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We consider the problem of characterizing points x̄ in a convex set C which globally maximize an objective
function f over C. When f is convex, we show how the first order necessary condition extended to those
x ∈ C at the same level as x̄ is necessary and sufficient for x̄ being a global maximum of f over C.This
improves a recent result by A. Strekalovski who was the first to propose such type of global optimality
condition, but whose characterization required to scan all the points (even out of C) at the same level
as x̄. Next we extend the obtained characterization to the case where the objective function is just
tangentially convex and an appropriate qualification condition holds.

1. Characterizing the global maxima of a convex function over a convex set

Let X be a (real) Banach space, X∗ its topological dual space ; when s ∈ X∗ and x ∈ X,
we use the notation 〈s, x〉 for s(x). Let f : X −→ IR ∪ {+∞} be a lower semicontinuous
convex function, and let C be a nonempty closed convex set contained in the interior of
the domain of f . We are interested in characterizing those x̄ in C maximizing globally f
on C, i.e. satisfying :

f(x) ≤ f(x̄) for all x ∈ C. (1)

The convexity of C is not so important here since we know that the maximum of a convex
function (resp. of a continuous convex function) over a set S is unaltered if we substitute
the convex hull of S (resp. the closed convex hull of S) for S.

If x̄ ∈ C is a maximum (even local) of f on C and if f is Gâteaux- differentiable at x̄,
then Df(x̄) (the Gâteaux derivative of f at x̄) necessarily lies in the normal cone to C at
x̄ :
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Df(x̄) ∈ N(C, x̄). (2)

This necessary condition for maximality holds true whenever f is differentiable at x̄, be
it convex or not. When, like in our case, f is convex, we have

∂f(x̄) ⊂ N(C, x̄) (3)

at any maximum (even local) x̄ of f on C (here, ∂f(x̄) denotes as usual the subdifferential
of f at x̄). Already at this stage the convexity of f has played its role : a natural
extension of (2) would be ∂f(x̄) ∩ N(C, x̄) 6= ∅, while we get in (3) much more : the
whole subdifferential of f at x̄ is contained in N(C, x̄).

Condition (3) is not sufficient - far from it- for x̄ being a maximum (even local) of f on
C. To characterize a global maximum of f on C, we need “to globalize” (3) somehow or
other. The first approach in that direction is treated in [2] where the global maxima of
f on C are characterized with the help of “ε - enlargements” of the subdifferential of f
and of the normal cone to C. Indeed, denoting by ∂εf(x̄) the ε - subdifferential of f at x̄
and by Nε(C, x̄) the set of ε - normal directions to C at x̄, we have : x̄ ∈ C is a global
maximum of f on C if and only if :

∂εf(x̄) ⊂ Nε(C, x̄) for all ε > 0. (4)

Since ∂f(x̄) =
⋂

ε>0

∂εf(x̄) and N(C, x̄) =
⋂

ε>0

Nε(C, x̄), the condition (3) is precisely the

limiting case ε ↓ 0 in (4). In (4) the parameter ε > 0 helped to globalize the (purely local)
condition (3).

It turns out there is another way of globalizing the local condition (3) : by imposing the
same condition as (3) to all the points x in the level-surface of f at level f(x̄). This
approach is due to A. Strekalovski ([3], [4]) and his characterization can be stated as
follows. Consider x̄ ∈ C such that

−∞ ≤ inf
X
f < f(x̄); then x̄ is a global maximum of f on C if only if

∂f(x) ⊂ N(C, x) for all x satisfying f(x) = f(x̄).
(5)

The trouble in that formulation is that one needs to consider, a priori, normal cones to
C at points x which do not necessarily lie in C (d ∈ N(C, x) still means in that case
: 〈d, c − x〉 ≤ 0 for all c ∈ C), which is unnatural. The improvement of Strekalovski’s
result we propose below consists in showing that a global maximum x̄ of f on C is still
characterized by (5) restricted to those x in C at the same level as x̄.

