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1. Introduction and Problem Setting

The problem of finding a potential satisfying given constraints is known as the feasible
potential problem. This is one of the fundamental problems in the theory of networks.
In this paper we derive necessary and sufficient conditions for the existence of feasible
potentials in infinite, but locally finite, networks and more generally in locally finite
hypergraphs.

In connection with problems of flows and potentials, the practical need for considering
infinite networks has been recognized for a long time. We refer for instance to the mono-
graphs [6] and [8]. In these books, the feasible potential problem is discussed only in
the case when the contraints are equalities, and their proofs depend essentially on the
classical Riesz’ Representation Theorem in a Hilbert space. In this paper we consider the
case of upper and lower bounds for potentials and tensions, and our result is based on
a fundamental tool of convex analysis, namely a generalized version of Farkas’ Lemma.
This is the content of Section 2.

Alternative, and more constructive, proofs for particular cases are given in Sections
3 and 4. Here we combine the Sandwich Theorem of convex analysis with the use of
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paths and cycles.

Discrete potential problems are considered in greater generality in Section 5. Here the
feasible potential problem is extended to what we call locally finite hypergraphs. Except
for the use of our generalized Farkas’ Lemma, this Section is independent of the previous
ones. Our idea is to replace the node-arc incidence function by an arbitrary real-valued
function having finite support within the set of nodes and within the set of arcs, respec-
tively. Thus nodes and arcs are treated equally, and there is a symmetric duality between
potentials and flows. The feasibility contraints include now also bounds on the discrete
Laplacian. At one place we have to introduce an abstract notion of connectedness for
such hypergraphs.

Due to the perfect symmetry between nodes and arcs we obtain as a by-product in Section
6 conditions for the existence of feasible flows in locally finite hypergraphs.

We are now going to describe our model in more detail. Let G := {X, Y,K} be a directed,
locally finite graph without self-loops. Here X 6= ∅ is the (arbitrary) set of nodes, Y
is the (arbitrary) set of arcs, and K : X × Y → {−1, 0,+1} is the node-arc incidence

function of G. For every arc y ∈ Y the initial node x−(y) and the terminal node x+(y) are

uniquely defined by the relations K(x−(y), y) = −1, K(x+(y), y) = +1. Local finiteness
of G means that, for every x ∈ X, K(x, ·) has finite support in Y.

Let Y denote the space of all real-valued functions defined on Y, and let Y∗ denote the
subspace of all real-valued functions defined on Y and having finite support. Let Y+

(resp. Y∗+) denote the subset of Y (resp. Y∗) which consists of the nonnegative functions.

For f ∈ Y and g ∈ Y∗ let 〈f, g〉 :=
∑

y∈Y f(y)g(y). Replacing Y by X we define similarly

X ,X ∗,X+,X ∗+ and 〈·, ·〉 : X × X ∗ → IR. To the function K(x, y) we associate the linear

mappings K : X → Y and K∗ : Y∗ → X ∗ through

(Kf)(y) :=
∑

x∈X
K(x, y)f(x) = f(x+(y))− f(x−(y)),

(K∗w)(x) :=
∑

y∈Y
K(x, y)w(y).

Note that 〈Kf, w〉 = 〈f,K∗w〉 for all f ∈ X , w ∈ Y∗ (since all sums are finite, the order
of summation can be interchanged freely). Kf is the tension on Y associated to the

potential f on X. K∗w is the divergence on X associated to the flow w on Y [7].

Let A,B ∈ Y be given such that A(y) ≤ B(y) on Y. Let β ∈ X be given such that
0 ≤ β(x) on X. We want to find a necessary and sufficient condition for the existence of
a function u ∈ X (potential function) satisfying the following requirements:

0 ≤ u(x) ≤ β(x) on X, (1)

A(y) ≤ (Ku)(y) ≤ B(y) on Y. (2)
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2. Existence Result

For w ∈ Y∗ let w+(y) := max{0, w(y)}, w−(y) := max{0,−w(y)}. Similarly we define

f+, f− for f ∈ X ∗. For w ∈ Y∗ let l(w) and %(w) be given as

l(w) := 〈A,w+〉 − 〈B,w−〉,
%(w) := 〈β, (K∗w)+〉.

