exists
u∗ ∈ T (p∗) such that un → u∗ in AC, hence for some subsequence

u̇n(t)→ u̇∗(t) a. e. in (0, 1).

Fatou’s lemma and continuity of V (Lemma 3.2) yield

V (p∗) = lim inf E(pn, un) ≥
∫ 1

0
f∗∗(u̇∗)dt

hence u∗ minimizes E(p∗, ·). It follows that [AC,E(p∗, ·)] is wellposed. Hence u∗(t) =
p∗t by Lemma 3.2. Let vn be a minimizing sequence for [AC, F (p∗, ·)]. By (9), vn is
asymptotically minimizing for E as well, hence vn → u∗ in AC. By Fatou’s lemma, u∗

minimizes F (p∗, ·) and V (p∗) = f(p∗) = f∗∗(p∗), hence

E(p∗, u∗) = F (p∗, u∗).

The conclusion follows from proposition 3.1.
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Remark 3.6. A direct proof of theorem 3.5 can be given, as is obvious from the above
proof, avoiding proposition 3.1. We prefer here to emphasize a general approach instead
of ad hoc arguments.

Theorem 3.7. Let f be convex. If problem (p∗) is wellposed, then [p∗, f(p∗)] ∈ extr epif.

Proof. By uniqueness of the minimizer, the solution of problem (p∗) is given by

u∗(t) = p∗t, 0 ≤ t ≤ 1

by Lemma 3.2. Let 0 < α < 1, p and q in IRIN, y and z in IR be such that (p, y), (q, z) ∈
epif and α(p, y) + (1− α)(q, z) = [p∗, f(p∗)]. Thus

y ≥ f(p), z ≥ f(q), αp+ (1− α)q = p∗

αy + (1− α)z = f(p∗).
(16)

Consider w ∈ AC, w(0) = 0,

ẇ(t) =
{
p if 0 < t < α,
q if α < t < 1.

Then by (16) w(1) = p∗ and

∫ 1

0
f(ẇ)dt = αf(p) + (1− α)f(q) ≤ f(p∗).

Hence, by Lemma 3.2, w solves problem (p∗). By uniqueness of the minimizer, ẇ = u̇∗ a.
e., whence p = q = p∗. If y > f(p) then by (16) f(p∗) > αf(p) + (1 − α)f(q) = f(p∗),
similarly if z > f(q) we get the same contradiction. This yields y = z = f(p∗), whence
extremality.

Remark 3.8. If f is (finite and) convex, it follows by theorem 3.5 and 3.7 that for
problem (p∗), uniqueness of the minimizer, wellposedness and (15) are equivalent proper-
ties. Similar conclusions, involving a weaker notion of wellposedness (see the last remark
of the present paper) are known under coercivity assumptions, see [3]. (The equivalence
between extremality and uniqueness is obtained in [2].)

4. Wellposedness for multiple integrals.

We are given a bounded open set Ω ⊂ IRIN with Lipschitz boundary, a point p∗ ∈ IRIN, a
positive constant k such that |p∗| ≤ k and a real-valued continuous function f as in (5),
such that

a|u|α + b ≤ f(u) ≤ m|u|α + n (17)

for all u, some costants a > 0, b, m, n and α > 1. Write

P = {ϕ ∈ W 1,∞(Ω) : | D ϕ(x)| ≤ k a.e. in Ω}.
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Given ϕ ∈ P and u ∈ W 1,α(Ω) consider

F (ϕ, u) =

{∫
Ω f( D u)dx if u− ϕ ∈ W 1,α

0 (Ω),

+∞ otherwise,

ϕ∗(x) = p∗ · x, x ∈ Ω,

and
T (ϕ) = {u ∈ W 1,α(Ω) : u− ϕ ∈ W 1,α

0 (Ω)}.
We consider T (ϕ) equipped with the strong convergence of W 1,α(Ω). Wellposedness of

problem(ϕ∗) = [T (ϕ∗), F (ϕ∗, ·)]
will be considered taking into account small perturbations of the boundary datum ϕ∗,
according to the general definition of section 2, as follows. Problem (ϕ∗) is called wellposed
iff
a) the optimal value function

V (ϕ) = inf{F (ϕ, u) : u ∈ T (ϕ)}

is finite for all ϕ ∈ P such that ϕ is sufficiently close to ϕ∗ in the norm of W 1,1(Ω);
b) there exists a unique minimizer

u∗ = argmin(ϕ∗);

c) for every sequence ϕn ∈ P such that ϕn → ϕ∗ in W 1,1(Ω), every sequence un ∈ T (ϕn)
such that ∫

Ω
f(Dun)dx− V (ϕn)→ 0

converges strongly to u∗ in W 1,1(Ω).

Theorem 4.1. Problem (ϕ∗) is wellposed provided f is continuous and conditions (15),
(17) are fulfilled.

Proof. For ϕ ∈ P and u ∈ T (ϕ) write

E(ϕ, u) =

∫

Ω
f∗∗(Du)dx.

Step 1: V (ϕ∗) = meas (Ω)f ∗∗(p∗).

