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In this paper we are interested in examining the geometry of a bounded convex function over a Banach
space via its subdifferential mapping. We will consider two concepts. The first is the single valuedness
and continuity of the subdifferential mapping, and the second is the single valuedness and the continuity
of the “inverse” of this mapping. The smoothness of f is important for the first concept as the convexity
of f is for the second. We generalize some of the well known results on upper semi-continuity of the
subdifferential mapping, and we introduce a bornological approach to convexity, which allows us to draw
very nice parallels for the continuity of the inverse mapping with the coresponding concept for the well
understood subdifferential mapping. The theory developed allows us to give a local Smulyan result in
which the convexity at a point on the unit sphere is characterized by the uniform smoothness of the
subdifferential of this point, and to give the smoothness of the primal norm at a point in terms of the
convexity of the dual norm about the subdifferential of that point. As the title implies we will place
special emphasis on the approximation of this convex function by a sequence of such functions and derive
conditions, which ensure satisfactory approximation of the subdifferential and “inverse” mappings.
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1. Introduction: A Motivation

The aim of this report is to describe -in terms commonly used in Banach space geometry
and convex analysis- the problem that is at the heart of approximating the norm (time)
minimal distributed control of a vibrating process, which is governed by an abstract wave
equation (e.g. strings, beams, membranes, plates and networks of these) in a Hilbert
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space. This approach leads naturally to many questions in renorming of spaces à la [4].

One can show that the problem of finding the set of all distributed control functions (that
is, the problem of determining the set of all forcing functions which bring an initial state
of our system to rest within a given time T > 0) boils down to solving the linear equation

S(ω) = c, (1.1)

where S is a surjective bounded linear operator from the Bochner space L2((0, T ), `2) onto

the Hilbert space `2(IR2). The operator S is determined by the eigenelements λj, ϕj for
j ∈ IN, of the system being examined. For example, the vibrating string of unit length

fixed at both ends has eigenvalues λj = (jπ)2 and eigenfunctions ϕj(ξ) = sin(jπξ) for

ξ ∈ [0, 1] and all j ∈ IN. The right hand side of (1.1) contains information about the initial

state of our problem and is an element of `2(IR2). The solution set of (1.1) is some affine

subspace of L2((0, T ), `2). We wish to find any (the unique) element of this affine subspace,

which for some given p ∈ [2,∞] minimizes the norm on Lp((0, T ), `2) ⊂ L2((0, T ), `2).

We introduce the Hilbert adjoint operator of S, which we denote by S∗. By definition

〈S(ω), x〉 = 〈ω, S∗x〉 for all ω ∈ L2((0, T ), `2) and all x := (x1
j , x

2
j )j∈IN ∈ `2(IR2), It is

easy to see that S∗ is given by S∗ = (S∗j )j∈IN where the operator S∗j acts on x ∈ `2(IR2)

to give

(S∗j x)(t) := x1
j sin

√
λjt+ x2

j cos
√
λjt for t ∈ [0, T ] a.e.. (1.2)

After some technical details we can use (1.2) to show that any (the unique) p-norm
minimal solution of (1.1) has the form (which for p = ∞ is called a bang-bang control)
given by

ω(t) := 〈c, x̃〉‖(S∗x̃)(t)‖q−2 (S∗x̃)(t) for t ∈ [0, T ] a.e., (1.3)

where q is the dual index for p, that is we have p−1 + q−1 = 1, and where x̃ is any (the

unique) solution of the dual problem in `2(IR2), which is

to maximize ψc(x) := 〈c, x〉

subject to f(x) := ‖S∗x‖q ≤ 1.

Clearly, S∗ is intimately connected with the adjoint of the restriction of S to Lp((0, T ), `2),

and (even for p =∞) the range of this adjoint is contained in Lq((0, T ), `2). Much of our

analysis is simplified by showing that f is actually an equivalent norm on `2(IR2). We

designate `2(IR2) with norm f by Y , whose dual space Y ′ is `2(IR2) with norm f∗.

Modulo an application of the Lagrange multiplier rule, we realize our wish if we can find

any (the unique) x̃ ∈ Y such that x̃ ∈ S1 := {x ∈ `2(IR2) : f(x) = 1}, the unit sphere
in Y , and such that there exists some λ > 0 with c/λ ∈ ∂f(x̃), where ∂f(x̃) is the
subdifferential of f evaluated at x̃. Of course, the subdifferential of f at any x ∈ S1 is
contained in S ′1, the unit sphere of Y ′, and is exactly the set of norming functionals for
x. In this way the control problem is reduced to understanding the relationship between
f and ∂f .
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So far so good, but our standpoint is a practical one, and even in the simplest of cases
one cannot expect to have exact knowledge of the right hand side of (1.1). More often one
realizes the actual initial state of the medium (that is c) in some kind of limiting process.

For instance, one might consider the initial state cL ∈ `2(IR2) arrived at by projecting c
onto the space spanned by the first L fundamental harmonics for each L ∈ IN. That is, one
truncates c as in [9]. For each cL we find λL > 0 and x̃L ∈ S1 such that cL/λL ∈ ∂f(x̃L).
Since the sequence of approximating control functions is defined in terms of the sequence
{x̃L}, the question of convergence of {x̃L} to x̃ arises in a most natural way. In fact, what
we must understand is exactly which conditions on f ensure that the mapping

c 7→ ∂f∗(c) : Y ′ → Y (1.4)

is norm to norm or at least norm to weak continuous at c, thereby ensuring cL → c is
sufficient (and necessary) for the convergence (in some sense) of the sequence of approxi-
mate control functions. Unfortunately, the dual norm f ∗ is only of theoretical value, in as
much as it can only be approximated numerically, so we cannot examine its smoothness
properties to answer this question. It turns out that the convexity properties of f at
the dual solution x̃ guarantee the continuity of the mapping (1.4). Specifically, since Y
is reflexive (even if p = ∞), we show that a necessary and sufficient condition for the
norm to weak continuity of (1.4) is G-convexity at x̃, which is something closely akin to
strict convexity. We go on to show that a necessary and sufficient condition for the norm
to norm continuity of (1.4) is F -convexity at x̃. This condition is implied by, but not
equivalent to (even in the case of reflexive Banach spaces), local uniform convexity (local
uniform rotundity) as defined in [10]. See Section 4 for examples.

The next problem one encounters is the inexact knowledge of the eigenvalues themselves,
which is the case if the vibrating system under consideration is approximated numerically
(e.g. any finite element approximation of the vibrating system). This leads to not only
a sequence of approximating right hand sides of (1.1) but also to a sequence of approxi-
mating norms {fL}, which incorporate the inexact eigenvalues. This sequence converges

uniformly on bounded sets to f . In fact, if we let K be the set of norms on `2(IR2) which
are equivalent to f , what we are now asking is what conditions on f ensure that the
mapping

(f∗, c) 7→ ∂f∗(c) : K × Y ′ → Y (1.5)

is (uniform cross) norm to norm or at least (uniform cross) norm to weak continuous at
(f∗, c). That is, we topologize K with the topology of uniform convergence on bounded

sets and give Y ′ the norm topology and study the continuity of (1.5) with the norm or
weak topology on Y . It turns out that this setting lends itself well to the concepts of
G− and F−convexity and that the presence of K in (1.5) changes little in the analysis.
Thus, we may exploit the smoothness and convexity of f to once again get that cL → c
is the (necessary and) sufficient condition for the norm to weak (G−convexity) or norm
to norm (F−convexity) continuity of the mapping (1.5) at (f ∗, c), thereby ensuring that
cL → c is sufficient (and necessary) for the convergence (in some sense) of the sequence of
approximate control functions. This theory makes no demands on the smoothness of the
sequence of approximating norms, but asks only that they approximate the limit norm
uniformly well on some neighborhood of the point we are interested in.