The functions % and −l are sublinear on Y∗. In particular there holds

l(w1 + w2) ≥ l(w1) + l(w2).

Now we have the following result.

Theorem 2.1. Problem (1), (2) has a solution u ∈ X if, and only if, the following
condition holds:

l(w) ≤ %(w) for all w ∈ Y∗. (C1)

Before proceeding with the proof of Theorem 2.1 we have to establish a generalization
of Farkas’ Lemma [2, p.134]. Recall that if F is a real topological vector space with
continuous dual F ∗ (the space of all continuous linear forms on F ), and if Q ⊆ F is a

convex cone, then the polar cone of Q is defined as Q0 := {ξ ∈ F ∗ | 〈x, ξ〉 ≥ 0 ∀x ∈ Q}.
Lemma 2.2. Let the following assumptions hold:
• E is a real topological vector space,F is a locally convex topological vector space;

• P ⊆ E is a nonempty convex set, and δP (v) := infu∈P 〈u, v〉 for all v ∈ E∗;
• Q ⊆ F is a convex cone, and Q0 ⊆ F ∗ is its polar cone;
• T : E → F is linear, T ∗ : F ∗ → E∗ is such that 〈Te, ϕ〉 = 〈e, T ∗ϕ〉 for all e ∈ E,

ϕ ∈ F ∗;
• f0 ∈ F is a fixed element;
• T (P ) +Q is closed in F.

Then from δP (T ∗ϕ) ≤ 〈f0, ϕ〉 for all ϕ ∈ Q0, it follows that f0 ∈ T (P ) +Q.

Proof. Assume, for contradiction, that f0 is not an element of the closed convex set
T (P ) + Q. Then from the strong separation theorem in a locally convex space [5, p.65]
there exist ϕ ∈ F ∗ and t ∈ IR such that

t > 〈f0, ϕ〉,
t ≤ 〈Tp+ q, ϕ〉 = 〈p, T ∗ϕ〉+ 〈q, ϕ〉 for all p ∈ P, q ∈ Q.

From the latter inequality follows ϕ ∈ Q0 and t ≤ δP (T ∗ϕ). Together with the first
inequality we obtain δP (T ∗ϕ) > 〈f0, ϕ〉, and this contradicts the hypothesis of the lemma.

Remark 2.3. If P , in addition, is a cone, then δP (v) = 0 if v ∈ P 0, and δP (v) = −∞
if v /∈ P 0. Hence the conclusion of Lemma 2.2 reads in this case:
If 0 ≤ 〈f0, ϕ〉 for all ϕ ∈ Q0 satisfying T ∗ϕ ∈ P 0, then f0 ∈ T (P ) +Q.
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Whenever we apply Lemma 2.2 we shall provide Y = IRY (the space of all real-valued
functions on Y ) with the product topology. Then Y∗ as defined in paragraph 1 can be
identified with the continuous dual of Y. In fact, every continuous linear form λ(·) on Y
can be represented as

λ(f) =

k∑

i=1

λif(yi) with k ∈ IN, yi ∈ Y, λi ∈ IR,

hence it can be identified with the function λ̃ ∈ Y∗ given by

λ̃(y) :=

{
λi, if y = yi (i = 1, . . . , k),

0 else.

Likewise we shall provide X = IRX with the product topology. In this setting Y∗+ and X ∗+
become the polar cones of Y+ and X+ respectively, i.e., (Y+)0 = Y∗+ and (X+)0 = X ∗+.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1: The necessity of (C1) is easily seen. Indeed, let u ∈ X be a
solution of (1), (2). Then for every w ∈ Y∗ we have

〈A,w+〉 − 〈B,w−〉 ≤ 〈Ku, w+〉 − 〈Ku, w−〉 = 〈Ku, w〉 = 〈u,K∗w〉
≤ 〈u, (K∗w)+〉
≤ 〈β, (K∗w)+〉,

and therefore l(w) ≤ %(w). So (C1) holds.
We turn now to sufficiency. If w1 ≥ 0, w2 ≥ 0, w = w1 − w2 and A ≤ B, then