Let u ∈ T (ϕ∗). Then u = v + ϕ∗ with v ∈ W 1,∞
0 (Ω). By Jensen’s inequality

∫

Ω
f∗∗(Du)dx ≥ meas (Ω)f ∗∗(meas (Ω)−1

∫

Ω
Dudx) =

= meas (Ω)f ∗∗(meas (Ω)−1

∫

Ω
Dϕ∗dx) =

= meas (Ω)f ∗∗(p∗)
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since
∫

Ω Dvdx = 0. Hence inf E[T (ϕ∗)] = meas (Ω)f ∗∗(p∗). By the relaxation theorem

(see [4, section 5.2])
inf F [ϕ, T (ϕ)] = inf E[ϕ, T (ϕ)], ϕ ∈ P, (18)

hence step 1 is proved. By (17) we have

V (ϕ) > −∞ for every ϕ ∈ P.

Step 2: if ϕn, ϕ ∈ P and ϕn → ϕ∗ in W 1,1(Ω) then V (ϕn)→ V (ϕ∗).

By step 1, V (ϕ∗) =
∫

Ω f
∗∗(Dϕ∗)dx. Moreover V (ϕn) ≤

∫
Ω f
∗∗(Dϕn)dx for every n by

(18). By (17), f ∗∗ is Lipschitz continuous on bounded sets. We get

V (ϕn)− V (ϕ∗) ≤
∫

Ω
[f∗∗(Dϕn)− f∗∗(Dϕ∗)]dx ≤

≤ (costant)

∫

Ω
|Dϕn −Dϕ∗|dx

hence
lim sup V (ϕn) ≤ V (ϕ∗).

Now let un ∈ argmin[T (ϕn), E(ϕn, ·)], whose existence follows by standard results (see [4,

theorem 3.4 p. 82]). Then un = ϕn + zn with zn ∈ W 1,α
0 (Ω). By (17) and convergence of

the equi - Lipschitz sequence ϕn, some subsequence fulfils

un ⇀ w in W 1,α(Ω), w = ϕ∗ on ∂Ω.

By lower semicontinuity (see [4, theorem 3.4 p. 74]), for the corresponding subsequence
we have

lim inf V (ϕn) = lim inf

∫

Ω
f∗∗(Dun)dx ≥

∫

Ω
f∗∗(Dw)dx ≥ V (ϕ∗)

since w ∈ T (ϕ∗). This proves step 2 (for the original sequence of course).
Step 3: [T (ϕ∗), E(ϕ∗, ·)] is wellposed.

Let ϕn ∈ P and ϕn → ϕ∗ in W 1,1(Ω), let un ∈ T (ϕn) be asymptotically minimizing for
E corresponding to ϕn. By step 2 it follows that

E(ϕn, un)→ V (ϕ∗). (19)

Moreover [Dun(x), f∗∗[Dun(x)] ∈ epif∗∗ for every n and a. e . x, and

(

∫

Ω
Dundx,

∫

Ω
f∗∗(Dun)dx) = (

∫

Ω
Dϕndx,

∫

Ω
f∗∗(Dun)dx)→ meas Ω [p∗, f∗∗(p∗)]

by (19) and step 1. Then (15) and Olech’s Lemma [9, Lemma 1 p. 88] yield strong

convergence of Dun in L1(Ω). Since un = ϕn on ∂Ω and ϕn converges strongly, it follows

that un → w in W 1,1(Ω). Since f∗∗ fulfils (17), standard reasoning shows that

V (ϕ∗) = lim inf

∫

Ω
f∗∗(Dun)dx ≥

∫

Ω
f∗∗(Dw)dx,
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and w ∈ T (ϕ∗). Hence w ∈ argmin[T (ϕ∗), E(ϕ∗, ·)]. Every asymptotically minimiz-
ing sequence converges to some minimizer, and this proves step 3. By step 1, ϕ∗ ∈
argmin[T (ϕ∗), E(ϕ∗, ·)] and f(p∗) = f∗∗(p∗) by (15) and [6, proposition 1.5.4 (ii) p. 51].
An application of proposition 1 ends the proof.

Remark 4.2. In [3] wellposedness is proved in a weaker sense than here and for
a broader class of integrands: the perturbed boundary data are there linear and the
convergence of minimizers only is considered. In [3] it is also shown that there are illposed
problems with a unique minimizer.

References

[1] G. Alberti, F. Serra Cassano: Non - occurence of gap for one - dimensional autonomous

functionals. Quaderni Ist. Mat. Appl. “U. Dini”, Fac. Ing. Pisa, 1994/4.

[2] A. Cellina: On minima of a functional of the gradient: necessary conditions. Nonlinear

Anal. TMA 20 (1993), 337–341.

[3] A. Cellina, S. Zagatti: A version of Olech’s lemma in a problem of the calculus of variations.

SIAM J. Control Optim. 32 (1994), 1114–1127.

[4] B. Dacorogna: Direct methods in the calculus of variations. Springer, 1989.

[5] A.L. Dontchev, T. Zolezzi: Well - posed optimization problems. Lecture Notes in Math.
1543, Springer, 1993.

[6] J.B. Hiriart Urruty, C. Lemarechal: Convex analysis and minimization algorithms II. Spring-
er, 1993.

[7] A. D. Ioffe, V.M. Tihomirov: Theory of extremal problems. North Holland, 1979.

[8] P. Marcellini: Nonconvex integrals of the calculus of variations. Lecture Notes in Math.
1446, 16–57. Springer, 1990.

[9] C. Olech: The Lyapounov theorem : its extensions and applications. Lecture Notes in Math.
1446, 84–103. Springer, 1990.

[10] T. Zolezzi: Well posedness criteria in optimization with application to the calculus of vari-
ations. To appear in Nonlinear Anal. TMA.



384 T. Zolezzi / Wellposed problems of the calculus of variations for nonconvex integrals

HIER :

Leere Seite
384


