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1. Introduction

Let X be a real Hilbert space endowed with inner product 〈., .〉 and associated norm ‖.‖,
and let f be a proper closed convex function on X.
The paper considers the problem of minimizing f , that is, of finding infX f and some
element in the optimal set S := Argmin f , this set assumed being non empty.
Letting ∂f denote the subdifferential operator associated with f , we focus on the contin-
uous steepest descent method associated with f , i.e., the differential inclusion

−du
dt
∈ ∂f(u), t > 0

with initial condition
u(0) = u0.

This method is known to yield convergence under broad conditions summarized in the
following theorem. Let us denote by A the real vector space of continuous functions from
[0,+∞[ into X that are absolutely continuous on [δ,+∞[ for all δ > 0.
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Theorem 1.1.
(i) ([2]) For all u0 in cl dom f , the closure of the effective domain of f , there exists a

unique u in A such that:
∀t > 0, u(t) belongs to the domain of ∂f ;
he differential inclusion is verified for a.e. t > 0 (recall that u is strongly derivable
for a.e. t > 0);

∀δ > 0, u is Lipschitz continuous on [δ,+∞[ i.e. u′(:= du
dt

) ∈ L∞([δ,+∞[;X);

f ◦ u is convex, non increasing, Lipschitz continuous on [δ,+∞[ ∀δ > 0;
u has a derivative to the right for all t > 0 and, if S := Argmin f is non empty,

then limt→+∞ ‖dudt
+

(t)‖ = 0.

(ii) ([5]) If S 6= ∅ then the weak limit u∞ := w − limt→+∞ u(t) exists and belongs to S,
this asymptotic convergence being true for the norm topology if f is even ([5]) or if
IntS 6= ∅ ([2]).

Assuming henceforth that the optimal set S is non empty, Theorem 1.1 motivates us to
consider the following problem:

For a given u0 ∈ cl dom f , characterize the asymptotic limit u∞ as the unique solution to
some convex optimization problem with feasible set S.

This task amounts to show that, like regularization procedures à la Tikhonov ([15], [7],
[1]), the steepest descent method enables us to select a particular optimal solution respec-
tively to some auxiliary criterium. As we shall see, unlike regularization procedures, this
auxiliary criterium is not at our disposal independently from the data f but is defined
from this data. Indeed, the result is based upon a variational principle of Brezis-Ekeland
type for an infinite horizon. An analogue holds true for the Euler’s implicit discretization
of the differential inclusion i.e. the proximal method of Martinet-Rockafellar.

The paper is organized as follows. Before reaching the main objective stated above, we
show in section 2, that the trajectory u is always (even S is empty) minimizing and, if
S is non empty, we give a localization result of u∞ in S with respect to u0. Section 3
is devoted to the variational principle for an infinite horizon. In section 4 we state the
asymptotic variational principle characterizing u∞ in S. The analogue for the discrete
case is discussed in section 5.

In sections 2, 3, 4, u always denotes the solution mentioned in Theorem 1.1.

2. Localization of u∞

First let us recall an estimate.

Proposition 2.1. [9]

∀x ∈ X, ∀t > 0,
‖u(t)− x‖2

2t
+ f(u(t)) ≤ f(x) +

‖u0 − x‖2
2t

Proof. By definition of the subdifferential we have

∀x ∈ X, for a.e. s > 0, f(x) ≥ f(u(s))− 〈u′(s), x− u(s)〉
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Then, integrating between δ and t with 0 < δ < t, and thanks to the non increasingness
of f(u(.)) and the absolute continuity of u on [δ,+∞[, we get

(t− δ)f(x) ≥ (t− δ)f(u(t)) + (‖u(t)− x‖2 − ‖u(δ)− x‖2)/2

Finally, since u is continuous at 0 we get the result.

Corollary 2.2.
(i) In all cases, that is, whether infX f be finite or not, achieved or not, limt→+∞ f(u(t))

= infX f .
(ii) If S 6= ∅, then ‖u∞ − projSu0‖ ≤ d(u0, S) and therefore, ‖u∞ − u0‖ ≤ 2d(u0, S),

where projS denotes the projection operator onto the closed convex set S.
(iii) If S is an affine subspace then u∞ = projSu0.