Theorem 1.1. Consider a point x̄ ∈ C such that

−∞ ≤ inf
C
f < f(x̄).

Then x̄ is a global maximum of f on C if and only if

∂f(x) ⊂ N(C, x) for all x in C satisfying f(x) = f(x̄). (6)
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Proof. [Condition (6) is necessary]. Let s ∈ ∂f(x) we have :

〈s, x′ − x〉 ≤ f(x
′
)− f(x) for all x

′ ∈ X.
If x ∈ C and f(x) = f(x̄), we necessarily have

〈s, x′ − x〉 ≤ f(x
′
)− f(x̄) ≤ 0 for all x ∈ C, that is : s ∈ N(C, x̄).

[Condition (6) is sufficient]. We will use here an equivalent form of condition (6) :

for all x in C satisfying f(x) = f(x̄), we have sup
c∈C

f ′(x, c− x) ≤ 0, (*)

i.e., there is no direction d tangent to C at x for which f ′(x, d) > 0 (here, f ′(x, .) de-

notes the directional derivative of f at x ; the assumptions made ensure that f ′(x, .) is a
continuous function).

Suppose the contrary holds : there is some x̃ ∈ C for which f(x̃) > f(x̄). We aim at
contradicting (*).

Due to the assumption inf
C
f < f(x̄), there exists x∗ ∈ C such that

f(x∗) < f(x̄). Connect x∗ and x̃ by a line-segment. Since f restricted to this line remains
convex (continuous) and f(x∗) < f(x̄) < f(x̃), there is a unique point x0 on the interval
(x∗, x̃) at which f(x0) = f(x̄). Moreover, the restriction of f to the interval (x∗, x̃)

obviously increases with a positive right-derivative, in particular f ′(x0, x̃ − x0 > 0. We

therefore have found x0 in C such that f(x0) = f(x̄) and sup
c∈C

f ′(x0, c− x0) > 0, which

contradicts (*).

Strekalovski’s condition (5) has been substantially improved in (6) by only considering
the points at the same level f(x̄) which lie in C. There is however a slight difference
in the assumptions : Strekalovski’s condition, applied for x̄, requires there exists some
xo ∈ X such that f(xo) < f(x̄), while our condition requires there exist co ∈ C such that
f(co) < f(x̄). Both requirements are very mild and easily understandable. They cannot
be removed : if, for example, x̄ is the unique minimum on X of a differentiable f and if
x̄ lies in the interior of C, condition (5) (or (6)) is obviously satisfied. The next simple
example shows the difference between the two assumptions.

Example 1.2. Let f : (ξ1, ξ2) ∈ R2 7→ f(ξ1, ξ2) = ξ2
2−ξ1+1 and let C := {0}×[−1,+1].

Consider x̄ = (0, 0) ; we have : f(x̄) = inf
C
f > inf

R2
f.

It is easy to verify that our condition (6) is satisfied, but Theorem 1.2 cannot be invoked;
indeed x̄ is not a global maximum of f on C. As for condition (5), it is not satisfied : at
x = (1, 1) which is at the same level f(x̄) (but not in C), the gradient of f at x (actually
the unique element of ∂f(x)) does not belong to N(C, x).

2. Extending the characterization of global maxima to tangentially convex
objective functions

In this section we extend Theorem 1.2 to (global) maximization problems with possibly
nonconvex objective functions. More precisely we remove the convexity condition on f
and replace it by the following one :
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f is locally Lipschitz and strictly tangentially convex (or regular in Clarke’s terminology
[1, p.39]) on the interior of its domain, i.e. : for all x in the interior of the domain of f ,

(i) The usual one-sided directional derivative d 7→ f ′(x, d) exists ;

(ii) f ′(x, .) is the support function of Clarke’s generalized gradient ∂f(x) of f at x.
As simple examples show it, one cannot get away from the convexity (and continuity) of

the “tangent approximations” d 7→ f ′(x, d) of f at x, at least if one wishes to have the
same condition be necessary and sufficient for global optimality.