In summary we apply local analysis to examine the duality between convexity in the primal
space and differentiability in the dual space, as well as the duality between differentiability
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in the primal space and convexity in the dual space. In [5] a global theory is developed.
We show that the definition of uniform convexity (rotundity) used in the global theory
does not lend itself well to a satisfactory local theory. Specifically, for the case p =∞ we
do not have G−convexity at each point, and so one cannot hope to apply global theory
(i.e. show f is uniformly convex as in [5]) to examine the continuity of the mapping (1.4)
or for that matter (1.5). By relaxing the global setting to a local one, we can apply generic

types of results to show that for any c in some dense Gδ subset of Y ′ we in fact get the
much stronger convergence.

Thus, in [13] we are able to apply the theoretical results derived here to extend two earlier
works. In [8] approximation methods are employed to approximate (1.3) for p = 2. The
geometry of the dual problem is not discussed and no convergence rate is derived. We
place these arguments in a geometrical setting which allows the approximation problem
to be understood properly. Exploiting the geometry involved we are able to not only give
a more general sufficient condition for convergence (cL → c) than that given in [8], but
we are also able to show that this condition is also necessary not only for p = 2 but for all
p ∈ [2,∞]. For p ∈ [2,∞) we show that f is uniformly convex as in [5], allowing stronger
convergence results than we get for p = ∞. The case p = ∞ is treated in [9], where
calculations are based on truncation and knowledge of the eigenelements. Thus, the finite

dimensional subspace used in [9] is span{ϕj}Mj=1, which is in practice not viable. The pow-

erful geometrical arguments iderived here allow us to weaken significantly the assumptions
made (exact knowledge of the eigenelements), while at the same time strengthening the
convergence obtained (norm or semi-norm convergence instead of weak∗).

2. Smoothness and the Subdifferential Mapping

We consider a real Banach space Y , on which is defined a convex function f . We will
further assume that f is bounded. That is, for each ρ > 0 there is a βρ > 0 such that

if ‖x‖ ≤ ρ, then |f(x)| ≤ βρ. In other words the function f is bounded on any bounded
set V ⊂ Y . This assumption presents no real loss of generality since given any point
x ∈ Y , at which a general convex function is continuous, we can construct a bounded
convex function which agrees with the general function on some neighborhood of x. This
assumption simplifies many of the arguments, so we will retain it throughout.

We will designate the dual of Y by Y ′. The subdifferential of f at any x ∈ Y denoted by
∂f(x) ⊂ Y ′ and defined by

∂f(x) := {ξ′ ∈ Y ′ : 〈ξ′|y〉 ≤ f(x+ y)− f(x) for all y ∈ Y }, (2.1)

is nonempty, bounded, convex and weak-∗ compact [12]. Another result to be gleaned
from [12] is that for each x, y ∈ Y we get a nice formula for the directional derivative of
f at x in direction y, which we denote by

df(x; y) := lim
α→0+

f(x+ αy)− f(x)

α
= max

ξ′∈∂f(x)
〈ξ′|y〉.

For each x, y ∈ Y we define the function e( · ; x, y) : IR→ IR by
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e(α; x, y) =





f(x + αy)− f(x)

α
− df(x; y) if α 6= 0,

0 if α = 0,

(2.2)

which is continuous on IR, except possibly from the left at the origin. For a fixed x ∈ Y
∂f(x) having only one element, which we write ∂f(x) = {∇f(x)}, is equivalent to each
function e( · ; x, y) in the family of functions indexed by y ∈ Y being continuous at the
origin. But this is the definition of Gateaux differentiability of f at x ∈ Y as in [11].

From the linearity of 〈ξ′| · 〉 in (2.1) it is clear that αe(α; x, y) ≥ 0 for all α ∈ IR, and from
the convexity of f it follows that e( · ; x, y) is monotonically increasing on IR. We will in
fact always choose y on the unit sphere. This choice will not restrict the generality of our
arguments, since one can show e(α; x, βy) = βe(αβ; x, y) for all x, y ∈ Y and all β > 0.

In our notation V +W := {x ∈ Y : x = v + w for some v ∈ V and w ∈ W} for any
V,W⊆Y . Further, we let Bρ(x̄) [Bρ] be the open ball of radius ρ > 0 about x̄ [the origin],

B̄ρ(x̄) [B̄ρ] be the closed ball of radius ρ ≥0 about x̄ [the origin] and Sρ(x̄) [Sρ] be the

sphere of radius ρ > 0 about x̄ [the origin]. We will define the multiplication of a set by
a scalar in the classical way αV := {x ∈ Y : x = αy for some y ∈ V}.
We let C0(IR) be the set of all continuous, strictly monotonically increasing functions on
IR which vanish at the origin.
Recall that if φ is a real valued, convex function on some open interval I ⊆ IR, then we

can define the right- and left-hand derivatives D±φ of φ on I, which are monotonically

increasing functions, and satisfy D−φ(τ) := min∂φ(τ ) ≤ max∂φ(τ ) =: D+φ(τ) for all τ ∈ I.

2.1. Differentiability Concepts

In order to give a concise yet general concept of the differentiability of a bounded, convex
function f , we consider again e given by (2.2) and two nonempty sets V ⊆ Y andW ⊆ S1.
We will take a bornological point of view here and in the next section.

Definition 2.1. We say e admits a uniform estimate [to the right] on V with respect to
W if there exists EW ∈ C0(IR) such that |e(α; x, y)| ≤ |EW(α)| for all y ∈ W, all x ∈ V
and all α ∈ IR [α ≥ 0]. We also say EW estimates e uniformly well [to the right] on V
with respect to W. If V = {x0} we say e admits an estimate [to the right] at x0 with
respect to W.

There are three classes of subsets of S1 which interest us. They are

G, the class of all finite subsets of S1,
H, the class of all compact subsets of S1, and
F , the class of all bounded subsets of S1.

Definition 2.2. If e admits a uniform estimate [to the right] on V with respect to each

W ∈





G, then we say that f is uniformly G − [G+−]differentiable on V.

H, then we say that f is uniformly H− [H+−]differentiable on V.

F , then we say that f is uniformly F − [F+−]differentiable on V.
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If in this definition V = {x}, we say that f is differentiable at x in the sense under
consideration. In as much as we are considering functons which are bounded and convex,
it is easy to see that in our terminology (uniform) G−differentiability is exactly (uniform)
Gateaux differentiability, and (uniform) F−differentiability is exactly (uniform) Fréchet
differentiability. We also remind the reader that due to the Lipschtz continuity of the

functions under consideration H − [H+−]differentiability is subsumed in the concept of

G − [G+−]differentiability. We will need this result later. See [1].

Since S1 ∈ F , we have that if f is uniformly F−differentiable on V ⊆ Y , there exists
some E ∈ C0(IR), such that for all x ∈ V, all α ∈ IR and all y ∈ S1, we get

f(x+ αy) ≤ f(x) + α〈∇f(x)|y〉+ αE(α).

Lemma 2.3. Let f be a bounded, convex function over the Banach space Y . Then the
set ∪x∈V∂f(x) is norm bounded if V is.

We remind the reader of the following variation of the Mean Value Theorem, the proof of
which can be found in [1].

Lemma 2.4. If f is bounded and convex on the Banach space Y , then for x, y ∈ Y
there is some τ0 ∈ [0, 1] and some ξ′ ∈ ∂f(x + τ0y) such that f(x+ y)− f(x) = 〈ξ ′|y〉.

