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A generalization of the class of lower Ck−functions introduced by R.T. Rockafellar [28] called lower

T k−functions is proposed in the infinite dimensional case. Mappings of class T k are studied for themselves
as they seem to deserve some attention. Other classes of functions such as subconvex functions, subsmooth
functions, semismooth functions are either introduced or extended to the case of an infinite dimensional
Banach space.

R.T. Rockafellar has pointed out in [28] some classes of functions on an open subset W of
some Euclidean space which are important from the point of view of nonsmooth analysis.
It is our purpose here to extend his study to the infinite dimensional situation (see section
3) and to delineate some notions close to the class of semismooth functions introduced by
Mifflin [20] (see section 4). We also deal with generalizations of the class of submonotone
multimappings considered by Spingarn [32] (see section 2). The lack of local compactness
of the space leads us to consider directional convergence, as in [8], [20], [32], rather than
ordinary convergence.
We also consider (in section 1) a class of Gâteaux differentiable mappings whose deriva-

tives satisfy a mild continuity property. We call it the class of T k-mappings because
its definition involves the tangent functor of differential geometry. In finite dimensional

spaces it coincides with the class of Ck-mappings. It seems to play an important role
in nonlinear analysis; in particular it fits well the case of superposition operators (or
Nemitskii operators) between Lp spaces.

This class is used to define a generalization of the notion of lower-Ck function introduced

in [28]; we call it the class of lower-T k functions. In turn, we show that any lower-T k

function is semismooth for a large class of subdifferentials.
For the applicability to algorithms of the notions considered here, we refer the reader to
[21] for instance.
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1. Mappings of class Tk

In the sequel, by t.v.s. we mean a Hausdorff topological vector space ; the reader may
suppose all t.v.s. considered here are normed vector spaces (n.v.s.). Even when X and Y
are n.v.s. the space L (X, Y ) of continuous linear maps from X to Y can be given various
interesting topologies ; the same is true for the space Ln (X1, ..., Xn;Y ) of continuous
n-linear maps from a product X1× ...×Xn of t.v.s. into Y or for the space Ln (X;Y ) :=
Ln (X × ...×X;Y ). The following definition allows one to avoid considering any topology
or convergence on L (X, Y ) or Ln (X1, ..., Xn;Y ) ; in fact it is linked with what is called
continuous convergence [12], [15].

Definition 1.1. Given a topological space W and t.v.s. X1, ..., Xn, Y, a mapping

f : W → Ln (X1, ..., Xn;Y )

is said to be of class T 0 if the associated mapping f̂ = ev ◦ (f × IX1×...×Xn) : W ×X1 ×
...×Xn → Y given by

f̂ (w, v1, ..., vn) = f (w) (v1, ..., vn) (1)

is continuous.

Here ev : Ln (X1, ..., Xn;Y ) × X1 × ... × Xn → Y is the evaluation mapping given by
ev (u, v1, ..., vn) = u (v1, ..., vn) for u ∈ Ln (X1, ..., Xn;Y ) , vi ∈ Xi, i = 1, ..., n.
The preceding notion is not only simple ; it also enjoys interesting functorial properties
which make it usable. By this we mean, as in category theory, that crucial composition
properties hold .

Proposition 1.2. Let W be a topological space and let X, Y, Z,X1, ..., Xn, Y1, ..., Yp be

t.v.s. Given f : W → L (X, Y ) , g : W → L (Y, Z) of class T 0 the mapping h : W →
L (X,Z) defined by h (w) = g (w) ◦ f (w) is of class T 0.

More generally, given n1, ..., np ∈ IN\{0} with n1+...+np = n, fi : W → Lni(Xmi+1× ...×
Xmi+ni ;Yi) with m1 = 0, mi = n1 + ...+ ni−1 for i = 2, ..., p, g : W → Lp (Y1, ..., Yp;Z) ,

the mapping h : W → Ln (X1, ..., Xn;Z) given by

h (w) = g (w) ◦ (f1 (w)× ...× fp (w)) ,

is of class T 0.

Proof. The two assertions are immediate consequences of the formulae

ĥ (w, v) = ĝ
(
w, f̂ (w, v)

)

ĥ (w, v1, ..., vn) = ĝ
(
w, f̂1 (w, v1, ..., vn1) , ..., f̂p

(
w, vmp+1, ..., vn

))
.

It follows from the preceding proposition that the notion of mapping of class T 0 can be
used to define a category of vector bundles. We shall not pursue this route here but
instead introduce a notion of weaken continuous differentiability useful for applications.

Let us first present a useful characterization of the class T 0.
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When X and Y are n.v.s. and L (X, Y ) is given the topology induced by its usual norm,

any continuous mapping f : W → L (X, Y ) is of class T 0, the converse being false in
general, as the following characterization shows (take Y = IR and W = IN ∪ {∞} and
consider a sequence in X∗ which is weakly∗ convergent but not strongly convergent).

Proposition 1.3. Let W be a topological space, let X, Y be n.v.s. and let f : W →
L (X, Y ) . Then the following assertions (a) and (b) are equivalent; if moreover W is
metrizable and X is complete these assertions are equivalent to assertion (c):

(a) f is of class T 0;
(b) f is locally bounded and continuous when L (X, Y ) is given the topology of pointwise

convergence;
(c) for each v ∈ X the mapping w 7→ f (w) v := f(w)(v) is continuous.

Proof. Clearly (a) implies (c) i.e. the second part of assertion (b). Moreover for each

w ∈ W, f̂(w, 0) = 0 and as f̂ is continuous at (w, 0) there exists r > 0 and a neighborhood
U of w in W such that

f̂ (U × B (0, r)) ⊂ B (0, 1) .

Thus ‖f (u)‖ ≤ r−1 for u ∈ U and (b) holds.
Conversely let us suppose (b) holds. Then for each (w, x) ∈ W ×X there exists m ∈ IR+

and a neighborhood U of w in W such that ‖f (u)‖ ≤ m for u ∈ U. Given ε > 0 let

r > 0 be such that mr < ε/2 and let U
′

be a neighborhood of w contained in U such that

‖f (u)x− f (w)x‖ < ε/2 for u ∈ U ′ . Then, for (u, v) ∈ U ′ × B (x, r) one has

‖f̂ (u, v)− f̂ (w, x) ‖ ≤ ‖f (u) (v − x) ‖+ ‖f (u)x− f (w)x‖ ≤ ε,

so that f̂ is continuous at (w, x) .
Finally the implication (c) =⇒ (a) is a consequence of [7] Th 3, chap. III, paragraph 3,
number 6, p. 28.

