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Pairs of compact convex sets naturally arise in quasidifferential calculus as the sub- and superdifferentials
of the directional derivative of a quasidifferentiable function (see [1]). Since the sub- and superdifferential
in a given point are not uniquely determined, minimal representations are of special importance. For
the 2-dimensional case, equivalent minimal pairs of compact convex sets are uniquely determined up to
translations (see [2],[13]). For the 3-dimensional case, J. Grzybowski [2] gave an example of finitely many
equivalent minimal pairs of compact convex sets which are not connected by translations. In this paper
we construct for the 3-dimensional case a continuum of equivalent minimal pairs of compact convex sets
which are not connected by translation for different indices. Moreover, we present a more general method
of reducing pairs of compact convex sets by hyperplanes as in [7].
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1. Introduction

In this note we consider inclusion minimal representants for elements of the R̊adström
-Hörmander lattice of equivalence classes of pairs of nonempty compact convex sets (see
[4], [6], [7], [9], [10]). As in [6] we denote for a real topological vector space X the set
of all nonempty compact convex subsets by K(X) and the set of all pairs of nonempty

compact convex subsets by K2(X), i.e. K2(X) = K(X)×K(X). The equivalence relation
between pairs of compact convex sets is given by the relation (A,B) ∼ (C,D) if and only
if A+D = B +C using the Minkowski-sum, and a partial order is given by the relation:
(A,B) ≤ (C,D) if and only if (A,B) ∼ (C,D) and A ⊆ C, B ⊆ D.
Pairs of compact convex sets naturally arise in quasidifferential calculus as the sub- and
superdifferentials of the directional derivative of a quasidifferentiable function (see [1],
[11]).
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To be more precise: Let U ⊆ X be an open subset of a real locally convex topological
vector space. A continuous function f : U → IR is said to be quasidifferentiable at x0 ∈ U
if and only if the following conditions are satisfied:

i) for every h ∈ X the directional derivative

df

dh

∣∣∣
x0

= lim
α→0
α>0

f(x0 + αh)− f(x0)

α

exists;

ii) there exist two nonempty weak-*-compact convex subsets ∂f |x0
, ∂f |x0

⊆ X∗ such

that
df

dh

∣∣∣
x0

=: df |x0
(h) = sup

v∈∂f|x0

< v, h >+ inf
v∈∂f|x0

< v, h > ,

where < , > denotes the dual pairing.

Note that a quasidifferential Df |x0
= ( ∂f |x0

, ∂f |x0
) is not uniquely determined, which

is a severe drawback as pointed out in [3].

Therefore a reduction or even a minimal representation of a quasidifferential is of special
importance. In this connection, we mention the following two problems:

i) In [1], chapter 17, it is shown that for a quasidifferentiable function of max-min-type
(i.e. a function generated by finitely many max- and min-operations over a finite set

of C1-functions) all steepest ascent- and descent directions can be determined from
a quasidifferential by solving finitely many convex quadratic programs.

In fact, given a quasidifferential Df |x0
= ( ∂f |x0

, ∂f |x0
), then every steepest descent

direction in x0 ∈ IRn is given by

g∗ := − w0 + v0

‖w0 + v0‖
with

‖w0 + v0‖ = sup
∂f|x0

inf
∂f|x0

‖w + v‖.

An analogous formula holds for the steepest ascent-directions. For a function of

max-min-type, the sets ∂f |x0
, ∂f |x0

can be choosen as polytopes.

Since the steepest ascent- and descent directions are invariants of a function, the latter
formulas led to the investigation of minimal representations of quasidifferentials.

ii) In [11] the relation between the Clarke subdifferential ∂clf |x0
and a quasidifferen-

tial Df |x0
= ( ∂f |x0

, ∂f |x0
) is investigated. In this connection two operations,

considered as “set-differences” are introduced, namely:

∂f |x0
−̇ ∂f |x0

and ∂f |x0
−̈ ∂f |x0

.

For a large class of locally Lipschitz quasidifferentiable functions, which contain all
functions of max-min-type, the following inclusions are proved:

∂f |x0
−̇ (−∂f |x0

) ⊆ ∂clf |x0
⊆ ∂f |x0

−̈ (−∂f |x0
)
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While the first expression is independent of the specific choice of a quasidifferential,

(since ∂cl(df |x0
(h)
∣∣∣
h=0

= ∂f |x0
−̇ (−∂f |x0

) ) the second depends on it. To get a

good upper bound for Clarke’s subdifferential, it is therefore of considerable interest
to work with a minimal representant of the quasidifferential.

