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In 1950 Graves proved the following theorem: If the function f from a Banach space X into a Banach
space Y is strictly differentiable at x0 and the strict derivative ∇f(x0) is onto, then f is open with linear
rate around x0. Under fairly general assumptions, the latter property is equivalent to either the metric
regularity or to the Aubin property of the inverse. In this paper, we prove that the Graves theorem is a
consequence of the following general result: the openness with linear rate of a locally closed set-valued
map F around a point (x0, y0) of its graph is invariant with respect to a perturbation of the form f + F
provided that the strict derivative of f at x0 is zero.

In 1934 L. A. Lyusternik [19] published the following fundamental geometric result: if a
function f from Banach space X into a Banach space Y is Fréchet differentiable near x0,
its derivative ∇f is continuous at x0, and ∇f(x0) is onto, then the tangent manifold to

f−1(0) at x0 is exactly x0+Ker∇f(x0). That is, for every ε > 0 there exists δ > 0 such

that dist(x, f−1(0)) ≤ ε‖x−x0‖ whenever x ∈ (x0+Ker∇f(x0)) and ‖x−x0‖ ≤ δ. Based
on this result Lyusternik obtained an abstract version of the Lagrange multiplier rule. In
the 60s and 70s the Lyusternik theorem was extended to a very general framework, for a
survey see Dmitruk et al. [6].

In 1950 L. M. Graves [12] obtained an open mapping theorem for nonlinear mappings. As
we will see below, this result is a generalization of the original version of the Lyusternik
theorem.

Let us recall that a map f from a topological space X to a topological space Y is open
at x if for every open V ⊂ X with x ∈ V there exists an open W ⊂ Y with f(x) ∈ W
such that W ⊂ f(V ). The following version of the Banach open mapping principle can
be extracted from the literature, see e.g. [2] or [27].

Theorem 1.1. (Banach open mapping theorem). Let X and Y be Banach spaces
and A : X → Y be a linear and continuous map. Then the following are equivalent:

(i) A(X) = Y ;
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(ii) A is open (at every point);
(iii) There exists a constant M such that for every y ∈ Y there exists x ∈ X with y = A(x)

and
‖ x ‖≤M ‖ y ‖ .

Let us denote by Ba(x) the closed ball centered at x with radius a. Up to some minor
adjustments in notation, the original formulation and proof of the Graves theorem are as
follows.

Theorem 1.2. (Graves [12]). Let X, Y be Banach spaces and let f be a continuous
function from X to Y defined in Bε(0) for some ε > 0 with f(0) = 0. Let A be a
continuous and linear operator from X onto Y and let M be the corresponding constant
from Theorem 1.1 (iii). Suppose that there exists a constant δ < M−1 such that

‖ f(x1)− f(x2)− A(x1 − x2) ‖≤ δ ‖ x1 − x2 ‖ (1)

whenever x1, x2 ∈ Bε(0). Then the equation y = f(x) has a solution x ∈ Bε(0) whenever

‖ y ‖≤ cε, where c = M−1 − δ.

Proof. A sequence xn is constructed convergent to x in the following way: take y ∈ Y,
‖ y ‖ ≤ cε, and let x0 = 0. Since A is surjective, by condition (iii) in Theorem 1.1 there
exists x1 ∈ X such that

A(x1) = y and ‖ x1 ‖≤M ‖ y ‖≤ ε.

Suppose that for n > 1 we are given xi, i = 1, · · · , n− 1, satisfying

A(xi) = y − f(xi−1) + A(xi−1) and ‖ xi − xi−1 ‖≤M(Mδ)i−1 ‖ y ‖ .

Then

‖ xi ‖ ≤
i∑

j=1

‖ xj − xj−1 ‖

≤ M ‖ y ‖
i∑

j=1

(Mδ)j−1 ≤M ‖ y ‖ /(1−Mδ) = ‖y‖/c ≤ ε.

By Theorem 1.1 one can choose xn such that

A(xn) = y − f(xn−1) + A(xn−1) (2)

and
‖ xn − xn−1 ‖≤M ‖ y − f(xn−1) ‖ .