〈A,w1〉 − 〈B,w2〉 ≤ 〈A,w+〉 − 〈B,w−〉.
Therefore from (C1) we obtain:

0 ≤ %(w1 − w2)− 〈A,w1〉+ 〈B,w2〉 for all w1 ∈ Y∗+, w2 ∈ Y∗+. (3)

We now substitute in Lemma 2.2:

E := X , F := Y × Y,
P := {u ∈ X | 0 ≤ u ≤ β},
δP (v) = infu∈P 〈u, v〉 = −〈β, v−〉,
Q := Y+ × Y+, Q

0 = Y∗+ × Y∗+,
T := (−K,K) : X → Y × Y,
T ∗(w1, w2) = −K∗(w1 − w2),

f0 := (−A,B).

Then from (3) follows 0 ≤ −δP (T ∗ϕ)+〈f0, ϕ〉 for all ϕ = (w1, w2) ∈ Q0. So the hypothesis
of Lemma 2.2 is satisfied. The conclusion of Lemma 2.2 gives f0 ∈ T (P ) +Q, i.e.,

(−A,B) ∈ (−K,K)(P ) + (Y+ × Y+).
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So there exists u ∈ P such that −A ∈ −Ku+Y+, B ∈ Ku+Y+. Then u is a solution to
(1), (2).
It remains to verify the closedness of the set

T (P ) +Q = (−K,K)(P ) + (Y+ × Y+)

which is needed for Lemma 2.2. Recall that X and Y are endowed with the product
topology. So convergence in X and Y means pointwise convergence. From this it is
easily seen that the mapping K : X → Y is continuous. The set P =

∏
x∈X [0, β(x)] (a

product of compact intervals) is compact in X according to Tychonoff’s Theorem. Hence
(−K,K)(P ), being the continuous image of a compact set, is compact. Since Y+ × Y+

is closed, and since the sum of a compact set and a closed set is closed, we obtain that
T (P ) +Q is closed in Y × Y.
This completes the proof of Theorem 2.1.

3. Alternative Approach

We suppose now that the graph G is finitely connected, and we give for this case another
proof of the sufficiency of (C1) which does not employ Farkas’ Lemma, but relies instead on
paths and cycles. We recall the following. A path P in G is a triplet P = {X(P ), Y (P ), p},
where
• X(P ) = {x0, x1, . . . , xn} is a finite nonempty sequence of nodes,
• Y (P ) = {y1, . . . , yn} is a finite sequence of pairwise different arcs with

K(xi−1, yi) ·K(xi, yi) = −1 for i = 1, . . . , n,
• p ∈ Y∗ (the path function) is given by

p(yi) := K(xi, yi) for i = 1, . . . , n,

p(y) := 0 for y /∈ Y (P ).

A path from a ∈ X to b ∈ X is a path with x0 = a, xn = b. A cycle is a path with
x0 = xn. We denote by Pa,b the set of all paths from a to b, and we denote by Z the set

of all cycles. Finite connectedness of G means that Pa,b 6= ∅ for all a, b ∈ X. Henceforth

we identify a path P with its path function p, and we write accordingly p ∈ Pa,b, p ∈ Z,
etc. The empty path p̃ = 0 belongs to Z as well as to Pa,a for all a ∈ X.
We fix now a ∈ X and conduct the proof of the sufficiency of (C1) as follows.

Second Proof of Theorem 2.1: From (C1) we have l(w) ≤ %(w) on Y∗, where l is
superlinear and % is sublinear. From the Sandwich Theorem [2, p.112] there exists a linear
function ξ on Y∗ such that

l(w) ≤ ξ(w) ≤ %(w) on Y∗. (4)

For two paths p1, p2 ∈ Pa,x we obtain from (4), since K∗(p1 − p2) = 0, that ξ(p1 −
p2) ≤ %(p1 − p2) = 0. Likewise we obtain ξ(p2 − p1) ≤ 0. Since ξ is linear this implies
ξ(p1) = ξ(p2). From this follows ξ(p) = 0 for all p ∈ Z (since every cycle p can be
represented as p = p1 − p2 with p1, p2 ∈ Pa,x for a suitably chosen x ∈ X). We can now
define unambiguously u ∈ X by

u(x) := ξ(p) for some p ∈ Pa,x.
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This implies in particular u(a) = 0, since p̃ = 0 is in Pa,a. We show first that u fulfills