2.2. Differentiability and Continuity of the Subdifferential Mapping

The set of all bounded convex functions forms a convex cone K in the vector space IRY .
By fixing V ⊂ Y and ρ > 0, we can endow K × Y with the semi-metric σ generated by
the semi-norm on K given by ‖f‖V,ρ := supx∈V+Bρ |f(x)| and the norm on Y . Thus,

σ ((f, x), (f0, x0)) := max{‖f − f0‖V,ρ , ‖x− x0‖}. (2.4)

For each δ > 0 we say (f, x) ∈ Bδ((f0, x0)) if σ((f, x), (f0, x0)) < δ. Using this topology
on K × Y , we want to explore the continuity of the mapping

(f, x) 7→ ∂f(x) : K × Y → C, (2.5)

where C ⊂ 2Y
′

is the set of all non-empty, convex, weak-∗ compact subsets of Y ′. In
a subsequent paper we will consider various hyper-topologies on C, each of which has
very interesting implications for set convergence. This would take us too far afield, so
in this paper we will define what continuity means directly in terms of elements of the
subdifferentials. In the subsequent paper these definitions will then become conditions
equivalent to the type of continuity under consideration there. Now we define the two
types of [upper semi-]continuity that we are interested in. The reader should keep the
example of the norm in mind. It is well known that for the norm the G− [uniform
F−]differentiability of the norm at a point of the unit sphere [on V ⊆ S1] is equivalent to
the norm to weak∗ [norm to norm uniform] continuity of any selection of the subdifferential

mapping [5]. That is, if {xL} ⊂ S1 and xL → x0, then we get ξ′L
?
⇀ξ′0 [ξ′L → ξ′0 uniformly

for x0 ∈ V], where ξ′L is any selection from ∂f(xL) and ξ′0 is any selection (the gradient)

from ∂f(x0). We generalize these concepts in the following definitions.
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Definition 2.5. Mapping (2.5) is uniformly G−[F−]upper semi-continuous on {f0}×V
if for ε > 0 and W ∈ G [F ] there exists a δ > 0 (independent of x0 ∈ V) such that if

x0 ∈ V, if (f, x) ∈ Bδ((f0, x0)) and if ξ′ ∈ ∂f(x), then supy∈W( 〈ξ′|y〉 − df0(x0; y) ) < ε.

Definition 2.6. Mapping (2.5) is uniformly G− [F−]continuous on {f0}×V if for each
ε > 0 and W ∈ G [F ] there exists a δ > 0 (independent of x0 ∈ V) such that if x0 ∈ V, if

(f, x) ∈ Bδ((f0, x0)), if ξ′ ∈ ∂f(x) and if ξ′0 ∈ ∂f0(x0), then supy∈W |〈ξ′ − ξ′0|y〉| < ε.

If V = {x0}, then we say the mapping is G− or F−[upper semi-]continuous at x0.

We remind the reader that S1 ∈ F , so that one works with exactly this set in that setting.
We also note that G− and F− continuity of (2.5) at x0 imply that ∂f0(x0) is a singleton.
This should come as no suprise, as we can characterize the continuity of the mapping
(f, x) 7→ ∂f(x) : K × Y → C in terms of the smoothness of f . This characterization is
our next goal. One could in fact obtain a uniform version of the next result by using
uniform G − [G+−]differentiability and uniform G−[upper semi-]continuity. Such a result
is, however, of little practical interest for us, as this entails being able to estimate e
uniformly in x ∈ V for each fixed W ∈ G. Instead, we go on to give a very useful
uniform version of F−[upper semi-]continuity. The next proof is simpler and the results
are somewhat stronger than the more traditional formulation of upper semi-continuity in
[11].

Theorem 2.7. The mapping (f, x) 7→ ∂f(x) : K×Y → C is G−[upper semi-]continuous

at (f0, x0) ∈ K × Y if and only if f0 is G − [G+−]differentiable at x0.

Proof. Assume first the G − [G+−]differentiability of f0 at x0. We fix ε > 0 andW ∈ G.
Then there exists EW ∈ C0(IR) such that |e(α; x0, y)| ≤ |EW(α)| for all y ∈ W and all
α ∈ IR [α > 0]. Fix ρ > 0, and let γ ≥ 1 be a Lipschtz constant for f on Bρ(x0). Choose

α ∈ (0, ρ) small enough that E(α) < ε/3. Define δ := min{ρ − α, αε/6γ}. Assume

that (f, x) ∈ Bδ((f0, x0)) and that ξ′ ∈ ∂f(x). Fix y ∈ W. Now let ξ′y = ∇f0(x0)

[ ξ′y ∈ ∂f0(x0) satisfy 〈ξ′y|y〉 = df(x; y) for our fixed y ∈ W ]. Upon rearranging (2.2) with

f0 and x0 and using (2.1) we get the inequality

〈ξ′ − ξ′y|y〉 ≤
f(x + αy)− f(x)

α
− f0(x0 + αy)− f0(x0)

α
+ e(α; x, y)

≤ f(x + αy)− f0(x+ αy)

α
+
f0(x)− f(x)

α
+

f0(x + αy)− f0(x0 + αy)

α
+
f0(x0)− f0(x)

α
+ EW(α) (2.6)

≤ 2δ/α + 2γ‖x− x0‖/α+ EW(α)

< ε.

Since this holds for each y ∈ W, the definition of G−upper semi-continuity of mapping
(2.5) at x0 is satisfied. Moreover, if f0 is G-differentiable at x0, then ∂f0(x0) = {∇f0(x0)},
and we can use similar arguments, with α ∈ (−ρ, 0) to obtain the estimate −ε < 〈ξ ′−ξ′y|y〉
for each y ∈ W, so that (2.5) is G−continuous at x0.
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Now assume that the mapping (f, x) 7→ ∂f(x) : K × Y → C is G−continuous at (f0, x0).

Fix W ∈ G. Choose y ∈ W, and let ξ′y ∈ ∂f0(x0) satisfy 〈ξ′y|y〉 = df(x; y). Then upon

rearranging (2.2) with 〈ξ′y|y〉 replacing df(x0; y) and applying Lemma 2.4, we get

e(α; x0, y) = 〈ξ′α − ξ′y|y〉 (2.7)

for some τ ∈ [0, 1] and some ξ′α ∈ ∂f0(x0 + ταy). Clearly, the G−continuity of (2.5)

implies that e(α; x0, y) = 〈ξ′α − ξ′y|y〉 → 0 as α → 0 for each y ∈ W. Let E : IR → IR be

defined by
EW(α) := sgn(α) ·max

y∈W
|e(α; x0, y)|+ α. (2.8)

Then we have that EW vanishes continuously at the origin so that EW ∈ C0(IR), so that
we get EW estimates e at x0 with respect to W. Since this construction can be carried
out for eachW ∈ G, we have by definition that f0 is G−differentiable at x0. Construction

(2.8) gives us the G+-differentiability for free, since W ∈ G and since for each y ∈ W we
get e( · ; x0, y) is monotonically increasing and continuous from the right at the origin. In
this case we define EW : IR→ IR by (2.8) for α ≥ 0 and by EW(α) = α for α < 0.

Corollary 2.8. Mapping (2.5) is G−(H−)upper semi-continuous at any (f, x) ∈ K×Y .

We can exploit uniformity in y ∈ S1 to extend Theorem 2.7 to get

Theorem 2.9. Let f0 be a bounded, convex function on Y with V ⊆ Y and ρ > 0.
Consider the following conditions.

(i) f0 is uniformly F − [F+−]differentiable on V and ∪x∈V+Bρ∂f0(x) is bounded.

(ii) Mapping (2.5) is uniformly F−[upper semi-] continuous on {f0} × V.

(iii) f0 is uniformly F − [F+−]differentiable on V.

Then we have (i)⇒(ii)⇒(iii); however, (i) and (ii) are not equivalent.