Since y = A(xn−1)− A(xn−2) + f(xn−2), from (1) we have

‖ xn − xn−1 ‖≤Mδ ‖ xn−1 − xn−2 ‖ .

Hence,

‖ xn − xn−1 ‖≤M(Mδ)n−1 ‖ y ‖ .
The induction step is complete. Thus xn is a Cauchy sequence, hence convergent to some
x with ‖ x ‖≤ ε. Passing to the limit in (2) with n→∞ we obtain y = f(x).
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Observe that Graves does not assume differentiability of the map f . If we suppose that
for every δ > 0 there exists ε > 0 such that (1) is satisfied for every x1, x2 ∈ Bε(0), then
A is the strict derivative of f at 0, A = ∇f(0), formally introduced in 1961 by Leach
[17] (for a discussion see Nijenhuis [21]). Note that the strict differentiability of f at x0

implies that f is continuous (even Lipschitz) in a neighborhood of x0. Then the Graves
theorem can be stated as follows: if f is strictly differentiable at 0 and its derivative is
onto, then there exists ε > 0 and c > 0 such that for every y ∈ Y with ‖ y ‖≤ cε there
exists a x ∈ X such that ‖ x ‖≤ ε and y = f(x). In other words, Bcε(0) ⊂ f(Bε(0)).
It is clear that the assumption f(0) = 0 is superfluous. Let x0 ∈ X, let f be strictly
differentiable at x0 and let the strict derivative ∇f(x0) be onto. Let δ > 0 be so small
that δM < 1 where M is the constant in condition (iii) of Theorem 1.1 for the strict
derivative ∇f(x0). Then there exists an open neighborhood U of x0 such that (1) holds

whenever x1, x2 ∈ U . Let x̄ ∈ U and let ε > 0 be such that Bε(x̄) ⊂ U . If f̃(x) =

f(x + x̄) − f(x̄), then f̃(0) = 0 and f̃ satisfies (1) in Bε(0). Applying Theorem 1.2 we

obtain that Bcε(0) ⊂ f̃(Bε(0)), where c = M−1 − δ. Thus Bcε(f(x̄)) ⊂ f(Bε(x̄)) and we
obtain the following result which we call the Graves theorem:

Theorem 1.3. Let X and Y be Banach spaces, let x0 ∈ X and let f : X → Y be a
function which is strictly differentiable at x0. Suppose that ∇f(x0) is onto. Then there
exist a neighborhood U of x0 and a constant c > 0 such that for every x ∈ U and τ > 0
with Bτ (x) ⊂ U ,

Bcτ (f(x)) ⊂ f(Bτ (x)). (3)

The property (3) is stronger than the openness at a point; it is uniform with respect to
x in a neighborhood of x0 with the same constant c determining a proportion between
the sizes of the neighborhoods of x and f(x). This property is called openness with
linear rate around a point or covering in a neighborhood. Note that for linear maps the
openness at a point and the openness with linear rate around any point coincide. Thus
the Graves theorem generalizes the implication (i) ⇒ (ii) in the Banach open mapping
theorem (Theorem 1.1) in two ways: first, it gives a sufficient condition for openness of
a nonlinear function and second, it shows that the surjectivity of the strict derivative

actually implies openness with linear rate around the reference point2. In further lines
we prove a symmetric open mapping theorem for set-valued maps from which follows a
complete analogue of the Banach open mapping theorem for nonlinear maps: a function
f , strictly differentiable at x0, is open with linear rate around x0 if and only if ∇f(x0) is
onto.
The original version of the Lyusternik theorem can be derived from Theorem 1.3. Let
f(0) = 0 and ∇f(0)X = Y , and let the neighborhood U of x0 = 0 and the constant c
be as in Theorem 1.3. Let ε > 0. There exists δ > 0 such that Bε‖x‖(x) ⊂ U for every

x ∈ Bδ(0) and, moreover, ‖f(x)‖ ≤ cε‖x‖ for every x ∈ Bδ(0)∩Ker∇f(0). Taking any
x ∈ Bδ(0)∩Ker∇f(0) and applying Theorem 1.3 with τ = ε‖x‖ we obtain that there

exists x̃ with f(x̃) = 0 and such that ‖x̃ − x‖ ≤ ε‖x‖. Hence dist(x, f−1(0)) ≤ ε‖x‖
for any x ∈ Bδ(0)∩Ker∇f(0); that is, Ker∇f(0) is tangent to f−1(0) at 0. We should