For more general assumptions on the involved spaces we refer to [12].
In the sequel W is an open subset of a t.v.s. X and Y is another t.v.s. .

Definition 1.4. A mapping f : W → Y is said to be of class T 1 if it is continuous,

radially differentiable and if f ′ : W → L (X, Y ) is of class T 0 (or, equivalently, if df :
W ×X → Y, given by

df (w, v) = f ′ (w) (v) for (w, v) ∈ W ×X (2)

is continuous on W ×X).

Here f is said to be radially differentiable (or Gâteaux-differentiable) at x if for each
v ∈ X the limit

f ′(x, v) = lim
t→0+

1

t
(f (x+ tv)− f (x))

exists and is linear and continuous as a function of v, so that we denote it by f ′(x)(v) or
df(x, v). In fact, we often have a stronger differentiability property known as directional
differentiability or Hadamard differentiability (at least when X and Y are n.v.s.) or
MB-differentiability [4] or differentiability in the full limit sense [29].
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Proposition 1.5. If f : W → Y is of class T 1 and if Y is a locally convex t.v.s. then
f is directionally differentiable on X : for each (x, v) ∈ W ×X one has

f ′(x)v = lim
t↘0
u→v

1

t
(f(x+ tu)− f(x)).

It is easy to give examples showing that in general one does not have Fréchet differentia-
bility.

Proof. Let us set for s ∈ [0, 1] , t > 0, x ∈ W, u, v ∈ X

gt,u (s) = t−1f (x+ tv + st (u− v)) .

Since

g
′
t,u (s) = f

′
(x + tv + st (u− v)) (u− v)→ 0

uniformly in s ∈ [0, 1] as (t, u) → (0+, v) , the Mean Value Theorem (which can also be
called the Mean Value Inequality) entails that for each continuous seminorm q on Y one
has, with a proof similar to the one in the case of a norm,

q
(
t−1 (f (x+ tu)− f (x + tv))

)
= q (gt,u (1)− gt,u (0))

≤ sup
s∈[0,1]

q
(
g
′
t,u (s)

)
→ 0

as (t, u)→ (0+, v) , hence the result.

Any Gâteaux differentiable continuous convex function f : W → IR is of class T 1. In fact
for any (x, v) ∈ W ×X and any net or sequence ((xn, vn))→ (x, v) one has

lim sup
n

f ′ (xn, vn) ≤ f ′ (x, v)

since for each r > f ′ (x, v) we can find s > 0 with s−1 (f (x + sv)− f (x)) < r so that

f ′ (xn, vn) = inf
t>0

t−1 (f (xn + tvn)− f (xn)) ≤ s−1 (f (xn + svn)− f (xn)) < r

for n large enough. Changing vn into −vn we get that (f ′ (xn, vn))→ f ′ (x, v).

The following observation is an immediate consequence of the implication (a)=⇒(b) of
Proposition 1.3 and of the Mean Value Inequality.

Corollary 1.6. If X and Y are n.v.s., any mapping f : W → Y of class T 1 is locally
Lipschitzian.

The terminology we adopt stems from the following observation : f : W → Y is of class

T 1 iff its tangent mapping
Tf : W ×X → Y × Y

given by

Tf (w, v) =
(
f (w) , f ′ (w) v

)
(3)
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is continuous. Since this operation is functorial, i.e. T (g ◦ f) = Tg ◦ Tf we get the
following consequence (which can also be derived from Proposition 1.3).

Corollary 1.7. If f : V → W, g : W → Z where V (resp. W ) is an open subset of

X (resp. Y ) are of class T 1, then g ◦ f : V → Z is of class T 1.

We are ready to give the following definition.

Definition 1.8. A mapping f : W → Y is of class T k for k ≥ 2 if f is radially
differentiable and if f and Tf : W ×X → Y × Y given by Tf(w, x) := (f(w), df(w, x))

are of class T k−1.

Thus f is of class T k (k ≥ 1) iff f is of class T 1 and if df : X × X → Y is of class

T k−1. An immediate induction using the relation T (g ◦ f) = Tg ◦Tf shows the following
composition property.

Proposition 1.9. The composition of two mappings of class T k is of class T k.

Corollary 1.10. Any mapping of class Ck is of class T k. If f : W → Y is of class T k,
for any finite dimensional vector subspace V of X, f |W ∩ V is of class Ck.

If f : W → Y is of class T k, the kth-derivative of f defined inductively by

f (k) (x) (v1, ..., vk) = dgv1,...,vk−1
(x, vk) (4)

with gv1,...,vk−1
(w) = f (k−1) (w) (v1, ..., vk−1) is well defined, symmetric in v1, ..., vk and

continuous in x, v1, ..., vk.

Proof. The first assertion is an immediate consequence of Proposition 1.3; the second
one follows from the corresponding property for the restriction of f to W ∩ V, where V is
the vector subspace generated by x, v1, ..., vk.

In fact the last result yields a characterization.

Proposition 1.11. The mapping f : W → Y is of class T k with k ≥ 1 iff it is

continuous and its jth-derivatives f (j) : W → Lj (X;Y ) are well defined for j = 1, ..., k

and are of class T 0 iff it is continuous and its kth-derivative is well defined and of class
T 0.

Proof. It is enough to prove the last sufficient condition. For k = 1 the assertion follows
from the definitions since df (w, v) = f ′ (w) (v) . Suppose the result holds for k − 1 with

k ≥ 2. One has to prove that df : W × X → Y is of class T k−1. Using the induction

hypothesis it is enough to show that (df)(k−1) : W × X → Lk−1
(
X2;Y

)
is well-defined

and of class T 0. Now an easy induction shows that

(df)(k−1) (w, x) (u1, v1) ... (uk−1, vk−1) = f (k) (w) (x, u1, ..., uk−1)

+f (k−1) (w) (v1, u2, ..., uk−1) + ...+ f (k−1) (w) (u1, ..., uj−1, vj , uj+1, ..., uk−1)

+ f (k−1) (w) (u1, ..., uk−2, vk−1) .