Proof. The proof that (i) ⇒ (ii) follows by modifying the arguments leading up to the
inequalities in (2.6). Using the uniform estimate in (2.3) that we get on e, we can replace
W ∈ G everywhere by S1. In (2.6) we can estimate both

f0(x0)− f0(x)

α
and

f0(x+ αy)− f0(x0 + αy)

α

by using Lemma 2.4 and the boundedness of ∪x∈V+Bρ∂f0(x). This gives us the inequalies

in (2.6) for each y ∈ S1, so that by taking the supremum over y ∈ S1 we get the definitions
(modulo the equality that the supremum might give) required in (ii). The proof that
(ii)⇒(iii) is also an immediate extension of Theorem 2.7.

To see that (ii)6⇒(i) in general, it suffices to consider f : IR → IR where f(x) = x2/2.

Then f(x + α) − f(x) = xα + α2/2 so that f is uniformly F−differentiable on IR. The
mapping (f, x) 7→ ∂f(x) = {x} is uniformly F−continuous on IR, but ∪x∈IR∂f(x) is not

bounded there. Boundedness of V is sufficient to ensure that (i) and (ii) are equivalent.
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3. Convexity and the “Inverted” Subdifferential Mapping

In the previous section we considered the mapping (f, x) 7→ ∂f(x) : K × Y → C and saw
that various types of continuity of this mapping at the point (f, x) in fact characterize the
smoothness of f at x ∈ Y . Now for a fixed f ∈ K and Z ⊆ Y the mapping ∂f : Z → C
defines a binary relation

Rf,Z := graph(∂f) ∩ (Z × Y ′)
= {(x, ξ′) ∈ Z × Y ′ : x ∈ Z and ξ′ ∈ Y ′ with ξ′ ∈ ∂f(x)}
= ∪x∈Z {x} × ∂f(x)

If we define Z ′ := ∪x∈Z∂f(x) ⊆ Y ′ and let f∗ be the conjugate of f , we see that the
inverse relation

R−1
f,Z := graph(∂f ∗) ∩ (Y ′ ×Z)

= {(ξ′, x) ∈ Z ′ × Z : ξ′ ∈ Z ′ and x ∈ Z with ξ′ ∈ ∂f(x)}
= ∪ξ′∈Z ′ {ξ′} × {x ∈ Z : ξ′ ∈ ∂f(x)}

defines implicitly a multivalued function ∂f ∗Z : Z ′ → 2Z . Our aim in this section is to

develop a theory which describes the continuity of the mapping

(f, ξ′) 7→ ∂f∗Z (ξ′) : (K ×Z ′)→ 2Z , (3.1)

and which parallels the theory developed in the last section. That is, given the appropriate
concepts of continuity, we want to relate certain properties of f to the continuity of (3.1)

at (f, ξ′) or more generally on {f} × V ′ for some V ′ ⊆ Z ′. Once again our vehicle will be
equation (2.2). In order to develop a more broadly applicable theory we consider Z ⊆ Y ,
defined in terms of f , to be one of three examples. These are Y , the domain of f , as well
as the level and tangent sets of f at some x0, where

Definition 3.1. The level set of f is Lα := {x ∈ Y : f(x) = α}.
Definition 3.2. The tangent set of f at x0 is Tf (x0) := {x ∈ Y : df(x0; x− x0) = 0}.
We wish to study the geometry of the set Rf,Z at the point x0 ∈ Z, so we assume that

x0 and Z have been chosen so that

ρx0 := sup{ρ ≥ 0 : Z ∩ Sα(x0) 6= ∅ for all α ∈ [0, ρ]} ∈ (0,∞]. (3.2)

Definition 3.3. In (3.2) we call ρx0 the diameter of Z at x0, and we write

dia(Zx0) = ρx0 .

If Z = Y then ρx0 = ∞ for each x0 ∈ Y . Further, if Z = Tf (x0) and 0 6∈ ∂f(x0), then

(assuming dim(Y ) ≥ 2) we get ρx0 = ∞. Finally, if Z = Lf(x0) and ρx0 = 0, then x0

is the unique minimum of f . Thus, if we take Z to be either of these last two cases, we
make the assumption that 0 6∈ ∂f(x0). We define the family of subsets of the unit sphere

Zα(x0) := {y ∈ S1 : x0 + αy ∈ Z}
= (1/α) [ (Z ∩ Sα(x0)) + {−x0} ].
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For notational reasons let Zα(x0) = ∅ for α ≥ ρx0. Thus, if Z = Y , then Zα(x0) = S1 for

all α > 0. If Z = Tf (x0), then Zα(x0) = Tf (x0) ∩ S1(x0) + {−x0} for all α > 0.

3.1. Convexity Concepts and the Bregman Distance Function

In order to give a concise yet general concept of the convexity of a bounded, convex
function f , we consider again e given by (2.2) and two nonempty sets V ⊆ Z andW ⊆ S1.
If we set inf ∅ =∞, then for eachW ⊆ S1 and x ∈ V we can define the increasing function
(which is similar to the Bregman distance function) µx,W : [0,∞)→ [0,∞] by

µx,W(α) :=

{
0 if α = 0

infβ≥α{e(β; x, y) : y ∈ W ∩ Zβ(x)} if α > 0

Definition 3.4. We say that e admits a Z−defined (lower) estimate on V with respect
to W if there is some FW ∈ C0(IR) such that µW(α) := infx∈V µx,W(α) ≥ FW(α) for

each α > 0. The Z−defined modulus of convexity of f on V is µS1, which we write µ. If

V = {x}, we say e admits a Z−defined (lower) estimate at x with respect to W.

Example 3.5. If f is the norm on a Hilbert space, then the modulus of convexity at
any point of the unit sphere defined in terms of the unit sphere is µ(α) = α/2.

Definition 3.6. If e admits a Z−defined (lower) uniform estimate on V with respect
to each

W ∈





G, then f is uniformly G−convex on V with respect to Z.

H, then f is uniformly H−convex on V with respect to Z.

F , then f is uniformly F−convex on V with respect to Z.

If in this definition V = {x}, we say that f is convex at x in the sense under consideration.
Note, too, that if Z = Tf (x0), then we always take V = {x}.
Lemma 3.7. The G−convexity of f at x0 with respect to Z (for each Z) is sufficient
to ensure that Lf(x0) ∩ Tf (x0) = {x0}. It is also necessary if Z 6= Y .

Proof. Assume f is G−convex at x0 with respect to Z. Fix x ∈ Lf(x0) ∩ Tf (x0) and set

ᾱ := ‖x − x0‖. Choose y ∈ S1 such that ᾱy = x − x0. Then x0 + αy ∈ Tf (x0) for all

α ∈ [0, ᾱ]. If ᾱ > 0, then df(x0; y) = 0, and e(α; x0, y) = 0 for all α ∈ [0, ᾱ], contradicting
the G−convexity of f at x0. Thus ᾱ = 0 and Lf(x0) ∩ Tf (x0) = {x0} as required. Note

that we make no use of the assumption 0 6∈ ∂f(x0) up to this point.
Let Lf(x0) ∩ Tf (x0) = {x0}. If Z = Tf (x0), then for each α > 0 and y ∈ Zα(x0) we have

f(x0 +αy) > f(x0), so that αe(α; x0, y) = f(x0 +αy)−f(x0) > 0. Thus, sinceW ∈ G, we
can define FW(α) := infy∈W e(α; x0, y) ∈ C0(IR) for α ≥ 0 and FW(α) := −α for α < 0.

Then FW estimates µx0,W (below) at x0 with respect to Tf (x0). If Z = Lf(x0), then for

each α > 0 we get [Zα(x0)+{x0}]∩Tf (x0) = ∅, so that y ∈ Zα(x0) implies −df(x0; y) > 0.