2 Our discussion here clearly contradicts the opinion of the authors of [6] who claim that
Graves proved openness at a point.
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note, however, that the iteration (2) in the proof of Graves is similar to the one used by
Lyusternik.
Generally, a set-valued map F from a metric space X to subsets of a metric space Y is
open with linear rate around a point (x0, y0) ∈ graphF with a constant c if there exist
positive numbers a, b, ρ and c such that for any x ∈ Ba(x0), y ∈ Bb(y0), with y ∈ F (x),
and τ ∈ [0, ρ],

Bcτ (y) ⊂ F (Bτ (x)).

Here we denote by graphF the set {(x, y) : x ∈ X, y ∈ F (x)}. Dmitruk et al. [6] noted
that the openness with linear rate for functions is equivalent to another basic property in
nonlinear analysis, known as distance estimate or metric regularity. A map F : X → Y is
metrically regular around (x0, y0) with (x0, y0) ∈ graphF , if there exist positive numbers
α, β, ε and c such that

dist(x, F−1(y)) ≤ c dist(y, F (x))

whenever x ∈ Bα(x0), y ∈ Bβ(y0), dist(y, F (x)) ≤ ε. Let us recall that the inverse of a

map F is defined as F−1(y) = {x ∈ X : y ∈ F (x)}.
The following definition was introduced by Aubin [1]: A set-valued map F from Y to the
subsets of X is pseudo - Lipschitz around (y0, x0) ∈ graphF with modulus M if there

exist constants a and b such that for every y′, y′′ ∈ Bb(y0)

e(F (y′) ∩ Ba(x0), F (y′′)) ≤Md(y′, y′′).

Here e(A,B) = sup{dist(x,B) : x ∈ A} is the excess from the set B with respect to the set
A. In a recent paper [10] we propose to call this property the Aubin property. If a =∞,
then the map F is Lipschitz continuous in Bb(y0) with respect to the Hausdorff metric
h(A,B) = max{e(A,B), e(B,A)}. Characterizations of the Aubin property are obtained
in Rockafellar [26] and Mordukhovich [20]. After the work of Borwein-Zhuang [4] and
Penot [22] it became clear that, in a very general setting, the openness with linear rate
of a set-valued map F around some point (x0, y0) ∈ graphF , the metric regularity of F

around (x0, y0), and the Aubin property of F−1 around (y0, x0) are equivalent properties.
There are a number of open mapping, Lyusternik-type and metric regularity results in
the literature which we do not discuss here, for references see [3], [4], [5], [11], [13], [14],
[15], [16], [18], [23], [24], [28], [29].
Consider the iteration (2), where the linear and bounded map A appears on the left and
on the right side of the equality. For the left A we use the openness with linear rate
while for the right A we employ the assumption that A is the strict derivative of f at 0.
Suppose that the strict derivative of f at 0 is zero. Then the right A disappears and the
only property of A needed is the openness with linear rate. We can then replace A by a
general set-valued map, say F , and the iteration (2) becomes

y ∈ f(xn−1) + F (xn).

Note that the condition ∇f(0) = 0 is not essential; it can be eliminated by “hiding” the
derivative of f in the map F . Furthermore, X may be any complete metric space and Y
a linear normed space. Using this observation, we obtain below a general open mapping
theorem for set-valued maps.
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Let X be a complete metric space with a metric ρ and let Y be a linear metric space with
an invariant metric d. A function f : X → Y is called strictly stationary at the point x0

if for every ε > 0 there exists δ > 0 such that for every x′, x′′ ∈ Bδ(x0)

d(f(x′), f(x′′)) ≤ ερ(x′, x′′).