(2). Let y be any arc, and set x1 := x−(y), x2 := x+(y). Denote by p0 the path from x1

to x2 consisting only of the arc y. There exists p1 ∈ Pa,x1 such that u(x1) = ξ(p1). Then
p1 + p0 = p2 + p, where p2 ∈ Pa,x2 and p ∈ Z. Consequently

u(x2) = ξ(p2) = ξ(p2 + p) = ξ(p1 + p0) = u(x1) + ξ(p0)

≥ u(x1) + l(p0) [from (4)]

= u(x1) + A(y).

So u(x2) − u(x1) ≥ A(y). Likewise we obtain u(x1) − u(x2) ≥ −B(y). Since (Ku)(y) =
u(x2)− u(x1), we have A ≤ Ku ≤ B, and u fulfills (2).
Now we verify that u fulfills (1). Let p ∈ Pa,x. Then, from (4),

u(x) = ξ(p) ≤ %(p) = β(x).

Assume for the moment that β(a) = 0. Then

−u(x) = −ξ(p) = ξ(−p) ≤ %(−p) = β(a) = 0.

Thus 0 ≤ u ≤ β, and u fulfills (1). If β(a) > 0 we proceed as follows. We form an extended
graph G∗ by adding to G a new node a∗ and a new arc y∗ which has a∗ as initial node and
a as terminal node. We define the additional data β(a∗) := 0, A(y∗) := 0, B(y∗) := β(a).
We denote by l∗ and %∗ the corresponding extensions of l and % to G∗. Then

l∗(w(y∗), w) = l(w)− B(y∗)(w(y∗))−

= l(w)− β(a)(−w(y∗))+,

%∗(w(y∗), w) = %(w)− β(a)k+ + β(a)(k + w(y∗))+,

where k := (K∗w)(a). From the subadditivity of the function (·)+ follows l∗(w(y∗), w)−
%∗(w(y∗), w) ≤ l(w)− %(w). Thus, the validity of (C1) carries over from G to G∗. On G∗,
since β(a∗) = 0, the previous reasoning applies, and we obtain a feasible potential u∗ on
X ∪ {a∗}. The restriction of u∗ to X satisfies the original requirements (1), (2).

4. A Particular Case

We consider now the case where the potential u(·) is only requested to have property (2).
If G is finite the former problem (1), (2) can be reduced to this one by working with an
augmented graph [4, p.192]. In the present setting this approach is not feasible, since the
resulting graph might no longer be locally finite.
We consider the following condition:

l(p) ≤ 0 for all p ∈ Z. (C2)

For finite graphs it is shown in [1, p.157] that (C2) is necessary and sufficient for the
existence of a potential u ∈ X which satisfies (2). Below we extend this result to finitely
connected graphs and — what is more important — give a constructive proof for the
existence of such a potential.
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Let us agree to call two paths or cycles p1 and p2 parallel iff

p1(y) · p2(y) ≥ 0 for all y ∈ Y.

If p1, p2 are parallel, then l(p1 + p2) = l(p1) + l(p2). We note that from (C2) follows for
every fixed a ∈ X that

l(p1) + l(−p2) ≤ 0 for all p1, p2 ∈ Pa,x and for all x ∈ X, (5)

since p1−p2 can be represented as a sum of parallel cycles p̃i and therefore l(p1)+l(−p2) ≤
l(p1 − p2) = l(

∑
i p̃i) =

∑
i l(p̃i) ≤ 0.

Theorem 4.1. Let G be finitely connected. Then condition (C2) is necessary and
sufficient for the existence of a function u ∈ X which satisfies (2).

Proof. If p is a cycle, then K∗p = 0. Therefore, if u fulfills (2) and p ∈ Z, we obtain

l(p) = 〈A, p+〉 − 〈B, p−〉
≤ 〈Ku, p+〉 − 〈Ku, p−〉
= 〈Ku, p〉 = 〈u,K∗p〉
= 0.