Thus, infβ≥α{e(β; x, y) : y ∈ W ∩ Zβ(x0)} = infβ≥α{−df(x0; y) : y ∈ W ∩ Zβ(x0)} > 0.

SinceW ∈ G, this is positive for each α > 0, so that we can find some FW ∈ C0(IR) which
estimates µx0,W (below) at x0 with respect to Tf (x0)
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Thus, we see that the G− convexity of f at x0 with respect to Lf(x0) is equivalent to the

G− convexity of f at x0 with respect to Tf (x0).

Note that in both cases it is essential that Z 6= {x0} so that f not be trivially G−convex at
x0 with respect to Z. Thus, 0 6∈ ∂f(x0) could be weakened to Z 6= {x0}. Note, too, that if
0 ∈ ∂f(x0), then Lf(x0) ⊆ Tf (x0), so Lf(x0) 6= {x0} if and only if Lf(x0) ∩ Tf (x0) 6= {x0}.
Of course, the conditions 0 ∈ ∂f(x0) and Lf(x0) = {x0} together are the same as requiring

that x0 is the unique minimum of f . Thus, if 0 ∈ ∂f(x0), then the G−convexity of f at
x0 with respect to Lf(x0) or Tf (x0) is equivalent to f having a unique minimum at x0. As

is the case if f is a norm, if 0 ∈ ∂f(x0), then f can be (trivially) G−convex with respect
to Lf(x0) but not with respect to Y .

If Z = Y we do not expect necessity in Lemma 3.7. To see this, consider the Euclidian

norm on IR2 with x0 = (1, 0). Then Lf(x0) is the unit sphere and Tf (x0) = {(1, τ) : τ ∈
IR}. Thus, we get that Lf(x0) ∩ Tf (x0) = {x0}. That f in this example is not G−convex

at x0 with respect to IR2 follows from

Lemma 3.8. If Z = Y , then G−convexity at x0 is exactly strict convexity at x0 as
expressed by the strict inequality

f(λx0 + (1− λ)(x0 + y)) < λf(x0) + (1− λ)f(x0 + y) (3.3)

for all λ ∈ (0, 1) and all y ∈ Y \{0}.

Proof. By setting α = 1 − λ and β = ‖y‖ we see that (3.3) is equivalent to the strict
inequality e(βα; x0, y) < e(β; x0, y) for all α ∈ (0, 1), for all β > 0 and for all y ∈ S1.
Thus, strict convexity at x0 implies e(α; x0, y) > 0 for all α > 0, so that given W ∈ G we
can construct a (lower) estimate FW ∈ C0(IR) for µx0,W just as in Lemma 3.7.

If on the other hand f is not strictly convex at x0, then we can find some λ ∈ (0, 1)
and y 6= 0 such that equality holds in (3.3). Convexity then implies that for this y we
get equality for all λ ∈ [0, 1]. This means that e(α; x0, y/‖y‖) = 0 for all α ∈ [0, ‖y‖],
violating the G−convexity of f at x0 with respect to Y .

In analog to the previous section, it is interesting to note the equivalence of G− and
H−convexity with respect to Z. We also note that the Z−defined modulus of convexity
of f on V is monotonically increasing, since µx,S1 is monotone for x ∈ V and µ :=

infx∈V µx,S1.

Lemma 3.9. The Z−defined modulus of convexity of f on V is continuous at the origin.

Proof. Note that in as much as µ := infx∈V µx,S1, it suffices to show this at a point. The

results follow from monotonicity if f is not F−convex at x0, so we assume it is. First
we let Z = Y or Z = Tf (x0). Then Zα(x0) is independent of α > 0, so we can write

0 ≤ µx0,S1(α) ≤ µx0,{y}(α) := e(α; x0, y) for any y ∈ Zα(x0), so that the results follow by

the continuity of e( · ; x0, y) at the origin.

Now assume Z = Lf(x0). Choose ỹ ∈ S1 such that x0 + ỹ ∈ Tf (x0). Choose ŷ ∈ S1

such that x0 + α̂ŷ ∈ Zα̂(x0) for some α̂ ∈ (0, ρx0). Then for each α ∈ [0, α̂] we can find
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some yα ∈ W := S1 ∩ {x : x = ν̂ŷ + ν̃ỹ where ν̂, ν̃ ≥ 0} such that x0 + αyα ∈ Lf(x0).

Since W ∈ H, we can find some EW ∈ C0(IR) which estimates e (above) with respect to
W. From this we get the estimate µx0,S1(α) ≤ df(x0; yα) =: e(α; x0, yα) ≤ EW(α) which

means that µx0,S1 is continuous at the origin. Note that here 0 6∈ ∂f(x0) is assumed.

As a consequence of this lemma and the monotonicity of µ, if f is uniformly F−convex
on V, then for each α ≥ 0 we can define µ̂(α) := αµ(α), which is strictly increasing in

α ∈ IR+ and continuous at the origin. Thus, we can define µ̂−1 : IR+ → IR+ by

µ̂−1(β) := α for all β ∈ [ lim
γ→α−

µ̂(γ), lim
γ→α+

µ̂(γ)], (3.4)

if for notational convenience, we agree that limγ→0− µ(γ) = 0. Clearly µ̂−1 is positive on

(0,∞), is monotonically increasing on IR+ and is continuous at the origin with µ̂−1(0) = 0.

3.2. Convexity and Continuity of the Inverse Mapping

We observe that for x0, x1 ∈ Z and ξ′ ∈ Z ′ we have the equivalence of x0, x1 ∈ ∂f∗Z(ξ′)
and ξ′ ∈ ∂f(x0) ∩ ∂f(x1). Thus, the cardinality of ∂f ∗Z (ξ′) being one for any ξ′ ∈ ∂f(x0)

is equivalent to the condition ∂f(x0) ∩ ∂f(x1) = ∅ for all x1 ∈ Z\{x0}. This leads us to
the dual equivalent to the statement that the function f is G−differentiable at a point if
and only if the subdifferential mapping is single valued there.

Theorem 3.10. The cardinality of the inverse mapping (3.1) is one on {f} × ∂f(x0)
if and only if f is G-convex at x0 with respect to Z.

Proof. In the light of Lemma 3.8 this is classical for Z = Y [3]. Thus we consider only
the case Z = Lf(x0) (and hence Z = Tf (x0)). We assume 0 6∈ ∂f(x0) throughout.

First assume f is G-convex at x0 with respect to Z = Lf(x0). Let ξ′ ∈ ∂f(x0)∩ ∂f(x) for

some x ∈ Z. Define the function φ by φ(τ) := f(x0 + τ(x − x0)) for each τ ∈ IR. Since

φ(0) = φ(1), we get D+φ(0) ≤ 0 ≤ D−φ(1). Now, the fact that ξ′ ∈ ∂f(x0)∩∂f(x1) gives

the inequalities D−φ(1) ≤ 〈ξ′|x − x0〉 ≤ D+φ(0). Thus, monotonicity of D+φ means

that D+φ ≡ 0 on [0, 1), so that x ∈ Tf (x0), and hence x = x0 by Lemma 3.7.

Now assume the cardinality of the inverse mapping (3.1) is one on {f} × ∂f(x0). Let

x ∈ Lf(x0) ∩ Tf (x0). Choose ξ′0 ∈ ∂f(x0) such that 〈ξ′0|x− x0〉 = df(x0; x− x0) = 0. For

all y ∈ Y we can write

〈ξ′0|y〉 = 〈ξ′0|x+ y − x0〉
≤ f(x+ y − x0 + x0)− f(x0)

= f(x+ y)− f(x).

Thus, ξ′0 ∈ ∂f(x) by definition. Since x ∈ Z, single valuedness of (3.1) implies x = x0.

But this is true for all x ∈ Lf(x0) ∩ Tf (x0), so that by Lemma 3.7 we get that f is

G−convex at x0 with respect to Z.