(5)

It follows that (df)(k−1) is of class T 0.
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An interesting connexion with the class of Ck-mappings can be pointed out.

Proposition 1.12. Suppose X and Y are n.v.s. and f : W → Y is of class T k with

k ≥ 2. Then f is of class Ck−1,1, i.e. f has Fréchet derivatives of order j ≤ k − 1 which
are locally Lipschitzian.

Proof. Let us first suppose k = 2. Then df is of class T 1 hence (by Corollary 1.6) is
locally Lipschitzian. In particular, for any (w, x) ∈ W × X there exists c ∈ IR+, r > 0
such that for (z, x) ∈ B (w, r)× B (0, r)

‖df (w, x)− df (z, x)‖ ≤ c ‖w − z‖

hence ∥∥f ′ (w)− f ′ (z)
∥∥ ≤ c

r
‖w − z‖ ,

and f ′ is locally Lipschitzian. Since f ′ is continuous, the Gâteaux derivative is a Fréchet

derivative and hence f is of class C1.
Now suppose the result has been proved for k ≤ r, with r > 2 and let us prove it for
k = r+ 1. By definition df is of class T r, hence has Fréchet derivatives of order j ≤ r− 1
which are locally Lipschitzian. Since by formula (5)

f (r) (w) (x, u1, ..., uk−1) = (df)(r−1) (w, x) (u1, 0) ... (ur−1, 0)

we get the local Lipschitzian behavior of f (r) (.) by an argument similar to the one used
in the beginning of the proof.

The following immediate result will be used to obtain Taylor expansions for mappings of

class T k.

Lemma 1.13. Let g : [0, 1]× V → Ln (X, Y ) be of class T 0, where V is an open subset
of some n.v.s. Then f : V → Ln (X, Y ) given by

f (v) (x1, ..., xn) =

∫ 1

0
g (t, v) (x1, ..., xn) dt

is of class T 0.

Theorem 1.14. If W is an open subset of the n.v.s. X and if Y is a Banach space,

f : W → Y is of class T k, k ≥ 1 iff there exists mappings fj : W → Lj (X;Y ) and

r : V → Lk (X;Y ) of class T 0, with

V =
{

(w, x) ∈ W 2 : ∀t ∈ [0, 1] (1− t)w + tx ∈ W
}

such that r (w,w) = 0 for each w ∈ W and

f (x)− f (w) =
k∑

j=1

fj (w) (x− w)j + r (w, x) (x− w)k .
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Proof. If f is of class T k, its derivatives of order j ≤ k exists and for any w, x ∈ W
the restriction of f to W ∩ V, where V is the vector subspace generated by w and x

is of class Ck. Thus the preceding formula holds with fj (w) = f (j) (w) , r (w, x) =
∫ 1

0
(1−t)k−1

(k−1)!

(
f (k) (w + t (x− w))− f (k) (w)

)
dt, so that fj and r are of class T 0 by the

preceding lemma.

Conversely, suppose f satisfies the preceding expansion for some T 0-mappings fj, r. It

follows from the converse to Taylor’s theorem [1] p.6 that for each finite dimensional

vector subspace V of X the restriction of f to W ∩ V is of class Ck and

f (j) (w) = fj (w) for j = 1, ..., k, w ∈ W.
The result thus follows from Proposition 1.11.

Let us close this section by an example of fundamental importance : the case of Nemitskii
operators. We leave its extension to the case of superposition operators in Sobolev spaces
to the reader.

Example 1.15. ([23]) Given p ∈ ]1,∞[ , separable Banach spaces E,E ′ and a finite

measured space (T, T , τ), let F : T × E → E ′ be measurable and such that (a) for each

t ∈ T Ft : e 7→ F (t, e) is of class C1, (b) t 7→ F (t, 0) is in Lp (T,E′) , (c) there exists

some c ∈ IR+ and some b ∈ Lq (T, IR) with q =
(
1− p−1

)−1
such that for (t, e) ∈ T × E

‖DFt (e)‖ ≤ b (t) + c ‖e‖
p
q .

Then, for X = Lp (T,E) , Y = L1 (T,E′) , the mapping f : X → Y given by f(x) =

F (., x (.)) is of class T 1. In fact f is well defined, hence continuous by Krasnoselskii’s
theorem (see [2] p. 20 for instance). Moreover df exists and is given by

df (x, v) : t 7→ DFt (x (t)) v (t) ,

so that df maps Lp (T,E)× Lp (T,E) into L1 (T,E′), hence is continuous.
If p = 1 and if the growth condition on F is replaced with

‖DFt (e)‖ ≤ b (t)

for some b ∈ L∞ (T, IR), then again f is of class T 1 but it is not of class C1 in general.
Similarly, if p ∈ ]1,∞[ and conditions (a), (b), (c) are replaced with (a’) for each t ∈ T the

mapping Ft : e 7→ F (t, e) is of class C2, (b’) t 7→ F (t, 0) and t 7→ DFt (0) are in Lp (T,E′)
and Lq (T, L (E,E′)) respectively ; (c’) there exists c ∈ IR+ such that

∥∥D2Ft (e)
∥∥ ≤ c for

each (t, e) ∈ T × E, then f is of class T 2 but it is not of class C2 in general (see [2]
p. 24-26). This fact has been noticed by Skripnik [30], [31] when examining the famous
Palais-Smale theory.