Thus (C2) is a necessary condition. To prove sufficiency, assume that (C2) holds. Fix
a ∈ X. For every x ∈ X define

u(x) := sup{l(p) | p ∈ Pa,x}.

From (5) follows u(x) < ∞ for all x. Moreover we have u(a) = 0, since l(p) ≤ 0 for all
p ∈ Pa,a, with equality holding for p = 0 ∈ Pa,a. We show that u fulfills (2). Let y be

any arc, and set x1 := x−(y), x2 := x+(y). Let p0 be the path from x1 to x2 consisting
only of the arc y. Let ε > 0. There exists p1 ∈ Pa,x1 such that l(p1) ≥ u(x1) − ε. Then

p1 + p0 = p2 + p̃, where p2 ∈ Pa,x2, p̃ ∈ Z, and p2, p̃ are parallel. So

l(p2) + l(p̃) = l(p2 + p̃) = l(p1 + p0) ≥ l(p1) + l(p0),

and therefore

u(x2) ≥ l(p2) ≥ l(p2) + l(p̃) ≥ l(p1) + l(p0) ≥ u(x1)− ε+ l(p0)

= u(x1)− ε+ A(y).

Since ε > 0 was arbitrary, u(x2) − u(x1) ≥ A(y). Similarly we obtain u(x1) − u(x2) ≥
−B(y), and u is a solution of (2).

5. Generalization

We consider now discrete potential problems in somewhat greater generality. Let X and
Y be arbitrary sets, and ψ(·, ·) : X × Y → IR a function such that for each x ∈ X and
y ∈ Y, ψ(x, ·) and ψ(·, y) have finite support on Y and X respectively. We call the triplet
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H := {X, Y, ψ} a (locally finite) hypergraph, for short. X ,X ∗, Y, Y∗ have the same
meaning as before. We define the discrete derivative d : X → Y and discrete Laplacian
∆ : X → X through

(du)(y) :=
∑

x∈X ψ(x, y)u(x),

(∆u)(x) :=
∑

y∈Y ψ(x, y)(du)(y).

Given α, β ∈ X , A, B ∈ Y, λ, µ ∈ X such that α ≤ β, A ≤ B, λ ≤ µ, we consider the
existence of u ∈ X which satisfies the following conditions:

α ≤ u ≤ β on X, (6)

A ≤ du ≤ B on Y, (7)

λ ≤ ∆u ≤ µ on X. (8)

We obtain a feasibility condition for this problem from Lemma 2.2. To formulate this we
introduce the following notations. Define d∗ : Y∗ → X ∗ through

(d∗f)(x) :=
∑

y∈Y ψ(x, y)f(y).

Then 〈du, f〉 = 〈u,d∗f〉 for all u ∈ X , f ∈ Y∗. If u ∈ X ∗, then clearly ∆u ∈ X ∗, too.
So we can define ∆∗ : X ∗ → X ∗ through ∆∗ := ∆|X ∗. Then 〈∆u, w〉 = 〈u,∆∗w〉 for all
u ∈ X , w ∈ X ∗.

Theorem 5.1. There exists u ∈ X which satisfies (6), (7), (8) if, and only if, the
following condition is satisfied:

0 ≤ 〈β, h+〉 − 〈α, h−〉+ 〈B, f+〉 − 〈A, f−〉+ 〈µ, g+〉 − 〈λ, g−〉 (C3)

for all f ∈ Y∗, g ∈ X ∗, h ∈ X ∗satisfying h+ d∗f + ∆∗g = 0.

Proof. If u is a solution to (6), (7), (8) and f, g, h are as in (C3), then

0 = 〈u, h+ d∗f + ∆∗g〉
= 〈u, h〉+ 〈du, f〉+ 〈∆u, g〉
= 〈u, h+〉 − 〈u, h−〉+ 〈du, f+〉 − 〈du, f−〉+ 〈∆u, g+〉 − 〈∆u, g−〉
≤ 〈β, h+〉 − 〈α, h−〉+ 〈B, f+〉 − 〈A, f−〉+ 〈µ, g+〉 − 〈λ, g−〉.