Unfortunately, the dual equivalent of Theorem 2.7 is not so readily availible. The tempta-
tion is to replace weak-∗ concepts in Y ′ by their weak analogs in Y , and thereby be able to
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characterize the G−continuity of the inverse mapping (3.1) in terms of the G−convexity
of f at a point. It turns out that G−convexity is too weak for this to be sucessful. We now
state the definition of G− [F−]continuity of mapping (3.1) and show that this is sufficient
for the G−convexity at a point. We then go on to show that in the proper setting this is
necessary, too.

Fix f0 ∈ K. Let x0 ∈ V0 ⊆ Z0 and define V ′0 := ∪x∈V0∂f0(x). Similarly for some f ∈ K
let V ⊆ Z and define V ′ := ∪x∈V∂f(x). We also define the families G ′ and F ′ of subsets

of the unit sphere S ′1 in Y ′ in the obvious way. Note that in (2.4) we make use of a set V,

which is not necessarily the same V as here. We will always make clear what V in (2.4)
is.

Definition 3.11. Mapping (3.1) is uniformly G − [F−]continuous on {f0} × V ′0 if for

each ε > 0 and W ′ ∈ G′ [F ′] there exists a δ > 0 (independent of ξ′0 ∈ V ′0) such that if

ξ′0 ∈ V ′0, if (f, ξ′) ∈ Bδ((f0, ξ
′
0)), if x ∈ ∂f∗Z(ξ′), if x0 ∈ ∂f∗0Z0

(ξ′0) and if |f(x)−f0(x0)| < δ,

then we get that supη′∈W ′ |〈η′|x− x0〉| < ε.

Note that the Euclidian norm on IR2 is G−convex at any point x0 of the unit sphere with
respect to the unit sphere, but this will not guarantee the continuity of (3.1) without the
condition |f(x) − f0(x0)| < δ. As we mentioned, the G−continuity of (3.1) ensures the
G−convexity of f . We now prove this fact.

Theorem 3.12. If the inverse mapping (3.1) is (uniformly) G−continuous on {f} ×
∂f(x0) for some x0 ∈ Z, then f is G−convex at x0 with respect to Z.

Proof. First we assume Z = Lf(x0) or Z = Tf (x0). Fix x ∈ Lf(x0) ∩ Tf (x0). Choose

ξ′ ∈ S ′1 such that 〈ξ′|x− x0〉 = ‖x − x0‖ and ξ′0 ∈ ∂f(x0) with 〈ξ′0|x − x0〉 = 0. We can

show (as in Lemma 3.10) that ξ′0 ∈ ∂f(x). Thus, the G−continuity of (3.1) implies, upon

choosing W ′ = {ξ′}, that ‖x − x0‖ < ε for all ε > 0 so that Lf(x0) ∩ Tf (x0) = {x0}. At

this point Lemma 3.7 gives the results.

Now let Z = Y . Fix ȳ ∈ S1 and assume e(α; x0, ȳ) = 0 for all α ∈ [0, ᾱ], where ᾱ ≥ 0.

Let ξ′0 ∈ ∂f(x0) satisfy 〈ξ′0|ȳ〉 = df(x0; ȳ). Using the definition of ξ′0 ∈ ∂f(x0) and of e
we get the inequality

〈ξ′0|y〉 ≤ f(x0 + y)− f(x0)

= f(x0 + αȳ + y − αȳ)− f(x0 + αȳ) + f(x0 + αȳ)− f(x0)

= f(x0 + αȳ + y − αȳ)− f(x0 + αȳ) + αdf(x0; ȳ),

which is valid for all y ∈ Y and all α ∈ [0, ᾱ]. Thus, if we set ỹ = y − αȳ, we get by

definition that ξ′0 ∈ ∂f(x0 +αȳ) for each α ∈ [0, ᾱ]. By G−continuity we get ᾱ = 0. This
gives us the G−convexity of f at x0 with respect to Y .

The next example indicates that G−convexity alone is too weak to assure the G−continuity
of mapping (3.1).

Example 3.13. Let f : `2 → IR be given by f(x) := 〈e1, x〉 +
∑∞

j=1
1
j (xj)

2 for

x = (xj)j∈IN ∈ `2. It is easy to show that f is a bounded, convex function, which is
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G−convex at the origin with respect to L0. However, if we let xL = (
√

1/4− L−1/2 −
1/2)e1 + L1/4eL ∈ L0, we see that xL 6⇀ 0. This together with the fact that

∇f(xL) = (

√
1/4− L−1/2 + 1/2)e1 + L−3/4eL → e1 = ∇f(0)

gives us a contradiction to the sufficency of G−convexity for the weak continuity of map-

ping (3.1) in the dual equivalent of Theorem 2.7 even in the Hilbert space `2. The problem
here being that the level sets of f are not bounded. In fact, this alone (even on a reflexive
space) is not enough as a variation on the last example shows.

Example 3.14. Let fL : `2 → IR be given by fL(x) := max{∑L
j=1

1
j (xj)

2, ‖x‖ − L}
and let f0(x) := max{∑∞j=1

1
j (xj)

2, ‖x‖ − 1}. We see that f0 is G−convex at the origin

and that fL → f0 uniformly on the closed unit ball. If we set x0 = 0 and xL := L1/4eL
for each L ∈ IN, then fL(xL)→ 0 = f0(x0) and ∇fL(xL) = 2L−3/4 → 0 = ∇f0(x0). It is
however clear that xL 6⇀ x0.

What we actually need is some condition that ensures that {xL} is bounded (Y reflexive)
and all of its weak cluster points are in the set Lf0(x0) ∩ Tf0(x0). Then Lemma 3.7 gives

the results. The following notation will be useful.

Definition 3.15. The α-union of f is Uα := {x ∈ Y : f(x) ≤ α}.
One way to accomplish the goals outlined above is

Theorem 3.16. Let f0 be a bounded convex function with bounded level sets defined on
the reflexive Banach space Y . Given a sequence of bounded convex functions {fL} and a
null sequence {δL} such that |fL(x)−f0(x)| < δL for all x ∈ Uα, where α > f0(x0), assume

that there is {xL} with ξ′L ∈ ∂fL(xL) such that ξ′L → ξ′0 ∈ ∂f0(x0). If fL(xL) → f0(x0),

say |fL(xL)− f0(x0)| ≤ δL, and if f0 is G−convex at x0 with respect to Z, then xL ⇀ x0.

Proof. Let αL := ‖xL − x0‖ and choose yL ∈ S1 such that αLyL = xL − x0. By the

boundedness of the level sets of f0 we can let β̄ := supx∈Lα ‖x−x0‖. If we choose βL > 0

such that x0 + βLyL ∈ Lα then we get the inequality

α− f0(x0)− 2δL
β̄

≤ fL(x0 + βLyL)− fL(x0)

βL

≤ fL(xL)− fL(x0)

αL
→ 0

for all L ∈ IN such that αL ≥ βL. Thus, there are only finitely many L such that xL 6∈ Uα.

Now let x̄ ∈ Uα be any weak cluster point of {xL}. Then since |fL(xL) − f0(xL)| ≤ δL
for all but finitely many L, we can write that f0(x̄) ≤ lim inf f0(xL) = f0(x0). Thus,

x̄ ∈ Uf0(x0). This means that 〈ξ′|x̄ − x0〉 ≤ 0 for all ξ′ ∈ ∂f0(x0). On the other hand,

from (2.1) we get 〈ξ′L|x0 − xL〉 ≤ fL(x0)− fL(xL) → 0. Since ξ′L → ξ′0 and xL ⇀ x̄ (for

some subsequence), we get that 〈ξ′0|x̄ − x0〉 = 0. Thus, we have x̄ ∈ Tf (x0) ∩ Uf(x0) =

Tf (x0)∩Lf(x0) = {x0}. This means that x0 is the only weak cluster point of the bounded

sequence {xL}.
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Corollary 3.17. Let f0 be a bounded convex function with bounded level sets defined
on the reflexive Banach space Y . Assume V in (2.4) is Uα, where α > f0(x0). If f0 is
G−convex at x0 with respect to Z, then the inverse mapping (3.1) is G−continuous at

(f0, ξ
′
0) for each ξ′0 ∈ ∂f0(x0).