2. Directional Submonotonicity

From now on X is a Banach space with dual space X∗ and M denotes the class of

weak∗ closed -valued multimappings M : X−→→X∗ which are locally bounded in this sense
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that for each x ∈ X there exists r > 0 and m > 0 such that ‖v∗‖ ≤ m for each
(v, v∗) ∈ M with v ∈ B (x, r) . Here we identify M and its graph. Let us recall the
concept of submonotonicity introduced by J.E. Spingarn [32] : M ∈ M is said to be
submonotone at x ∈ X if for each y ∈M (x)

lim inf
x′→x,x′ 6=x
y′∈M(x′)

〈y′ − y, x′ − x
‖x′ − x‖〉 ≥ 0,

so that M is trivially submonotone at x if x /∈ domM = M−1 (X∗) . Any monotone mul-
timapping is obviously submonotone. In order to introduce a weakening of the preceding
notion let us say that a sequence (xn) ofX converges to x in the direction u ∈ X0 := X\{0}
(or equivalently u ∈ SX , the unit sphere of X) if (xn)→ x, xn 6= x for n large enough and(
‖xn − x‖−1 (xn − x)

)
converges to ‖u‖−1 u. We write (xn)→

u
x. Equivalently, (xn)→

u
x

iff there exist sequences (tn)→ 0+ and (un)→ u such that xn = x+ tnun for each n ∈IN.
We say that (xn) converges directionally to x if there is some u ∈ X0 := X \ {0} such
that (xn)→

u
x. Our definition slightly differs from the one in [32] which does not discard

the case u = 0.
Our definition can be related to the notion of sponge introduced by J. Treiman [35] :
a subset S of X is called a sponge at x if for any u ∈ X0 there exists ε > 0 and a
neighborhood V of u in X such that x+ [0, ε]V ⊂ S. Clearly, any neighborhood of x is a
sponge but when X is infinite dimensional the converse may not hold. The connection is
as follows; the proof is easy and left to the reader.

Lemma 2.1. A subset S of X is a sponge at x iff for any sequence which converges
directionally to x one has xn ∈ S eventually.

From this characterization one gets that a mapping f : X → Y into a topological space
Y is spongiously continuous at x (i.e. for each neighborhood V of f (x) there exists a
sponge S at x such that f (S) ⊂ V ) iff f is directionally continuous at x in the sense : for
any u ∈ X0 and any (xn)→

u
x one has (f (xn))→ f (x).

We observe that the results of this section would be valid if M is replaced with the class

MS of weak∗-closed convex-valued multimappings M : X−→→X∗ which are spongiously
bounded in this sense that for each x ∈ X there exists a sponge S at x such that M (S)
is bounded.
It is easy to see that the following notion coincides with the notion of submonotonicity
in finite dimensional spaces. In infinite dimensional spaces the larger class of directional
submonotone multifunctions seems to be more suitable.

Definition 2.2. A multimapping M : X−→→X∗ is said to be directionally submonotone
at x ∈ X if for each y ∈ M (x) and any u ∈ X0 = X \ {0} , (xn)→

u
x, yn ∈ M (xn) one

has

lim inf
u
〈yn − y,

xn − x
‖xn − x‖

〉 ≥ 0. (7)

It is directionally submonotone if it is directionally submonotone at each x ∈ X.
Let us first relate this condition to a special kind of directional upper semicontinuity we
call directional exposability in order to avoid confusions with what would correspond to
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genuine directional upper continuity. Let us say that M is directionally exposable at x if
for any u ∈ X0, (xn)→

u
x, yn ∈ M (xn) and any weak∗-cluster point y∞ of (yn) one has

y∞ ∈M (x)u with

M (x)u = {y ∈M (x) : 〈y, u〉 = h (M (x) , u)} ,

where hC = h (C, .) is the Hörmander’s support function of the subset C of X∗ :

h (C, u) = sup {〈y, u〉 : y ∈ C} .

Let us say that M is directionally closed at x if for any u ∈ X0, (xn)→
u
x, yn ∈ M (xn)

any weak∗-cluster point of (yn) belongs to M (x). This property is satisfied when M(x)
is weak∗ closed and convex and M is directionally scalarly upper semicontinuous in the
sense that

lim sup
n

h (M (xn) , v) ≤ h (M (x) , v)

for each v ∈ X and each sequence (xn) which converges directionally to x. The converse
holds when M is locally bounded around x. In [8] M is said to be weak directionally closed
(WDC) at x when M satisfies the weaker property

lim sup
n

h (M (xn) , u) ≤ h (M (x) , u) (8)

whenever u ∈ X0, (xn)→
u

x. We would prefer to call this property pseudo-directional

closedness because (8) is valid only for sequences (xn) such that (xn) →
u
x and not for

any directionally convergent sequence, but we keep the terminology of [8] for the reader’s
convenience.
The proof of the following result is as in [8] Prop. 7 ; as in the assertions of the preceding
paragraph it uses the fact that when C is a weak∗ closed convex subset of X∗ one has

C = {y ∈ X∗ : 〈y, u〉 ≤ h (C, u)∀u ∈ X} .

Proposition 2.3. If M is a weak∗ closed-valued multimapping from X to X∗ which
is locally bounded (i.e. M ∈ M) and if M is directionally submonotone and WDC then
it is maximal directionally submonotone i.e. not strictly contained in some directionally
submonotone M ′ ∈ M.

The following characterization is an easy extension of [32] Thm 1.

Proposition 2.4. The multimapping M ∈ M is directionally submonotone and direc-
tionally closed at x iff it is directionally exposable at x.

Proof. Suppose M is directionally submonotone at x and directionally closed at x. Let
u ∈ X0, (xn)→

u
x, yn ∈ M (xn) and let y∞ be a weak∗-cluster point of (yn). We have

y∞ ∈M (x) by directional closedness. Moreover, since (yn) is bounded, for each y ∈M (x)
we have

〈y∞ − y, u〉 ≥ lim inf
u
〈yn − y,

xn − x
‖xn − x‖

〉 ≥ 0,
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hence 〈y∞, u〉 ≥ h (M (x) , u) and M is directionally exposable at x.
Conversely, suppose M is directionally exposable at x. Given u ∈ X0, x ∈ X, (xn)→

u

x, yn ∈M (xn) , y ∈M (x) , we take an infinite subset P of IN such that

lim
n∈P
〈yn − y,

xn − x
‖xn − x‖

〉 = lim inf
n
〈yn − y,

xn − x
‖xn − x‖

〉.

Since (yn)n∈P is bounded we can find a weak∗-convergent subnet (yni)i∈I . Its limit y∞
satisfies 〈y∞, u〉 ≥ h (M (x) , u) ≥ 〈y, u〉, hence

lim
n∈P
〈yn,

xn − x
‖xn − x‖

〉 = 〈y∞, u〉 ≥ 〈y, u〉 = lim
n∈P
〈y, xn − x
‖xn − x‖

〉

so that (7) holds. Moreover M is directionally closed as any directionally exposable
multimapping.

Now let us present a characterization of directional submonotonicity itself.