Thus (C3) holds. To prove sufficiency we note that from c1 ≥ c2, d1 ≥ 0, d2 ≥ 0,

d = d1 − d2 it follows that 〈c1, d
+〉 − 〈c2, d−〉 ≤ 〈c1, d1〉 − 〈c2, d2〉. Therefore (C3)

implies (in fact, is equivalent with)

0 ≤ 〈β, h+〉 − 〈α, h−〉+ 〈B, f1〉 − 〈A, f2〉+ 〈µ, g1〉 − 〈λ, g2〉 (9)

for all f1, f2 ∈ Y∗+, g1, g2 ∈ X ∗+, h ∈ X ∗ such that

h+ d∗(f1 − f2) + ∆∗(g1 − g2) = 0.
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Now we substitute in Lemma 2.2:

E := X , F := Y × Y × X × X ,
P := {u ∈ X | α ≤ u ≤ β},
δP (v) = infu∈P 〈u, v〉 = 〈α, v+〉 − 〈β, v−〉,
Q := Y+ × Y+ × X+ ×X+, Q

0 = Y∗+ × Y∗+ × X ∗+ × X ∗+,
T := (d,−d,∆,−∆) : X → Y × Y × X × X ,
T ∗(f1, f2, g1, g2) = d∗(f1 − f2) + ∆∗(g1 − g2),

f0 := (B,−A, µ,−λ).

Then from (9) it follows that 0 ≤ −δP (T ∗ϕ) + 〈f0, ϕ〉 for all ϕ = (f1, f2, g1, g2) ∈ Q0.
From Lemma 2.2 we obtain that f0 ∈ T (P ) +Q, i.e.,

(B,−A, µ,−λ) ∈ (d,−d,∆,−∆)(P ) + (Y+ × Y+ ×X+ × X+).

So there exists u ∈ P such that

B ≥ du, −A ≥ −du, µ ≥ ∆u, −λ ≥ −∆u.

Then u satisfies (6), (7), (8). The closedness of the set T (P ) + Q follows as in the proof
of Theorem 2.1.

If we omit requirement (8), then correspondingly in condition (C3) we have to delete all
terms involving g; this is easily read off from the proof of Theorem 5.1. Likewise, if we
omit requirement (7), then we have to cancel in (C3) all terms involving f . For reference
we note this as a corollary where, however, instead of (C3) we employ the equivalent
condition (9).

Corollary 5.2. There exists u ∈ X which satisfies (6), (8) if, and only if,

0 ≤ 〈β, h+〉 − 〈α, h−〉+ 〈µ, g1〉 − 〈λ, g2〉
for all g1, g2 ∈ X ∗+ and h := ∆∗(g2 − g1).

Now we want to omit condition (6) from the requirements for u.We say thatH is connected
iff for every a ∈ X, b ∈ X there exists p ∈ Y∗ such that

|f(b)− f(a)| ≤ |〈df, p〉| for all f ∈ X .

For comparison we note that, if H := G and p ∈ Pa,b, then f(b)− f(a) = 〈Kf, p〉.
Theorem 5.3. Let X and Y be countable. Assume that H is connected, and that∑

x∈X ψ(x, y) = 0 for all y ∈ Y. Then there exists u ∈ X which satisfies (7) and (8) if,

and only if, the following condition is satisfied:

0 ≤ 〈B, f+〉 − 〈A, f−〉+ 〈µ, g+〉 − 〈λ, g−〉 (C4)

for all f ∈ Y∗, g ∈ X ∗satisfying d∗f + ∆∗g = 0.
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Proof. Necessity of (C4) is straightforward. To prove sufficiency we note that (C4) is
equivalent with

0 ≤ 〈B, f1〉 − 〈A, f2〉+ 〈µ, g1〉 − 〈λ, g2〉 (10)

for all f1, f2 ∈ Y∗+, g1, g2 ∈ X ∗+
such that d∗(f1 − f2) + ∆∗(g1 − g2) = 0.