Proof. (i) Trivial.
(ii) Taking x ∈ S in the estimate we get ‖u(t) − x‖ ≤ ‖u0 − x‖. Passing to the lim inf
as t → +∞, thanks to the weak lower semi-continuity of the norm, and taking as x the
projection of u0 onto S, we get the result.
(iii) Let e := u∞− projSu0 and assume e 6= 0. As S is an affine subspace, x := projSu0−
td(u0, S)e/‖e‖ is in S for all t ≥ 0. We have ‖u∞ − x‖ = td(u0, S) + ‖e‖ and, thanks to

Pythagore, ‖u0 − x‖ =
√
t2 + 1d(u0, S). Therefore, ‖u0 − x‖ − ‖u∞ − x‖ = (

√
t2 + 1 −

t)d(u0, S)− ‖e‖. Referring to the proof of (ii) above we get ‖e‖ ≤ (
√
t2 + 1− t)d(u0, S)

for all t ≥ 0, which is a contradiction.

Remark 2.3. (iii) in corollary 2.2 gives a complete and simple characterization of u∞
in S, actually the same than the Tikhonov regularization method. This characterization
has yet been obtained in [4] for the discrete method (cf. section 5 below) when f is a
quadratic form (a case where S is a subspace). Unfortunately this simple characterization
fails to be true in general.

3. Variational principle, infinite horizon

First, let T > 0 be fixed. We denote by L1
sc(0, T ) the set of functions ψ from [0, T ] into IR

that belong to L1(δ, T ) for all δ, 0 < δ < T , and such that
∫ T

0 ψ(t)dt := limδ→0

∫ T
δ ψ(t)dt

exists in IR.
We define the set of feasible trajectories which reach some v∞ ∈ X from u0, possibly
using infinite time, arriving asymptotically with nul velocity:

K(u0) := {v ∈ A; f ◦ v + f ∗ ◦ (−v′) ∈ L1
sc(0, T ) ∀T > 0,

v(0) = u0, v∞ := w − lim
t→+∞

v(t) exists, s− ess− lim
t→+∞

v′(t) = 0},

where w is short notation for weak, s is for strong, ess is for essential, and the ∗ denotes
the Fenchel conjugacy.
We note that, if v is in K(u0) then v(t) is in dom f for all t > 0 and −v′(t) is in dom f∗

for a.e. t > 0.



66 B. Lemaire / An asymptotical variational principle

Proposition 3.1. K(u0) is a convex subset of A containing u.

Proof. Convexity is easy. For the second assertion, integrating the equality

f(u(t)) + f ∗(−u′(t)) = −〈u′(t), u(t)〉 for a.e. t > 0

between δ and T for δ > 0 and passing to the limit as δ tends to 0, we get

∫ T

0
[f(u(t)) + f ∗(−u′(t))]dt =

1

2
(‖u0‖2 − ‖u(T )‖2)

The last condition is fulfilled since (cf. Theorem 1.1) limt→+∞ ‖dudt
+

(t)‖ = 0.

Motivated by Proposition 3.1 we define the cost function for the finite horizon T , JT :
K(u0)→ IR by

JT (v) :=

∫ T

0
[f(v(t)) + f ∗(−v′(t)) + 〈v′(t), v(t)〉]dt

=

∫ T

0
[f(v(t)) + f ∗(−v′(t))]dt+

1

2
(‖v(T )‖2 − ‖u0‖2)

As u0 is fixed, we note that JT is convex. Moreover, via Fenchel’s inequality we have
JT ≥ 0.

Remark 3.2. According to Moreau’s theory for elastoplastic systems [11,12,13], JT (v)
can be interpreted as the total energy of such a system in the time interval [0, T ] if it
moves with the velocity v. Indeed, f is then the support function of some closed convex
subset C containing the origin (therefore Argmin f is the normal cone to C at 0), f(v(t))

is the dissipated power and 〈v′(t), v(t)〉 is the kinetic power.