Proposition 2.5. Let F : X−→→X∗ be bounded on a neighborhood of x . The mul-

timapping F : X−→→X∗ is directionally submonotone at x iff it is scalarly directionally
submonotone at x in the following sense: for any u ∈ X0 and any (xn)→

u
x one has

lim inf
n
−h (F (xn) ,−u) ≥ h (F (x) , u) . (9)

It follows easily from this characterization that the sum of two directionally submonotone
multimappings is directionally submonotone. This property is also an easy consequence
of Definition 2.2.

Proof. If this relation does not hold for some u ∈ X0 and some (xn)→
u
x we can find

ε > 0 and some infinite subset N of IN such that

−h (F (xn) ,−u) < h (F (x) , u)− ε

for each n ∈ N ; thus there exists yn ∈ F (xn) such that

〈yn, u〉 < h (F (x) , u)− ε.

Let y ∈ F (x) be such that 〈y, u〉 > h (F (x) , u) − ε
2 . Then, as (yn) is bounded and as

( xn−x
‖xn−x‖) converges to u

‖u‖ ,

lim inf
n
〈yn − y,

xn − x
‖xn − x‖

〉 ≤ − ε

2 ‖u‖ < 0

and F is not directionally submonotone.
Conversely if relation (9) holds, for any u ∈ X0, for any (xn)→

u
x and for any yn ∈

F (xn) , y ∈ F (x) we have

lim inf
n
〈yn − y, u〉 ≥ lim inf

n
−h (F (xn) ,−u)− h (F (x) , u) ≥ 0
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and since (yn − y) is bounded and ‖xn − x‖−1 (xn − x) → ‖u‖−1 u, we get (7) and F is
directionally submonotone.

In the following statement we call M ∈ M pseudo-directionally scalarly continuous
(PDSC) at x if

lim
n
h (M (xn) , u) = h (M (x) , u)

whenever u ∈ X0 and (xn) →
u
x ; it would be called directionally scalarly continuous if

the preceding relation would hold whenever u ∈ X0 and (xn) converges directionally to
x. Obviously, any scalarly continuous multimapping M (i.e. any multimapping M such
that h(M(·), u) is continuous for any u ∈ X) is directionally scalarly continuous, hence
PDSC. For directionally submonotone multimappings, a much weaker condition suffices.

Corollary 2.6. If the multimapping M ∈ M is directionally submonotone at x then it
is PDSC at x iff it is WDC at x.

Proof. The preceding proposition and the inequality

−h (M (w) ,−u) ≤ h (M (w) , u)

for any w ∈ X and any u ∈ X0 show that hu(t, v) := h(M(x + tv), u) is l.s.c. at (0+, u)
when M is directionally submonotone at x.Therefore, it is continuous at (0+, u) iff it is
u.s.c. at (0+, u) .

The preceding circle of ideas can be completed by using the following new concept.

Definition 2.7. The multimapping F : X−→→X∗ is said to be thin at x if for any u ∈ X0,
(un) → u, (tn) → 0+ , (yn) with yn ∈ F (xn), xn := x + tnun the sequence (〈yn, u〉) has a
limit.

For instance, if f : X → X∗ is of class T 0, then the multimapping F whose graph is the
graph of f is thin at each point of W.

Proposition 2.8. Let M ∈ M . Then M is thin and PDSC at x iff it is directionally
submonotone and WDC at x.

Proof. The necessary condition stems from the fact that for any u ∈ X0, (un) → u,
(tn) → 0+ , one can find yn ∈ M(xn), xn := x + tnun with 〈yn, u〉 = h(M(xn), u). Now
we observe that the limit of (〈yn, u〉) does not depend on the choice of yn in M(xn) since
with another choice zn we can duplicate the sequence (xn) and take alternatively yn and
zn. Therefore

lim
n
〈yn, u〉 = lim

n
h(M(xn), u) = h(M(x), u)

as M is PDSC. Thus M is directionally submonotone, and obviously WDC. The sufficient
condition follows from Corollary 2.6 and the fact that for any u ∈ X0, (un)→ u, (tn)→
0+ , (yn) with yn ∈M(xn), xn := x + tnun one has

−h (M (xn) ,−u) ≤ 〈yn, u〉 ≤ h (M (xn) , u)

and we can use (8) and the fact that M is scalarly directionally submonotone to obtain
that M is thin at x.
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3. Lower-Ck and lower-Tk functions

The following definition incorporates a notion introduced by R.T. Rockafellar [28]. In the
sequel W is an open subset of a normed vector space X and k ∈ IN, k ≥ 1.

Definition 3.1. A function f : W → IR is said to be lower-T k (resp. lower-Ck) if for
each w ∈ W there exists an open neighborhood V of w in W , a compact topological space
S and a function F : S×V → IR which has radial derivatives of order j ≤ k as a function

of its second variable which are of class T 0 (resp. C0) (with respect to both variables)
and such that

f (x) = sup
s∈S

F (s, x) for x ∈ V.

We set Fs (x) = F (s, x) for (s, x) ∈ S × V and for j = 1, ..., k

Dj
XF (s, x) = F

(j)
s (x) .

We say that f is lower-T∞ (resp. lower-C∞) if f is lower-T k (resp. lower-Ck) for each

k ∈ IN \ {0}. We denote by LT k (X) (resp. LCk (W )) the space of lower-T k (resp. lower-

Ck) functions on W . Other notations are introduced in the following statement which
also uses the index of nonconvexity of f : W → IR at w ∈ W introduced in [26] as the

infimum c (f, w) of the set of nonnegative real numbers c such that f + 1
2c ‖·‖

2 is convex

on some convex neighborhood of w, with the usual convention inf ∅ = +∞.
Theorem 3.2. Let W be an open subset of a Hilbert space X. The following assertions
on a function f : W → IR are equivalent :

(a) f is lower-T∞ : f ∈ LT∞ (W ) ;

(b) f is lower-T 2 : f ∈ LT 2 (W ) ;
(c) for each w ∈ W one has c (f, w) <∞ ;

(d) f ∈ NΓloc (W ): locally f = g − 1
2c ‖·‖

2 with g convex l.s.c., c ∈ IR+ ;

(e) f ∈ QΓloc (W ): locally f = g − h with g convex l.s.c., h continuous quadratic ;
(f) f ∈ C∞Γloc (W ): locally f = g − h with g convex l.s.c., h of class C∞ ;

(g) f ∈ C2Γloc (W ): locally f = g − h with g convex l.s.c., h of class C2 ;

(h) f ∈ T 2Γloc (W ): locally f = g − h with g convex l.s.c., h of class T 2;
(i) f is lower C∞ : f ∈ LC∞ (W ) .