In this paper, we will show that in Euclidean space IRn of dimension greater or equal to
three there exists a continuous family of equivalent minimal pairs of compact convex sets
which are not connected by translations. So the use of minimal pairs of compact convex
sets may not necessarily lead to an essential reduction of the two problems mentioned
above, i.e of determining the steepest descent- or ascent-directions or the upper estimates
for the Clarke-subdifferential. However, the classification of minimal pairs of nonempty
compact convex sets is an interesting problem in Convex Analysis (see [10])

Let us first set some notations: Let X be a real topological vector space, f ∈ X∗ be a
continuous linear functional, and K ⊆ X a nonempty compact convex set.

Then we denote by

Hf (K) := {z ∈ K | f(z) = maxy∈Kf(y)}

the face of K with respect to f . For the sum of the faces of two nonempty compact convex
sets A,B ⊆ X with respect to f ∈ X∗ the following identity holds:

Hf (A + B) = Hf (A) + Hf (B).

For A ∈ K(X) we denote by E(A) the set of extremal points. For two compact convex
sets A,B ⊆ X we will use the notation

A ∨ B := conv(A ∪B),

where the operation “conv” (see [10]) denotes the convex hull.

For a locally convex topological vector space X, A. Pinsker [8] proved the following identity
about nonempty compact convex sets A,B,C ⊆ X :

(A + C) ∨ (B + C) = C + (A ∨ B).

We will use the abbreviation A+B∨C for A+(B∨C) and C+d for C+{d} for compact
convex sets A,B,C and a point d.

Finally let us state explicitely the order cancellation law (see [4], [9],[14]).

Let X be real topological vector space and A,B,C ⊆ X nonempty compact convex subsets.

Then the inclusion
A + B ⊆ A + C

implies
B ⊆ C.

Thus from the algebraic point of view the set K(X) of all nonempty compact convex
subsets of a real locally convex topological vector space X is a commutative semi-ring
with cancellation property endowed
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with the “addition # ” given by:

A # B := A ∨ B
and the “multiplication ∗ ” given by:

A ∗B := A + B.

Within this context, the elements of K2(X) with respect to the relation ∼ can be
considered as fractions.

2. The Reduction of Pairs of Nonempty Compact Convex Sets by Cutting
Hyperplanes

Let X be a real locally convex topological vector space, A ⊆ X a nonempty compact
convex set, and f ∈ X∗ a continuous linear functional. For a point z ∈ X let us put

A+
f,z := {x ∈ A | f(x) ≥ f(z)}

A−f,z := {x ∈ A | f(x) ≤ f(z)}
and

Af,z := {x ∈ A | f(x) = f(z)}.
In [7] we proved the following result:

Lemma 2.1. Let X be a real locally convex topological vector space, A ∈ K(X) a
nonempty compact convex set, f ∈ X∗ a continuous linear functional, and let us assume
that Af,z 6= ∅ for an element z ∈ X.
Then the pairs

(A,A−f,z) and (A+
f,z, Af,z) ∈ K2(X)

are equivalent.

Now we are able to show how to reduce pairs of compact convex sets by hyperplanes.

Theorem 2.2. Let X be a locally convex topological vector space and (B,D) ∈ K2(X).

a) Assume that there exist points z1, d1 ∈ X and a continuous linear functional f1 ∈
X∗ \ {0} such that Bf1,z1

6= ∅ and B−f1,z1+d1
= D−f1,z1

+ {d1}.
Then the pairs

(B,D) and (B+
f1,z1

, D+
f1,z1+d1

)

are equivalent.
b) Moreover, if there exist points z2, d2 ∈ X and a continuous linear functional f2 ∈

X∗ \ {0} such that Bf2,z2 6= ∅, B−f1,z1
∩ B+

f2,z2
= ∅, D−f1,z1+d1

∩ D+
f2,z2+d2

= ∅, and

D+
f2,z2+d2

= B+
f2,z2

+ {d2}.
Then the pairs

(B,D) and (B+
f1,z1
∩ B−f2,z2

, D+
f1,z1+d1

∩D−f2,z2+d2
)

are equivalent.
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Remark 2.3. This is a generalization of a reduction method, which was introduced in
[7]. In other words: all parts of two compact convex sets which can be translated onto
each other can be cut off without leaving the equivalence class.

The situation is illustrated in figure 1.

Proof. To prove part a) we cut the set D ∈ K(X) by {x ∈ X | f1(x) = f1(z1 + d1)}.
This gives that Df1,z1+d1

= Bf1,z1
+ {d1} 6= ∅. Now by Lemma 2.1 we have:

B + Bf1,z1 = B−f1,z1
+ B+

f1,z1

and
D + Df1,z1+d1 = D−f1,z1+d1

+ D+
f1,z1+d1

.