We assume moreover X is a (real) Hilbert space ; we denote by 〈., .〉 the inner product in
X and by ||.|| the associated norm.

Theorem 2.1. Assume the following qualification condition holds at x̄ ∈ C : (QC)x̄
For all x ∈ C such that f(x) = f(x̄), it there is cx ∈ C such that

f ′(x, cx − x) < 0.

Then x̄ is a global maximum of f on C if and only if

∂f(x) ⊂ N(C, x)for all x in C satisfying f(x) = f(x̄). (6)′

The difference between (6) and (6)
′
is that, now, ∂f(x) stands for the generalized gradient

of f at x. The statement of Theorem 2.1 is similar to that of Theorem 1.1 but the lack of
convexity of f compels us to use different techniques in the proof. Before going further,
some comments on (QC)x̄ are in order :

• What does (QC)x̄ mean ? It means that from any point x in C at the same level
as x̄, there is a direction of descent (for f) directed towards a point of C. It is
clear that (QC)x̄ cannot be completely removed : suppose, for example, f is strictly
differentiable at a point x̄ lying in the interior of C, there is no other point in C at
the same level as x̄, and Df(x̄) = 0 ; then (6)′ is satisfied but x̄ need not necessarily
be a maximum of f over C.

• (QC)x̄ is truly a generalization of the qualification condition encountered in section 1
for convex f . Indeed, if f is convex and if there is some co ∈ C such that f(co) < f(x̄),
then

f
′
(x, co − x) ≤ f(co)− f(x) = f(co)− f(x̄)

for all x in C at the same level as x̄.
• Suppose f is continuously differentiable on the interior of its domain. Then (QC)x̄

and (6)′ take respectively the following form :

inf
c∈C
〈Df(x), c〉 < 〈Df(x), x〉

and
〈Df(x), x〉 = max

c∈C
〈Df(x), c〉

(for all x ∈ C at the same level as x̄). Hence, under (QC)x̄, for all x in C at the
same level as a global maximum x̄ of f on C, the width of C in the Df(x) direction
is non-null.
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Proof of Theorem 2.1. [Condition (6)′ is necessary]. Let x ∈ C satisfy f(x) = f(x̄).
Since x is also a global maximum of f on C,

f(x+ t(c− x)) ≤ f(x) for all 0 < t ≤ 1 and c ∈ C.
Consequently

f ′(x, c− x) ≤ 0 for all c ∈ C,
and because f ′(x, .) is the support function of ∂f(x)

〈s, c− x〉 ≤ 0 for all c ∈ C and s ∈ ∂f(x)

i.e.,
∂f(x) ⊂ N(C, x).

[Condition (6)′ is sufficient]. Suppose for contradiction there is some x̃ ∈ C such that
f(x̃) > f(x̄) and let D := C ∩ {x ∈ X | f(x) ≤ f(x̄)}. We consider the following
minimization problem :

Minimize
1

2
‖ x− x̃ ‖2 subject to x ∈ D.

In general this problem has no solution since D is only a closed subset of X. But, according
to Ekeland’s variational principle (see [1, p. 266] for example), for any ε > 0 there exists
x̂ε ∈ D such that the function

ϕε : x 7−→ ϕε(x) :=
1

2
||x− x̃||2 + ε||x− x̂ε||

attains its minimum on D at x̂ε.

Claim 1 : f(x̂ε) = f(x̄) for ε > 0 small enough.
If not there exists (εk)k ↓ 0 such that x̂k := x̂εk satisfies

f(x̂k) < f(x̄) for all k. (7)

We set xk,t := x̂k + t(x̃− x̂k) for 0 < t ≤ 1. Since xk,t ∈ C (because both x̂k and x̃ are in

C and C is convex) and f(xk,t) ≤ f(x̄) for t small enough (because of the continuity of f

at x̂k and (7)), we can say :

∃t̄k > 0 such that xk,t ∈ D for all 0 < t ≤ t̄k.