Proof. The implications (a) =⇒ (b),(c)⇐⇒ (d), (d)=⇒ (e)=⇒ (f)=⇒ (g)=⇒ (h),(i)=⇒
(a) are obvious; the implication (a)=⇒ (i) can be proved as in Proposition 1.12.We intend
to prove that (b)=⇒ (d),(h)=⇒ (b) and (f)=⇒ (a). We closely follow some arguments of
[28], especially for the implications (b)=⇒ (d), and (f)=⇒ (a).
(b) =⇒ (d) Given w ∈ W , let F : S × V → IR yield a representation of f as in Definition

3.1 , F being of class T 2 in x. Since the mapping (s, x, u) 7→ F ′′s (x) uu is continuous on
S × V ×X there exists r > 0 and ρ > 0 such that

∣∣F ′′s (x) uu
∣∣ ≤ 1
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for (s, x, u) ∈ S × B (w, ρ) × B (0, r). It follows easily that ‖F ′′s (x)‖ ≤ r−2 for (s, x) ∈
S ×B (w, ρ). Then, for c ≥ r−2 and for each s ∈ S the function Gs : B (w, ρ)→ IR given
by

Gs (x) = Fs (x) +
1

2
c ‖x‖2

satisfies G′′s (x) ≥ 0 for each x ∈ B (w, ρ), hence is convex. Therefore g = sups∈S Gs is

convex and for x ∈ B (w, ρ) one has

f (x) = sup
s∈S

Fs (x) = g (x)− 1

2
c ‖x‖2 .

(f)=⇒ (a) (resp. (h)=⇒ (b)). Given w ∈ W let U be an open convex neighborhood of w
in W such that f |U = g − h with g : U → IR convex l.s.c. and h : U → IR of class C∞

(resp. T 2). By a well known consequence of the Baire category theorem g is continuous.
Let V be a bounded closed convex neighborhood of w contained in U on which g and ∂g
are bounded (it is known that ∂g is locally bounded [27]; that also follows from the local
Lipschitz property of g). Let B be a closed ball in X∗ containing ∂g (x) for each x ∈ V
and let

S = {(y, t) ∈ B × [−m,m] : t ≥ g∗ (y)} ,
where m = sup {|〈y, v〉|+ |g (v)| : v ∈ V, y ∈ B} and g∗ is the conjugate function of g.
Since g∗ is l.s.c. when X∗ is endowed with the weak∗ topology, S is closed in B× [−m,m],
hence compact. Now for x ∈ V

g (x) = sup {〈y, x〉 − t : (y, t) ∈ S}

since g (x) = sup {〈y, x〉 − g∗ (y) : y ∈ X∗}, the supremum being attained for y ∈ ∂g (x) ⊂
B, with

|g∗ (y)| ≤| 〈y, x〉 | + |g (x)| ≤ m,

so that S is nonempty. Finally, for x ∈ V one has

f (x) = sup {F (s, x) : s ∈ S}

with F (s, x) = G (s, x)− h (x) , G (s, x) = 〈y, x〉 − t for s = (y, t) in S. Since G
′
s (x) v =

〈y, v〉 and G′′s (x) = 0 we see that G is of class T∞. Therefore F is of class T∞ (resp. T 2)

in the variable x when h is of class T∞ (resp. T 2).

Let us give a characterization of the lineality space of the convex cone LT∞ (W ), i.e. the
greatest vector subspace contained in LT∞ (W ). Its proof is inspired by [13].

Proposition 3.3. Let W be an open subset of a Hilbert space. The lineality space of

LT∞ (W ) is the space C1,1 (W ) of functions of class C1 on W with locally Lipschitzian
derivatives :

LT∞ (W ) ∩ (−LT∞ (W )) = C1,1 (W ) .

Proof. Let f ∈ C1,1 (W ). Then for any w ∈ W we can find a convex neighborhood U of
w and c ∈ IR+ with

|∇f (x)−∇f (y)| ≤ c ‖x− y‖ x, y ∈ U.
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Then by the Cauchy-Schwarz inequality we get that x 7→ ∇f (x)+cx and x 7→ −∇f (x)+

cx are monotone so that f + 1
2c ‖·‖

2 and −f + 1
2c ‖·‖

2 are convex on U . Therefore f ∈
LT∞ (W ) and −f ∈ LT∞ (W ) .
Conversely, let f ∈ LT∞ (W ) ∩ (−LT∞ (W )). Given w ∈ W we can find c ∈ IR+ and an

open convex subset U ofW with w ∈ U such that g := f+ 1
2c ‖·‖

2 and h := −f+ 1
2c ‖·‖

2 are

convex on U . Then, for each x ∈ U, v 7→ f ′ (x, v) = g′ (x, v)−c (x |v ) and v 7→ −f ′ (x, v) =

h′ (x, v)−c (x |v ) are sublinear and l.s.c.. Thus f ′ (x, .) is linear and continuous. Moreover

|(∇f (u)−∇f (v) | u− v)| ≤ c ‖u− v‖2 for u, v ∈ U

by the monotonicity of ∇g and ∇h. Let us show that this entails

‖∇f (u)−∇f(v)‖ ≤ c ‖u− v‖

for u, v in U . Given u and v in U it suffices to show that for any finite dimensional vector
subspace Z of X containing u and v the restriction fZ of f to U ∩ Z has a Lipschitzian
gradient ∇fZ with rate c. Now, by a famous result of Alexandroff, g, hence f, is twice
differentiable on a subset D of U ∩ Z with U ∩ Z \D negligible. For u ∈ D, z ∈ Z

∣∣f ′′Z (u) zz
∣∣ = lim

t→0

∣∣t−2(∇f (u+ tz)−∇f (u) | tz)
∣∣ ≤ c ‖z‖2

so that
∥∥f ′′Z (u)

∥∥ ≤ c. Therefore we can find sequences (un) , (vn) in U with limits u and

v respectively and (1− t) un + tvn ∈ D for a.e. t ∈ [0, 1] and

‖∇fZ (u)−∇fZ (v)‖ = lim ‖∇fZ (un)−∇fZ (vn)‖

= lim

∣∣∣∣
∫ 1

0
f ′′Z ((1− t) un + tvn) (un − vn) dt

∣∣∣∣ ≤ c ‖u− v‖ .