Since D−f1,z1+d1
= B−f1,z1

+ {d1} we write the second equation as:

D + Df1,z1+d1
= D+

f1,z1+d1
+ B−f1,z1

+ {d1}.

Adding both equations i.e.

B−f1,z1
+ B+

f1,z1
+ D + Df1,z1+d1

= B + Bf1,z1
+ D+

f1,z1+d1
+ B−f1,z1

+ {d1}

and simplifying the sum by B−f1,z1
and by Df1,z1+d1

= Bf1,z1
+ {d1} we get

(B,D) ∼ (B+
f1,z1

, D+
f1,z1+d1

).

Figure 1
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To prove part b) let us first observe that, by symmetry with respect to the origin in X,
the statement obtained in part a) remains true if we exchange the exponents + and −.
Let us now apply the same technique to the sets B ′ := B+

f1,z1
and D′ := D+

f1,z1+d1.

By assumption we have:

D′+f2,z2+d2
= D+

f2,z2+d2
= B+

f2,z2
+ {d2} = B′+f2,z2

+ {d2},

and hence B′f2,z2
6= ∅.

Now the symmetric part of a) gives for the pair (B ′, D′) ∈ K2(X) that

D′ + B′−f2,z2
= B′ + D′+f2,z2+d2

.

By definition of B′ and D′ we have:

B′−f2,z2
= B+

f1,z1
∩ B−f2,z2

and
D′−f2,z2+d2

= D+
f1,z1+d1

∩D−f2,z2+d2
.

Hence
(B,D) ∼ (B′, D′) ∼ (B+

f1,z1
∩B−f2,z2

, D+
f1,z1+d1

∩D−f2,z2+d2
),

which proves the assertion.

3. Properties of Equivalent Minimal Pairs of Compact Convex Sets which
are constructed by a General Frustum

In [12] G. T. Sallee studied a special type of convex sets, called general frusta. By
definition, a general frustum is the convex hull of two convex sets that lie in different
parallel hyperplanes. We will restrict ourselves to the case of compact general frusta
which can be defined as follows:

Let X be a real locally convex topological vector space, f ∈ X∗ a continuous linear
functional, z ∈ X, with f(z) 6= 0 and E, F ∈ K(X) a nonempty compact convex set with

E, F ⊂ f−1(0). Then
A := E ∨ (F + {z})

is called a general frustum over E and F.

Fixing the continuous linear functional, f ∈ X∗ and the point z ∈ X, with f(z) 6= 0, we
use the notation

A :=: IF(E, F ) := E ∨ (F + {z})
for a general frustum over E and F.

Now we will consider pairs of general frusta:

Theorem 3.1. Let X be a real locally convex topological vector space, f ∈ X ∗ a contin-
uous linear functional, z ∈ X, with f(z) 6= 0 and for i ∈ {0, 1} let Ei, Fi, Ui, Vi ∈ K(X)
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be nonempty compact convex sets, with Ei, Fi, Ui, Vi ⊂ f−1(0). Let Ai := IF(Ei, Fi) :=
Ei ∨ (Fi + {z}) and Bi := IF(Ui, Vi) := Ui ∨ (Vi + {z}) be general frusta.
Then

(A0, B0) ∼ (A1, B1)

if and only if

i) (E0, U0) ∼ (E1, U1)
ii) (E0 + V1) ∨ (F0 + U1) = (E1 + V0) ∨ (F1 + U0)
iii) (F0, V0) ∼ (F1, V1)

Proof. This equivalence is a direct consequence of the following representation of the
sum of two general frusta. Let us omit for a moment the index i ∈ {0, 1} and consider
the general frusta

A = IF(E, F ) and B := IF(U, V ).

Then the formula:

A + B = (E + U) ∨ ([(E + V ) ∨ (U + F )] + {z}) ∨ ((F + V ) + {2 · z}).

holds.

This formula can be shown as follows:
Obviously we have

A + B ⊇ (E + U) ∨ ([(E + V ) ∨ (U + F )] + {z}) ∨ ((F + V ) + {2 · z}),

since the righthand side of the inclusion contains only sums of subsets of A and B.

Since for the extremal points of a general frustum we have:
E(A) = E(E) ∪ {E(F ) + {z}} and E(B) = E(U) ∪ {E(V ) + {z}},
it follows that

E(A + B) ⊆ E(E + U)∪ ([E(E + V )∪ E(U + F )] + {z})∪ (E(F + V ) + {2 · z}).