Now let us define the (convex) cost function for an infinite horizon J : K(u0) → IR+ ∪
{+∞} by

J(v) := lim
T→+∞

JT (v) = sup
T>0

JT (v)

Theorem 3.3. (Variational principle, variant of [3]). u is the unique minimizer of J
on K(u0) and the minimum value is nul.

Proof. Clearly J(u) = 0 and J(v) = 0 if and only if JT (v) = 0 for all T > 0 i.e. v
satisfies the differential inclusion on [0, T ] for all T > 0 i.e. v = u.

The following result will be of importance in section 5.

Proposition 3.4.

∀v ∈ K(u0), J(v) ≥ 1

2
‖v∞ − u∞‖2.

Proof. From the definition of a subgradient and as −u′ ∈ ∂f(u) ⇔ u ∈ ∂f ∗(−u′), we
have

f(v)− f(u) + f ∗(−v′)− f∗(−u′) ≥ −〈u′, v − u〉+ 〈u, u′ − v′〉
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Therefore, adding 〈v′, v〉 − 〈u′, u〉 to both sides, we obtain

∀T > 0, JT (v) = JT (v)− JT (u) ≥ lim
δ→0

∫ T

δ
〈v′ − u′, v − u〉dt =

1

2
‖v(T )− u(T )‖2

Then use the weak lower semi-continuity of the norm as T → +∞.

We end this section by studying some properties of the cost function J that make the
optimization problem involved in theorem 3.3 non trivial in the sense that J is finite not
only at u.

Proposition 3.5.
(i) For all v ∈ K(u0) such that v∞ 6∈ Argmin f then J(v) = +∞.
(ii) If f is coercive then for all x ∈ Argmin f there exists v in K(u0) such that v∞ = x

and J(v) < +∞.

Proof. (i) By (weak and strong) lower semi-continuity of f and f ∗, we get

lim inf
t→+∞

[f(v(t)) + f ∗(−v′(t)) + 〈v′(t), v(t)〉] ≥ f(v∞) + f∗(0) > 0

where the last inequality follows from 0 6∈ ∂f(v∞). Evidently, this inequality implies
J(v) = +∞.
(ii) Let 0 < δ < τ . For x ∈ X, let us define the function v from [0,+∞[ into X by

v(t) :=





u(t) 0 ≤ t ≤ δ

u(δ) + (t− δ)x− u(δ)
τ − δ δ ≤ t ≤ τ

x τ ≤ t

Clearly v is in A, v∞ = v(τ) = x and v′(t) = 0 for all t > τ .
Since x is in dom f then v(t) is in dom f for all t > 0. Since f is weakly inf-compact i.e.

f∗ is strongly continuous at 0, if τ is large enough then −v′(t) is in dom f∗ for a.e. t > 0.
Finally, because f(x) + f ∗(0) = 0 and f ◦ v is integrable on [δ, τ ], we have

∀ T ≥ τ, J(v) = JT (v) = Jτ (v) =

∫ τ

δ
f(v(t))dt+ (τ − δ)f ∗(u(δ)− x

τ − δ )

+
1

2
(‖x‖2 − ‖u(δ)‖2) < +∞,

taking into account that Jδ(v) = Jδ(u) = 0.

4. Asymptotical variational principle

Let us define the asymptotic cost function ϕu0 : X → IR+ ∪ {+∞} by

ϕu0(x) := inf{J(v); v ∈ K(u0), v∞ = x}
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Proposition 4.1. ϕu0 is convex;

ϕu0(u∞) = J(u) = 0;

∀x ∈ X, ϕu0(x) ≥ 1
2‖x− u∞‖

2.