Let us conclude the present section by observing that although we proved here that a

function f : W → IR is of lower-T k (k ≥ 2) iff it is lower-C∞ when W is an open subset of
a Hilbert space X, we have not proved such an identification for a general n.v.s.. Moreover
we have not considered the case of vector-valued mappings.

4. Semismoothness and Subsmoothness

In this section we deal with a subdifferential operator ∂ considered as a mapping ∂ : L →
M, where L := L(W ) is the class of locally Lipschitzian functions on W. A priory, we do
not impose any condition on ∂. However, some of our statements will require some of the
following natural properties.

Definition 4.1. The subdifferential ∂ is said to be
localizable if for each open subset V of W one has ∂f(v) = ∂g(v) for each v ∈ V whenever
f and g coincide on V ;
symmetric if ∂(−f) = −∂f for each f ∈ L;
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contingently consistent if ∂f(x) ⊇ ∂ !f(x) for each f ∈ L and each x ∈ W, where ∂ ! is the
contingent subdifferential given by:

∂!f(x) :=
{
y ∈ X∗ : ∀v ∈ X 〈y, v〉 ≤ f !(x, v)

}
,

where

f !(x, v) := lim inf
(t,u)→(0+,v)

1

t
(f(x + tu)− f(x))

is the contingent (or lower epi-derivative) of f at x in the direction v.

Most known subdifferentials satisfy the latter condition (but the Fréchet subdifferential

∂− and the proximal subdifferential ∂π do not ). The symmetry condition is satisfied
by the Clarke subdifferential [9] and the moderate subdifferential ∂ of Michel-Penot [5],
[6], [18], [19], but it is not satisfied by the contingent subdifferential nor the limiting
subdifferential of Mordukhovich, Kruger and Ioffe ([14], [16], [22], for instance).
Another property will be useful; it is a form of the Mean Value Theorem. In the case

of the Clarke-Rockafellar subdifferential ∂↑ it has been devised by D. Zagrodny [36] fol-
lowing some previous work of J.-P. Penot [24] dealing with the contingent derivatives
and introducing the idea of approximate Mean Value Inequalities; see also [37] in this
connection.

Definition 4.2. The subdifferential ∂ is said to be valuable on X (or, alternatively,
the space X is said to be ∂-valuable) if for any f in L and for any a, b ∈ X with

[a, b] ⊂ W, a 6= b, there exist c ∈ [a, b] , c 6= a and sequences (cn)→ c, (c′n) with c′n ∈ ∂f(cn)
for each n such that

f(a)− f(b) ≤ lim inf
n
〈c′n, a− b〉.

From the recent works of several authors (see [3], [17], [25], [34], [36], [37] and their refer-

ences for instance) it follows that ∂ is valuable whenever ∂ = ∂↑, the Clarke subdifferential;

it is also the case for ∂ = ∂−, the Fréchet subdifferential, when X is an Asplund space, or

∂ = ∂! when X is a reliable space ([25]), in particular when X has a Lipschitzian bump

function of class T 1. Applications of the preceding form of the Mean Value Inequality
can be found in the preceding references; for related results about characterizations of
Lipschitzness and monotony see also [10].
The following definition will be convenient; in it we write ∂- with parenthesis as we drop
the reference to ∂ if there is no risk of confusion.

Definition 4.3. The function f ∈ L is said to be (∂-)regular if the directional derivative

f ′ of f exists and if for any x ∈ W, u ∈ X one has f ′(x, u) = d∂f(x, u) where

d∂f(x, u) := h(∂f(x), u).

It is said to be (directionally) (∂-)subconvex if ∂f is (directionally) submonotone.
It is said to be (∂-)subsmooth if ∂f is PDSC. Thus, f is subsmooth if for any u ∈ X0 and

any sequences (un)→ u, (tn)→ 0+ one has d∂f(x, u) = limn d
∂f(x+ tnun, u).
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Examples. If for a function f of class T 1 one has ∂f(x) = {f ′(x)} , which is the case

for ∂ = ∂! or ∂ = ∂ or ∂ = ∂↑, as easily seen, one gets that f is ∂-subsmooth and
∂-subconvex.
If f = maxi∈I fi, where I is a finite set and fi is continuous and if ∂f(w) = co(∪i∈I(w)

∂fi(w)) for each w ∈ W , where co(A) denotes the weak∗ closed convex hull of A and
I(w) := {i ∈ I : fi(w) = f(w)} then f is ∂-regular (resp. ∂-subconvex, resp. ∂-subsmooth)
whenever each fi has this property.

Taking into account [20] Lemma 2, ∂↑−subsmoothness (i.e. subsmoothness with respect

to ∂↑) in the following definition coincides with the original definition of semismoothness
by Mifflin ([20]). Here we follow the choices of [11] (see also [8]) and we use the termi-
nology ”directional differentiability” for the concept of Hadamard differentiability, for the
sake of consistency with the preceding notions. Note that for elements of L directional
differentiability coincides with radial (or Gâteaux-) differentiability.

Definition 4.4. The function f ∈ L is said to be semismooth at x ∈ W if f is
directionally differentiable at x and if ∂f is thin at x with f ′(x, u) = limn〈yn, u〉 for each
(xn)→u x and each yn ∈ ∂f(xn).

Proposition 4.5. Suppose ∂ is valuable on X. Then any directionally subconvex function
f in L is subregular in the following sense: for any (x, u) ∈ W ×X one has

d∂f(x, u) ≤ f !(x, u), (10)

hence
∂f(x) ⊂ ∂!f(x).

In particular, if ∂ is valuable and contingently consistent, for any directionally subconvex

function f one has ∂f = ∂!f.

Proof. Let (x, u) ∈ W ×X and let (tn)→ 0+, (un)→ u be such that

f !(x, u) = lim
n
t−1
n (f(x+ tn un)− f(x)).