Now A+B is equal to the convex hull of E(A + B), which implies

A + B ⊆ (E + U) ∨ ([(E + V ) ∨ (U + F )] + {z}) ∨ ((F + V ) + {2 · z}),

and proves the formula.

The equivalence stated in the assertion follows now immediately from this formula.

Let us remark that condition ii) of the above theorem can be formulated in the commu-
tative semi-ring K(X) endowed with the “addition #” given by:

A # B := A ∨ B

and the “multiplication ∗” given by:

A ∗B := A + B.

by using the definition of the permanent, namely as:

perm

[
E0 U1

F0 V1

]
= perm

[
E1 U0

F1 V0

]
,
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i.e.
E0 ∗ V1 # F0 ∗ U1 = E1 ∗ V0 # F1 ∗ U0

4. An uncountable Family of Equivalent Minimal Pairs of Compact Convex
Sets, which are not connected by Translations

In [5] we posed the question whether equivalent minimal pairs of nonempty compact
convex sets are uniquely determined up to translations. An affirmative answer for the
two-dimensional case was independently given by J. Grzybowski [2] and S. Scholtes [13].

Moreover J. Grzybowski [2] showed by a counterexample in IR3 that this is not true for
higher dimensional spaces. Using a different technique, we could show in [7] by modifying
this counterexample that in every locally convex topological vector space X with dim X ≥
3 there exist equivalent minimal pairs of compact convex sets which are not related by
translations and each of these sets is of full dimension.

In this paper we will construct a continuous family (Aα, Bα) ∈ K2(IR3), α ∈ [0,∞) of
equivalent minimal pairs of compact convex sets such that any two pairs with different
indices are not related by translations.

The minimality follows from a criterium proved in [6] which we recall bellow:
Let X be a real locally convex topological vector space. For a nonempty compact convex
set A ⊂ X we consider a set S ⊆ X∗ \ {0} such that

conv(
⋃

f∈S
Hf (A)) = A.

The sets S ⊂ X∗ \ {0} of this type can be ordered by inclusion. A minimal element will
be called a shape of A and will be denoted by S(A). For a shape S(A) we consider the
subsets

Sp(A) := {f ∈ S(A) | card(Hf (A)) = 1}
which may be empty and put

Sl(A) := S(A) \ Sp(A);

i.e.
S(A) = Sl(A) ∪ Sp(A).

Using this notation the following result is proved in [6].

Theorem 4.1. Let X a real locally convex topological vector space, and let A,B ⊂ X be
nonempty compact convex sets. Let us assume that there is a shape S(A) of A satisfying
the following conditions:

a) for every f ∈ S(A) , card(Hf (B)) = 1
b) for every f ∈ Sl(A) and every b ∈ B, the condition Sl(A)+(b −Hf (B)) ⊆ A implies

b = Hf (B).
c) for every f ∈ Sp(A) , Hf (A)−Hf (B) ∈ E(A− B)

or conversely by interchanging A and B.

Then the pair (A,B) ∈ K2(X) is minimal.
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Remark 4.2. This is a sufficient crierium for minimality. In [6] we required for (b)
a stronger condition. But the proof given in [6] is exactly the proof for the present
formulation of this theorem.

In the following theorem we construct explicitely an uncountable family of equivalent

minimal pairs (Aα, Bα) ∈ K2(IR3), α ∈ IR+ := {τ ∈ IR|τ ≥ 0} which are not connected

by translations, i.e. for α, β ∈ IR+, α 6= β there exists no element x ∈ IR3 such that

Aα + x = Aβ and Bα + x = Bβ,

namely:

Theorem 4.3. Let f ∈ (IR3)∗ be given by f(x) := f((x1, x2, x3)) := x3 and put z :=

e3 := (0, 0, 1) ∈ IR3. For α ≥ 0 define the following sets:

i) Eα := conv{(0, 0, 0), (1, 1, 0), (1 + α, 0, 0)}
ii) Fα := conv{(0, 1, 0), (α, 0, 0), (1 + α, 1, 0)}
iii) Uα := conv{(0, 0, 0), (0, 1, 0), (1, 1, 0), (1 + α, 0, 0)}
iv) Vα := conv{(0, 1, 0), (α, 0, 0), (1 + α, 0, 0), (1 + α, 1, 0)}
Then the families of general frusta

Aα := IF(Eα, Fα) := Eα ∨ (Fα + {z})

Bα := IF(Uα, Vα) := Uα ∨ (Vα + {z})
form a family of equivalent minimal pairs

(Aα, Bα) ∈ K2(IR3)

which are not connected by translations.