If d is associated with a norm, then a function f is strictly stationary at x0 if and only
if it is strictly differentiable at x0 and ∇f(x0) = 0. For a map F : X → Y we say that
graphF is locally closed around a point (x0, y0) ∈ graphF if there exists µ > 0 such that
the set graphF ∩Bµ((x0, y0)) is closed.

Theorem 1.4. Let F be a map from X to subsets of Y , let y0 ∈ F (x0), and let graphF
be locally closed around (x0, y0). Let f : X → Y be a function which is strictly stationary
at x0 and let L be a positive number. Then the following are equivalent:

(i) The map F is open with linear rate around (x0, y0) with a constant greater than L;
(ii) The map f+F is open with linear rate around (x0, y0 +f(x0)) with a constant greater

than L.

Proof. Let F be open with linear rate around (y0, x0) with a constant c > L; that is, for
some a > 0, b > 0 and γ > 0 and for every x ∈ Ba(x0), every y ∈ Bb(y0) with y ∈ F (x)
and every τ ∈ [0, γ],

Bτ (y) ⊂ F (BMτ (x)),

where M = 1/c. That is, for every ỹ ∈ Bτ (y) there exists x̃ ∈ F−1(ỹ) such that ρ(x̃, x) ≤
Mτ. Take a and b smaller if necessary such that the set graphF ∩ {Ba(x0) × Bb(y0)} is

closed. Let M < M+ < 1/L and let ε > 0 be such that

Mε < 1 and
M

1− εM ≤M+.

Choose α > 0 such that
α ≤ a, α < b/ε,

and
d(f(x′), f(x′′)) ≤ ερ(x′, x′′)

whenever x′, x′′ ∈ Bα(x0). Let β > 0 be such that

M+β ≤ α/4 and 2β ≤ b− εα,

and let κ satisfy
0 < κ < min{β, γ}.

Let (x, y) ∈ graph(f + F ), x ∈ Bα/2(x0), y ∈ Bβ(y0 + f(x0)), let τ ∈ [0, κ], and let

y′ ∈ Bτ (y). We show that there exists x′ ∈ (f +F )−1(y′) such that ρ(x′, x) ≤M+τ ; that

is, (ii) holds with the constant c+ = 1/M+, c > c+ > L. Denote x1 = x. We have

d(y − f(x1), y0) = d(y − f(x1) + f(x0), y0 + f(x0))

≤ d(y, y0 + f(x0)) + d(f(x), f(x0))

≤ β + εα ≤ b.
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Clearly, y′− f(x1) ∈ Bτ (y− f(x1)). From the openness with linear rate of F there exists
x2 ∈ X such that

y′ − f(x1) ∈ F (x2) and ρ(x2, x1) ≤Mτ.

Suppose that there exist a natural number n ≥ 3 and points x2, x3, · · · , xn−1 in X with
the following properties:

y′ − f(xi−1) ∈ F (xi)

and
ρ(xi, xi−1) ≤ Mτ(Mε)i−2

for i = 2, · · · , n− 1. Then

ρ(xi, x0) ≤ ρ(x1, x0) +

i∑

j=2

ρ(xj , xj−1) ≤ α/2 +Mτ

i∑

j=2

(Mε)j−2

≤ α/2 +
Mτ

1− εM ≤ α/2 +M+τ ≤ α/2 +M+β ≤ α,

and hence

d(y′ − f(xi), y0) = d(y′ − f(xi) + f(x0), y0 + f(x0))

≤ d(y′, y) + d(y, y0 + f(x0)) + d(f(xi), f(x0))

≤ τ + β + εα ≤ κ+ β + εα ≤ 2β + εα ≤ b.

Note that

d(y′ − f(xn−1), y′ − f(xn−2)) ≤ ερ(xn−1, xn−2) ≤ εMτ(Mε)n−3

and
εMτ(Mε)n−3 ≤ γ.