Since ∂ is valuable one can find θn ∈ ]0, 1] , xn ∈ W, yn ∈ ∂f(xn) such that ‖x+ θntnun−
xn‖ < θnt

2
n and

f(x)− f(x+ tnun) ≤ 〈yn,−tnun〉+ t2n.

It follows that (xn)→u x and

lim
n
t−1
n (f(x + tn un)− f(x)) ≥ lim

n
inf〈yn, un〉 − tn ≥ h(∂f(x), u),

by Preposition 2.5 and the directional submonotonicity of ∂f , and inequality (10) is
proved.

The proof of a reverse inequality is more subtle.

Proposition 4.6. Suppose ∂ is valuable on X. Then any function f in L such that ∂f
is WDC is super-regular in the following sense: for any (x, u) ∈ W ×X one has

d∂f(x, u) ≥ f ](x, u) := lim
v→u
t↘0

sup t−1(f(x + t v)− f(x)) = −(−f)!(x, u). (11)
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Proof. Let (x, u) ∈ W ×X and let (tn)→ 0+, (un)→ u be such that

f ](x, u) = lim
n
t−1
n (f(x+ tn un)− f(x)).

In view of the Lipschitzian character of f we could take un = u, but this choice would not
allow us to avoid the following trick.Let us introduce wn = x+rnun with rn ∈

]
0, t2n

]
such

that | f(wn)− f(x) |< t2n. As ∂ is valuable one can find θn ∈ [0, 1), xn ∈ W, yn ∈ ∂f(xn)

such that ‖wn + θn(tn − rn)un − xn‖ < rnt
2
n and

f(x+ tnun)− f(wn) ≤ 〈yn, (tn − rn)un〉+ t2n.

Then (xn)→u x since

‖(θntn + (1− θn)rn)−1(xn − x)− u‖
≤ (θntn + (1− θn)rn)−1rnt

2
n + ‖(θntn + rn)−1(wn + θntnun − x)− un‖+ ‖un − u‖

≤ t2n + ‖un − u‖.

Since (〈yn, un〉) is bounded and since ∂f is WDC it follows that

lim
n
t−1
n (f(x+ tn un)− f(x)) ≤ lim

n
sup〈yn, un〉 − t−1

n rn〈yn, un〉+ 2tn ≤ h(∂f(x), u).

Corollary 4.7. Suppose ∂ is valuable on X. Then any directionally subconvex function
f in L such that ∂f is WDC is regular and semismooth.

Proof. Using the obvious inequality −(−f)!(x, u) ≥ f !(x, u) and relations (10), (11) we
get

−(−f)!(x, u) ≥ f !(x, u) ≥ d∂f(x, u) ≥ −(−f)!(x, u),

so that f is directionally differentiable and ∂-regular. Then we apply Proposition 2.8.

Corollary 4.8. Suppose ∂ is valuable on X. Then any semismooth and subsmooth
function in L is regular and directionally subconvex.

Proof. For such a function f, the multimapping ∂f is both PDSC and thin, hence WDC
and directionally submonotone by Proposition 2.8.

The proofs of the preceding two propositions show the following useful criterion. As
mentioned above, it applies in particular for the Clarke’s subdifferential ∂↑.

Proposition 4.9. Suppose ∂ is valuable and ∂f is WDC. Then f is semismooth iff ∂f
is thin.

Taking Proposition 2.8 and Corollary 4.7 into account we get the following complementary
result.

Proposition 4.10. Suppose ∂ is valuable and ∂f is PDSC. If ∂f is thin then f is
semismooth and ∂-regular : for each (x, u) ∈ W ×X one has

f ′(x, u) = h(∂f(x), u).
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The following result generalizes [11] Thm 5.1 in this sense that it applies to a wide class
of subdifferentials.

Theorem 4.11. Suppose ∂ is valuable on X. Let f ∈ L be directionally differentiable

on W and such that ∂f ⊂ ∂↑f. Then f is ∂-semismooth at x ∈ W iff for each u ∈ X0 the
function (t, v) 7−→ f ′(x+ tv, u) is continuous at (0+, u).

It follows that the notion of ∂-semismoothness is independent of ∂ for any ∂ contained in

∂↑ which is valuable on X.

Proof. Suppose f is ∂-semismooth at x and let ((tn, un)) be a sequence with limit (0+, u).

Given a sequence (εn) with limit 0+ let us choose sn > 0 such that | s−1
n (f(x + tnun +

snu)−f(x+tnun))−f ′(x+tnun, u) |≤ εn. Using the fact that ∂ is valuable as in the proofs
of Propositions 4.5 and 4.6 we get sequences (wn), (xn), (yn), (zn) such that (wn)→u x,
(xn)→u x, yn ∈ ∂f(xn), zn ∈ ∂f(wn) for each n and

lim inf
n
〈yn, u〉 ≤ lim inf

n
s−1
n (f(x+ tnun + snu)− f(x+ tnun))

≤ lim sup
n
s−1
n (f(x+ tnun + snu)− f(x+ tnun)) ≤ lim sup

n
〈zn, u〉.

As f is ∂-semismooth at x we conclude that each term of this string of inequalities
converges to f ′(x, u), so that (f ′(x+ tnun)) converges to f ′(x, u) too.

Conversely, if (t, v) 7−→ f ′(x+tv, u) is continuous at (0+, u) for each u ∈ X0 we get that f

is ∂↑-semismooth at x, hence is also ∂-semismooth at x, by our containment assumption.

Theorem 4.12. Suppose ∂ is valuable on X and contained in ∂↑. Then any lower

T 1-function f on W is ∂-semismooth.

Proof. One sees easily that the proof of [20] Thm 2 can be adapted to show that f is

∂↑-subsmooth. Using the remark following the preceding statement we get that f is also
∂-semismooth.
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1986) Ann. Inst. H. Poincaré 6 (1989) suppl., 325–338.

[14] A.D. Ioffe: Proximal analysis and approximate subdifferentials, J. London Math. Soc. (2)

41 (1990) 175–192.

[15] J.L. Kelley: General topology, Van Nostrand, Princeton, 1955.

[16] A. Kruger: Properties of generalized subdifferentials, Siberian J. Math. 26 (1985) 822–832.

[17] Ph. Loewen: A Mean Value Theorem for Fréchet subgradients, preprint, Nonlinear Anal.
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