Proof. This follows from the previous result and the fact that the weak topology on Y
is described by sequences.

As a corollary to Lemma 3.7 we have the equivalence of G−convexity at a point with
respect to the level set and the tangent set. The following lemma shows this carries over
to F−convexity. This will simplify the proof of the strong analog of Theorem 3.16.

Lemma 3.18. The convex function f is F−convex at x0 with respect to Tf (x0) if and

only if it is F−convex at x0 with respect to Lf(x0).

Proof. Assume f is not F−convex at x0 with respect to Lf(x0). Then there exists α > 0

such that the modulus of convexity of f at x0 is zero at α, which by the monotonicity of
this modulus, we can assume has been chosen small enough that f is Lipschitz on B2α(x0).
Without loss of generality, we assume that there is a sequence {xL} ⊂ Bα(x0) ∩ Lf(x0)

such that 0 = µ(α) = lim e(α; x0, yL), where αyL = xL − x0. Now define the bounded

convex (sublinear) function g on Y by g(x) = df(x0; x−x0) = max∂f(x0)〈ξ′|x−x0〉. Thus,

we get that g(xL)→ 0−. Choose x̂ ∈ Sα(x0) so that g(x̂) < g(xL) for L large enough. For
such L we choose zL (6= x0) such that zL, xL and x̂ are co-linear and such that g(zL) = 0.
This gives us the inequalities

g(xL)− g(x̂)

2α
≤ g(xL)− g(x̂)

‖xL − x̂‖

≤ g(zL)− g(xL)

‖zL − xL‖

for large L. Thus, we see that ‖zL−xL‖ → 0. Now we exploit the Lipschitz continuity of f
to get |f(xL)−f(zL)| ≤ γ‖zL−xL‖. This means that {zL} ∈ Tf (x0) and ‖zL−x0‖ ≥ α/2

for large enough L. Thus, if we let ȳL = (zL− x0)/‖zL− xL‖, then e(α/2; x0, ȳL)→ 0, so
that f is not F−convex at x0 with respect to Tf (x0). The converse of this is proved in a

similar fashion.

We will need some notation. Fix x0 ∈ Y and ξ′0 ∈ ∂f(x0). For each δ ∈ IR we define the
hyperplane and the family thereof by

Hδ = Hδ(ξ′0) := {x ∈ Y : 〈ξ′0|x− x0〉 = −δ}
HI = HI(ξ′0) := {x ∈ Y : x ∈ Hδ for some δ ∈ I}.

If I = [0, δ] for some δ > 0, we get sup{‖x − x0‖ : x ∈ HI(ξ′0) ∩ Lf(x0)} ≤ µ̂−1(δ) from

inequality (3.4) for all δ > 0 and for all ξ ′0 ∈ ∂f(x0).

As we will be approximating a function f by a sequence of such functions {fL}, we adopt

the notation LLα := {x ∈ Y : fL(x) = α} for the level sets of the approximating functions.
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We let U := ∪β≤f(x0)Lβ, and similarly we let UL := ∪β≤fL(xL)LLβ . Finally, we use the

notation H2I := ∪δ≥µ̂(α)Hδ and HI := ∪δ≥µ̂(α)/2Hδ to represent these half spaces.

We now consider a strong version of Theorem 3.16. We will see that F−convexity is
a much stronger condition, allowing us to relax many of the conditions needed with
G−convexity.

Theorem 3.19. Let f0 be a bounded convex function defined on a Banach space Y .
Given a sequence of bounded convex functions {fL} and a null sequence {δL} such that

|fL(x)− f0(x)| < δL for all x ∈ Bρ(x0), where ρ > 0, assume that there is {xL} with ξ′L ∈
∂fL(xL) such that ξ′L → ξ′0 ∈ ∂f0(x0). If fL(xL) → f0(x0), say |fL(xL) − f0(x0)| ≤ δL,

and if f0 is F−convex at x0 with respect to Z, then xL → x0.

Proof. We first consider the case Z = Lf0(x0). Let α ∈ (0, ρ/2) be given. We show that

there are only finitely many αL := ‖xL−x0‖ ≥ 2α. Now F−convexity at x0 ensures that
U ∩ Sα(x0) ⊂ U ∩ H2I . Uniform convergence assures us that there is some L1 ∈ IN such

that UL ∩ Sα(x0) ⊂ UL ∩ HI for all L ≥ L1. We extend this by the convexity of fL to

UL ∩ (Bα(x0))c ⊂ UL ∩ HI for all L ≥ L1.

Since 0 6∈ ∂f0(x0), we can find a x̂0 ∈ Bα(x0) with f0(x̂0) < f0(x0). Uniform convergence
of the sequence {fL} to f0 guarantees that we can find a zero sequence {τL} and an

L2 ≥ L1 such that x̄L := τL(x̂0 − x0) + x0 ∈ LLfL(xL) ∩ Bα(x0) for all L ≥ L2.

For each L ∈ IN such that xL 6∈ {x0, x̄L} we define ȳL := (xL − x̄L)/‖xL − x̄L‖ and
yL := (xL − x0)/αL. One can readily see that ‖ȳL − yL‖ ≤ 2‖x̄L − x0‖/αL.

Now consider the set of all L ≥ L2 for which λL := 2α/αL ≤ 1, which we denote by J . We

will show this set to be finite. By the convexity of each UL we have λ(xL− x̄L)+ x̄L ∈ UL
for any λ ∈ [0, 1]. We choose λ = λL in this expression and write

λL(xL − x̄L) + x̄L = λL(αLyL + x0 − x̄L) + (x̄L − x0) + x0

= (αyL + x0) + [αyL + (1− λL) · (x̄L − x0)].

Now the term in brackets is an element of Bα(αyL) for all L ∈ J . Thus, for such L we

get the set inclusion λL(xL − x̄L) + x̄L ∈ UL ∩ (Bα(x0))c ⊂ UL ∩ HI . If we note that

0 ≤ 〈ξ′L|x − x̄L〉 for all x ∈ LLfL(xL) and all L ∈ IN, specifically for xL ∈ LLfL(xL), we get

the inequality 0 ≤ 〈ξ′L|ȳL〉, which lets us write

µ̂(α)/2 ≤ − 〈ξ′0|λL(xL − x̄L) + x̄L − x0〉
≤ − 〈ξ′0|2αyL + (1− λL)(x̄L − x0)〉
≤ 2α

[
〈ξ′L − ξ′0|ȳL〉+ 〈ξ′0|ȳL − yL〉

]
+ |〈ξ′0|x̄L − x0〉|

≤ 2α‖ξ′L − ξ′0‖+ 3‖ξ′0‖ · ‖x̂0 − x0‖ · |τL|

Since |τL| → 0 and ‖ξ′L− ξ′0‖ → 0 but µ̂(α) > 0, it follows that J is finite. Thus, we have

{xL} ∩ (B2α(x0))
c is finite for each α ∈ (0, ρ/2), or in other words xL → x0.
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Now consider the case Z = Y . Again, we let αL = ‖xL − x0‖ and choose yL ∈ S1 such
that αLyL = xL − x0. Now define eL in terms of fL as in (2.2). Then if µ is the modulus
of convexity, we can write

µ(αL) ≤ e0(αL; x0, yL) + eL(αL; x0,−yL)

=
f0(xL)− f0(x0)− fL(xL) + fL(x0)

αL
− dfL(xL;−yL)− df0(x0; yL)

≤ 2δL
αL

+ ‖ξ′L − ξ′0‖

This of course implies that xL → x0.