But x̂k is, by definition, a minimum of the function x 7−→ 1
2 ||x− x̃||2 + ε||x− x̂k|| on D ;

thus :

1

2
||xk,t − x̃||2 + εk||xk,t − x̂k|| ≥

1

2
||x̂k − x̃||2 for all 0 < t ≤ t̄k. (8)

By plugging the expression xk,t = x̂k + t(x̃− x̂k) into (8), we derive :

1

2
(1− t)2||x̂k − x̃||2 + tεk||x̃− x̂k|| ≥

1

2
||x̂k − x̃||2
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or

1

2
t2||x̂k − x̃||2 − t||x̂k − x̃||2 + tεk||x̃− x̂k|| ≥ 0 for all 0 < t ≤ t̄k.

Since ||x̂k − x̃|| > 0 it follows that for t > 0 small enough

||x̂k − x̃|| ≤ εk +
t

2
||x̂k − x̃||.

By letting t ↓ 0 we obtain ||x̂k − x̃|| ≤ εk.
Now, since x̂k satisfies (7) and (x̂k)k converges to x̃ , the continuity of f implies that
f(x̃) ≤ f(x̄), which contradicts the choice of x̃.
Thus we have proved that f(x̂ε) = f(x̄) for ε > 0 small enough. We henceforth consider
such ε > 0.

Claim 2 : ∂f(x̂ε ⊂ N(C, x̂ε) leads to a contradiction.

Consider for that the function

g : x 7−→ g(x) := max{ϕε(x)− ϕε(x̂ε), f(x)− f(x̄)}.

We have : g(x̂ε) = 0 and g(x) ≥ 0 for all x ∈ C ; we reformulate that by saying that x̂ε
solves the following minimization problem :

(P̂ ) Minimize g(x) subject to x ∈ C.

Then a necessary condition is as follows : there exists λ0 ≥ 0 and λ ≥ 0 adding up to 1
such that

λ0ϕ
′
ε(x̂ε, c− x̂ε) + λf ′(x̂ε, c− x̂ε) ≥ 0 for all c ∈ C

We claim that λ0 > 0 necessarily. If not we would have

f ′(x̂ε, c− x̂ε) ≥ 0 for all c ∈ C,

which contradicts (QC)x̄.

Thus
λ

λ0
f ′(x̂ε, c− x̂ε) ≥ −ϕ′ε(x̂ε, c− x̂ε) for all c ∈ C (9)

The calculation of ϕ′ε(x, .) at x = x̂ε is easy :

∀d ∈ H,ϕ′ε(x̂ε, d) =< x̂ε − x̃, d > +ε||d||.

Now, by choosing c = x̃ in (9) we get at

λ

λ0
f ′(x̂ε, x̃− x̂ε) ≥ ||x̃− x̂ε||2 − ε||x̃− x̂ε||. (10)

But since f ′(x̂ε, c− x̂ε) ≤ 0 for all c ∈ C (as said earlier this is an equivalent form of the
inclusion ∂f(x̂ε) ⊂ N(C, x̂ε)), the inequality (10) implies that ||x̂ε − x̃|| ≤ ε. So again
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limε↓0x̂ε = x̃ , whence f(x̃) ≤ f(x̄), which contradicts the inquality f(x̃) > f(x̄) assumed

from the beginning.

Remark 2.2. The second part of the proof above shows that if f is just locally Lipschitz
(not necessarily strictly tangentially convex) and if we assume (QC)x̄ (expressed with

Clarke’s generalized directional derivative of f instead of f), then (6)′ is a sufficient
condition for x̄ being a global maximum of f on C.

To end this note we mention a global optimality condition in nonconvex optimization of
a similar philosophy to the ones presented here. Suppose X is a (real) Banach space, C
a closed convex set of X, and f : C → IR is continuous (actually more general X and
C could be considered, C just connected for example). Consider x̄ ∈ C satisfying the
following :

Every x ∈ C for which f(x) = f(x̄) is a local maximum of f on C. (11)

Then x̄ is a global maximum of f on C. Thus (11) is a necessary and sufficient condition
for x̄ being a global maximum. The proof is left as an exercise to the reader.
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