Remark 4.4. Before the proof of this theorem, let us draw a picture for illustration.

Here, we identify the kernel of the linear functional f ∈ (IR3)∗ with the subspace IR2, i.e.

kern f = IR2.
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Proof. The proof goes in several steps:

i) We first show that for every α ∈ IR+ := {τ ∈ IR|τ ≥ 0} the pairs

(A0, B0) , (Aα, Bα) ∈ K2(IR3)

are equivalent. Because

Aα := IF(Eα, Fα) := Eα ∨ (Fα + {z})

and
Bα := IF(Uα, Vα) := Uα ∨ (Vα + {z}),

therefore by Theorem 3.1 we have to show that

1) (E0, U0) ∼ (Eα, Uα),
2) (E0 + Vα) ∨ (F0 + Uα) = (Eα + V0) ∨ (Fα + U0),
3) (F0, V0) ∼ (Fα, Vα).

The conditions 1) and 3) can be shown by using the reduction method, which is stated in
Theorem 2.2, since for α ∈ IR+ := {τ ∈ IR|τ ≥ 0} the pairs

(Eα, Uα) ∼ (F0, conv{(0, 0, 0) , (1, 1, 0)})
and

(Fα, Vα) ∼ (conv{(0, 0, 0) , (1, 1, 0)}, E0)

are equivalent.

Condition 2) can be checked by a direct calculation, since

Eα + V0 = conv{(0, 0, 0), (0, 1, 0), (1, 2, 0), (2, 2, 0), (2 + α, 0, 0), (2 + α, 1, 0)}
Fα + U0 = conv{(0, 1, 0), (0, 2, 0), (2, 0, 0), (2 + α, 1, 0), (2 + α, 2, 0)}
E0 + Vα = conv{(0, 1, 0), (1, 2, 0), (2 + α, 2, 0), (α, 0, 0), (2 + α, 0, 0)}
F0 + Uα = conv{(0, 0, 0), (0, 2, 0), (2, 2, 0), (1 + α, 0, 0), (2 + α, 1, 0)}

Hence
(E0 + Vα) ∨ (F0 + Uα) =

conv{(0, 0, 0), (0, 2, 0), (2 + α, 0, 0), (2 + α, 2, 0)}
= (Eα + V0) ∨ (Fα + U0)

ii) Next we show, that for every α ∈ IR+ := {τ ∈ IR|τ ≥ 0} the pair

(Aα, Bα) ∈ K2(IR3)

is minimal. We shall use Theorem 4.1.

Denote
a0 := (0, 0, 0) , b0 := (1, 1, 0) , c0 := (0, 1, 1) , d0 := (1, 0, 1)

and
a1 := (1, 1, 1) , b1 := (0, 0, 1) , c1 := (1, 0, 0) , d1 := (0, 1, 0)
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and for α ∈ IR+ := {τ ∈ IR|τ ≥ 0} put

sα := α · c1 = (α, 0, 0)

Now we define the following sets:

G1 := a0 ∨ b0 ∨ c0 and G2 := a1 ∨ b1 ∨ c1

and notice that
Aα := G1 ∨ (G2 + sα)

and
Bα := (d1 ∨G1) ∨ ((G2 ∨ d0) + sα).

Observe that as a shape for
Aα = G1 ∨ (G2 + sα),

we can choose the set
S(Aα) := Sl(Aα) = {f1, f2}

with
Hf1(Aα) = G1 and Hf2(Aα) = G2 + sα.

Since
Sp(Aα) = ∅,

we need only to check the conditions i) and ii) of Theorem 4.1.

Condition i) of Theorem 4.1 follows easily from the equalities

Hf1
(Bα) = {d1}

and
Hf2

(Bα) = {d0}.

Furthermore, condition ii) can be deduced from the facts, that for x, y ∈ IR3 :

x +G1 ⊆ Aα implies x = 0

and
y + (G2 + sα) ⊆ Aα implies y = 0.

It is obvious that for α, β ∈ IR+ with α 6= β the pair (Aα, Bα) ∈ K2(IR3) is not a

translation of the pair (Aβ , Bβ) ∈ K2(IR3) which completes the proof.

This example generalizes essentially the example of J. Grzybowski [2] and suggests to
restrict the definition of minimality.

Acknowledgment. We thank an anonymous referee for valuable hints and remarks.
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[4] L. Hörmander: Sur la fonction d’appui des ensembles convexes dans une espace localement

convexe, Arkiv för Mat. 3 (1954) 181–186.
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