For applying Lemma 2.2 we make the same substitutions as in the proof of Theorem 5.1,

with one exception: P is now chosen as P := X . Then P 0 = {0X ∗}, and from (10) it
follows that

0 ≤ 〈f0, ϕ〉 for all ϕ = (f1, f2, g1, g2) ∈ Q0 such that T ∗ϕ ∈ P 0.

Anticipating the closedness of T (P ) +Q, it results from Lemma 2.2 and Remark 2.3 that
f0 ∈ T (P ) + Q, i.e., there exists u ∈ X such that f0 ∈ Tu + Q. Then u fulfills (7) and
(8).
We have still to prove the closedness of the set

T (P ) +Q = (d,−d,∆,−∆)(X ) + (Y+ × Y+ × X+ × X+).

In order to keep notations simple we shall only prove the closedness of the set

C := (d,−d)(X ) + (Y+ × Y+),

the general case presenting no additional difficulties. X and Y are provided with the

product topology. Assume that (B,−A) is in the closure of C. Since Y has a countable
neighborhood base of the origin, there exists a countable sequence {(Bn,−An)} ⊆ C

such that Bn → B and An → A pointwise on Y as n → ∞. Then there exists a
sequence {un} ⊆ X such that An ≤ dun ≤ Bn for all n. Clearly the sequence {(dun)(y)}
remains bounded for every y ∈ Y (this argument would fail if we had to admit generalized

sequences). Fix a ∈ X. The assumption
∑

x∈X ψ(x, y) ≡ 0 ensures that for every constant

function γ ∈ X we have d(un − γ) = dun. Hence, by subtracting suitable constants, we
may assume that un(a) = 0 for all n. Since H is connected there exists for every x ∈ X
some p ∈ Y∗ such that

|〈dun, p〉| ≥ |un(x)− un(a)| = |un(x)| for all n.

From this and the boundedness of the sequence {(dun)(y)} for all y ∈ Y it follows, since
p has finite support, that the sequence {un(x)} is bounded for every x ∈ X, i.e., there
exists d(x) ≥ 0 such that

−d(x) ≤ un(x) ≤ d(x) for all n.

Hence {un} ⊆ ∏x∈X [−d(x),+d(x)], and the latter set is compact by Tychonoff’s Theo-

rem. So there exists a subsequence, again denoted by un, such that un → u ∈ X pointwise
as n → ∞. Since d is continuous it follows that dun → du. Then it is easily seen that

A ≤ du ≤ B, and (B,−A) is in C. So C is closed.
This completes the proof of Theorem 5.3.
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6. Feasible flows

Since H is symmetric with regard to the roles played by X and Y , Theorem 5.1 carries
over to problems of feasible flows. Let H be as introduced in the previous paragraph. We
define the discrete divergence D : Y → X through

(Df)(x) :=
∑

y∈Y ψ(x, y)f(y),

and we define D∗ : X ∗ → Y∗ through
(D∗g)(y) :=

∑
x∈X ψ(x, y) g(x).

Note that ∆ = D ◦ d. We consider the problem of finding a flow w ∈ Y such that

V ≤ w ≤ W on Y, (11)

λ ≤ Dw ≤ µ on X, (12)

where V ≤ W on Y and λ ≤ µ on X [3]. In complete analogy with Corollary 5.2 we
obtain

Theorem 6.1. There exists w ∈ Y satisfying (11), (12) if, and only if,

0 ≤ 〈W, f+〉 − 〈V, f−〉+ 〈µ, h1〉 − 〈λ, h2〉 (C5)

for all h1, h2 ∈ X ∗+ and f := D∗(h2 − h1).

If H := G (which means that ψ(x, y) coincides with K(x, y) as defined in paragraph 1),
then condition (C5) is equivalent to the discrete conditions

0 ≤ 〈W, f−1 〉 − 〈V, f+
1 〉+ 〈µ, h1〉 for all h1 ∈ X ∗0,1 and f1 := D∗h1,

0 ≤ 〈W, f+
2 〉 − 〈V, f−2 〉 − 〈λ, h2〉 for all h2 ∈ X ∗0,1 and f2 := D∗h2.

Here X ∗0,1 is the class of all functions from X ∗ which assume only the values 0 and 1, i.e.,

which are characteristic functions of finite subsets of X. We refer to [3] for details.
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