Proof. Let x1, x2 ∈ X, θ ∈ [0, 1] and vi ∈ K(u0) such that vi∞ = xi, i = 1, 2. As K(u0)

is convex, vθ := θv1 + (1− θ)v2 ∈ K(u0). Moreover vθ∞ = xθ := θx1 + (1− θ)x2. Then

ϕu0(xθ) ≤ J(vθ) ≤ θJ(v1) + (1− θ)J(v2)

As this holds for all vi ∈ K(u0) such that vi∞ = xi, we are done for the first statement.
The second statement is immediate, the third one comes directly from proposition 3.4.

Now, as a direct consequence of proposition 4.1, we can state the announced asymptotic
variational principle.

Theorem 4.2. u∞ is the unique minimizer of ϕu0 on Argmin f (or on X) and the
minimum value is zero.

Finally, in order that the optimization problem involved in theorem 4.2 be non trivial,
refereing to proposition 3.5, we get

Proposition 4.3. If f is coercive then domϕu0 = Argmin f .

5. Discrete case

For the same convex function f there is an intimate relationship between the continuous
steepest descent method and its Euler’s implicit discrete version, i.e., the proximal method
of Martinet-Rockafellar [14], [8]. Thanks to this connexion, the proximal method inherits
many of the nice asymptotical properties of the continuous steepest descent method [9].
For the problem under consideration here, concerning characterization of the asymptotical
limit, a similar discussion for the proximal method is entirely parallel to the one above.
The statements are the same, albeit now “time” is discrete.
More precisely, let X and f be as in section 1 and {λk} be a sequence of positive reals.
Let u0 ∈ X be given. The proximal method [14] generates a sequence u = {uk} ∈ X, uk
being the unique solution of the iterative scheme

uk−1 − uk
λk

∈ ∂f(uk) ∀ k ≥ 1.

Thus this method coincides with the Euler’s implicit discretization of the differential
inclusion arising in the continuous steepest descent (section 1). So, for all n ∈ IN, un
approximates the continuous steepest descent trajectory at the point tn :=

∑n
1 λk.

Let us recall some basic known results about the asymptotic behaviour.

Proposition 5.1. [14] If λk is bounded away from 0 and Argmin f 6= ∅ then uk weakly
converges to u∞ some minimizer of f .

Note that here the asymptotic limit u∞ may be different from that one of the continuous
case (for the same u0).
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Remark 5.2. In proposition 5.1, the convergence holds true for the norm topology if
f is even [4] or if Int Argmin f 6= ∅ [9] or if f is well-posed [10].

Proposition 2.1 holds true replacing u(t) by un and t by tn :=
∑n

1 λk ([6]), implying

limn→+∞ f(un) = infX f and the same localization results as in corollary 2.2.

Now, all statements in sections 3 and 4 still hold replacingA by X IN and with the following
new definitions.

Set of discrete feasible trajectories from u0:

K(u0) := {v = (v0, v1, · · ·); ∀ k ≥ 1

vk ∈ dom f,

−dk :=
vk−1 − vk

λk
∈ dom f∗,

v0 := u0, vk
w
⇀ v∞, ‖dk‖ → 0 }

Cost function for a finite horizon:

Jn(v) :=
n∑

k=1

λk[f(vk) + f∗(−dk) + 〈vk, dk〉]

=

n∑

k=1

λk[f(vk) + f∗(−dk) +
1

2
λk‖dk‖2]

+
1

2
(‖vn‖2 − ‖u0‖2)

Cost function for an infinite horizon:

J(v) := lim
n→+∞

Jn(v) = sup
n
Jn(v)

Asymptotic cost function: exactly the same as in section 4.

The adaptation of proofs is left out as a simple exercise. The crucial trick is

2〈uk−1 − uk, x− uk〉 = ‖uk−1 − uk‖2 + ‖x− uk‖2 − ‖x− uk−1‖2

For the proof of the analogue of proposition 3.5 (ii), define v ∈ K(u0) by:

vk :=




uk 0 ≤ k ≤ 1

u1 + (tk − t1) x− u1
tN − t1 1 < k ≤ N

x k > N

where N > 1 large enough in order that, for 1 < k ≤ N , −dk = u1−x
tN−t1 be in dom f∗ since

limn→+∞ tn = +∞.
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