Hence, from the openness with linear rate of F there exists xn such that

y′ − f(xn−1) ∈ F (xn) (4)

and
ρ(xn, xn−1) ≤M [εMτ(Mε)n−3 ] = Mτ(Mε)n−2. (5)

By induction, we obtain an infinite sequence {xn} which satisfies (4) and (5) for all natural

n. The sequence xn is a Cauchy sequence, hence convergent to some x′ ∈ Bα(x0). Since
graphF is locally closed around (x0, y0) and f is continuous in Bα(x0) we conclude that

x′ ∈ (F + f)−1(y′). Moreover,

ρ(xn, x) ≤
n∑

i=2

ρ(xi, xi−1)

≤ Mτ

n∑

i=2

(Mε)i−2 ≤ M+τ.
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Passing to the limit we obtain

ρ(x′, x) ≤M+τ.

The implication (i) ⇒ (ii) is proved.
Let (ii) hold; that is, the map G = f +F is open with linear rate around (y0 + f(x0), x0)
with a constant c > L. The function −f is strictly stationary at x0 and graphG is locally
closed around (y0 + f(x0), x0). From the first part of the proof, −f +G = F is open with

linear rate around (y0, x0) with a constant c+ > L. This completes the proof.

Theorem 1.4 shows that a perturbation of order higher than one does not contribute to
the openness with linear rate around a point; that is, the openness with linear rate around
a point is invariant under higher-order perturbations. This is not an unexpected result.
Cominetti [5] showed that, given two continuous functions f and g from a Banach space
X to a Banach space Y and a closed convex set C in X, the metric regularity of f + C
is equivalent to the metric regularity of g + C, provided that the strict derivative of the
difference f−g at the reference point is zero. In a previous paper [7], using a generalization
of a fixed point theorem from [15], we proved that the Aubin (pseudo-Lipschitz) property
of the inverse of a set-valued map is invariant under higher-order perturbations. A different
proof of this result is given in [10]. In finite-dimensional spaces this result can be also
obtained by the Mordukhovich characterization of the Aubin property [20].

Let Y be a linear normed space and let f : X → Y be strictly differentiable at x0. Denote
φ(x) = f(x) − ∇f(x0)(x − x0) and F(x) = ∇f(x0)(x − x0) + F (x). The function φ is
strictly stationary at x0. Applying Theorem 1.4 to the maps φ and F we obtain that the
map f +F is open with linear rate around (x0, y0) if and only if the (partial) linearization
f(x0) +∇f(x0)(· − x0) + F (·) is open with linear rate around (x0, y0). In other words,
the openness with linear rate around a point of a linearization of a map is inherited by
the the map and vice versa. From this version of Theorem 1.4 we obtain a symmetric
form of the Graves theorem. Let X be a Banach space and Y be a linear normed space
and let f : X → Y be strictly differentiable at x0. From the Banach open mapping
theorem the map f(x0) +∇f(x0)(· − x0) is open with linear rate around x0 if and only
if ∇f(x0)X = Y . Hence the surjectivity of ∇f(x0) is equivalent to the openness with
linear rate of f around x0. This result can be also obtained from [5] taking into account
that the openness with linear rate is equivalent to the metric regularity. We note that
the usual openness, as defined before Theorem 1.1, is not invariant under higher-order
perturbations, in the sense of the present paper.

The key hypothesis in Theorem 1.4, already present in the original formulation of the
Graves theorem, is that the perturbing function f has strict derivative equal to zero.
Recently, Robinson [25] extended this idea by introducing the so-called “strong approx-
imation” to nonsmooth functions. By using this concept and suitably modifying the
above analysis one can obtain implicit-function-type theorems for generalized equations.
Results of this kind and applications to stability analysis in optimization are presented in
the recent papers [8], [9] and [10].
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[4] J. M. Borwein, D. M. Zhuang: Verifiable necessary and sufficient conditions for openness

and regularity of set-valued maps, J. Math. Anal. Appl. 134 (1988) 441–459.

[5] R. Cominetti: Metric regularity, tangent cones, and second-order optimality conditions,

Appl. Math. Optim. 21 (1990) 265–287.

[6] A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskĭı: The Lyusternik theorem and the
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