It should be noted that we have shown that for any ε > 0 there is an Lε such that if
L ≥ Lε, then ‖xL − x0‖ < ε and this Lε is independent of ξ′0 ∈ ∂f(x0). Under suitable
conditions this theorem can be made uniform in x ∈ V. Similar in spirit and proof we get

Corollary 3.20. Let f0 be a bounded convex function defined on the Banach space Y .
Assume V in (2.4) is Bρ(x0), where ρ > 0. If f0 is F−convex at x0 with respect to Z,

then the inverse mapping (3.1) is uniformly F−continuous on {f0} × ∂f0(x0).

In the next section we will invert this last result in the case of norms in the process of
deriving a local Smulyan theorem. That is, we will show that the bornological approach to
smoothness and convexity allows for the characterization locally of one of these properties
in the primal space by the dual property in the dual space.

4. Applications

We begin this section by giving a sufficient condition for F−convexity at a point x0. This
condition reminds us of the definition of uniform convexity in [2] and [5] for the case of
the norm on Y . We go on to consider the duality between differentiability and convexity.

4.1. Local Uniform Rotundity

Once again the Mean Value Theorem provides us with the machinery to obtain

Theorem 4.1. If f is uniformly rotund at x0 with respect to Z, that is if there exists a
modulus function δ ∈ C0(IR) such that for all x ∈ Z we have

f

(
x + x0

2

)
≤ f(x) + f(x0)

2
− δ (‖x− x0‖) , (4.1)

then f is F−convex at x0 with respect to Z.

Proof. We consider inequality (4.1), where we assume that x 6= x0. Define the modulus
function µx0 : [0,∞)→ [0,∞) by

µx0(α) :=
{

2δ(α)/α if α > 0,
0 if α = 0.

Since δ(α) > 0 for all α > 0, we get that µx0(α) > 0 for all α > 0. We will simplify our

notation by defining α := ‖x− x0‖ > 0 and y := (x− x0)/α.
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If Z = Y , we rearrange (4.1) and use the results of Section 2.2 to get the inequality

µx0(α) ≤ f(x0 + αy)− f(x0)

α
− f(x0 + (α/2) · y)− f(x0)

α/2

≤ f(x0 + αy)− f(x0)

α
− 〈ξ′|y〉,

which is valid for all α > 0, for all ξ′ ∈ ∂f(x0) and for all y ∈ S1.

If Z = Lf(x0), let x ∈ Z ∩ Sα(x0). From (2.1) and (4.1) we see that for all ξ ′ ∈ ∂f(x0),

we can derive the inequality

〈
ξ′ | x− x0

2

〉
≤ f

(
x− x0

2
+ x0

)
− f(x0)

≤ − δ (‖x− x0‖) .

Dividing this by α/2 and rearranging gives us µx0(α) ≤ −〈ξ′|y〉 for all ξ′ ∈ ∂f(x0) and

all y ∈ S1 with x0 + αy ∈ Lf(x0). If dia(Lf(x0)) 6=∞, we must redefine µx0 a bit but it is

obvious how to do this. The proof for Z = Tf (x0) is similar to this proof.

We note that Theorem 4.1 and Lemma 3.9 together show the modulus function δ is
necessarily o(α) as α→ 0+. For a different proof of this see [6].

We also note that (4.1) is by no means necessary for the F−convexity at x0 ∈ Y as
we will see in the next example. We motivate the claim that local uniform rotundity as
developed in [10] does not sufficiently capture the local duality at play between smoothness
and convexity of dual norms. It is designed to measure the convexity of the norm at a
point x0 ∈ S1 in terms of points at some distance from x0. Thus, the smoothness of the
norm on a neighborhood of x0 can play a role in measuring its convexity, and clearly for
a satisfactory duality theory, differentiability should play no such role in the primal space
(only in the dual space). In our definition, however, we examine the subdifferential of f
at x0, and thereby avoid the unfortunate situation of involving the smoothness of f on a
neighborhood of x0 in the measure of the convexity of f at x0.

Example 4.2. We will introduce an equivalent norm f on `2 which is F−convex at e1

but not uniformly rotund there. We start by defining the family of subsets of `2

Zj := { x := (xi)i∈IN ∈ `2 : ( |x1|(j+1)/j + |xj |(j+1)/j ) ≤ 1} ∩ B̄1

for each j ≥ 2. Then we define Z := ∩j≥2Zj . It is not difficult to see that the set inclusion

B̄√
1/2
⊂ Z ⊂ B̄1 (4.2)

is valid. Next we define f on `2 by f(x) := inf{α > 0 : x/α ∈ Z}, which, due to (4.2),

induces a norm on `2 equivalent to that derived from the scalar product. If we define

xL := (e1 + eL)/2 ∈ `2 for each L ≥ 2, then it is easy to see that f(xL) = 2−1/(L+1) → 1.
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Since f(ej) = 1 for all j ∈ IN, we get that f is not uniform rotund at e1. Now let

ξ′ ∈ ∂f(e1). For all j ∈ IN and for all β ∈ (0, 1) the inequalities

1− f(e1 − βej)
β

≤ 〈ξ′|ej〉 ≤
f(e1 + βej)− 1

β

are valid. Since f(e1± βej) = (1 + β(j+1)/j)j/(j+1) for j ≥ 2 and f(e1± βe1) = 1± β, we

can use L’Hospital’s rule and the above inequalities to get 〈ξ ′|ej〉 = δ1,j (Kronecker’s δ),

so for all ξ′ ∈ ∂f(e1) we get 〈ξ′|y〉 = y1. We want to check the F−convexity at e1, so we

consider any y ∈ S1 with e1 + αy ∈ L1. Since L1 ⊂ B̄1, we have y1 < 0, and we get some
β ≥ 1 such that e1 + βαy ∈ S1. Now, one can easily check that the norm on any Hilbert
space is F−convex at each x0 ∈ S1 with respect to the unit sphere, and for such a norm
the modulus of convexity µH is exactly µH(α) = α/2. Putting the last few ideas together
gives

α/2 = µ`2(α) ≤ µ`2(βα) ≤ −〈e1, y〉 = |y1| = −〈ξ′|y〉
for all ξ′ ∈ ∂f(e1) and for all y ∈ S1 such that e1 + αy ∈ L1. Thus, we get that f is
F−convex at e1, but not uniformly rotund there.

It is interesting to note that if f is uniformly rotund at x0 and F+−differentiable there,
then f is also F−convex at x0.

Of course, one of the nice features of a uniformly convex Banach space, that is a Banach
space whose norm satisfies (4.1) for all x, x0 ∈ S1, is that if {xL} ⊂ S1 and xL ⇀ x0 ∈ S1,
then xL → x0. Theorem 4.1 gives us an elementary proof of this fact.

Corollary 4.3. Let f be a norm, which is uniformly rotund at x0 ∈ S1, locally uniformly
convex in the sense of [10]. If {xL} ⊂ S1 is any sequence such that xL ⇀ x0, then
xL → x0.

Proof. Since uniform rotundity of f at x0 implies the F−convexity of f there, we can
define µ as in Theorem 4.1 to get ‖xL − x0‖ · µ(‖xL − x0‖) ≤ |〈ξ′|xL − x0〉|. This and
xL ⇀ x0 ∈ S1 give the norm convergence we want.

4.2. Applications to Banach Space Geometry

We are now ready to consider more closely the special case where f is the norm on the
Banach space Y . We will use both f and ‖·‖ to denote this norm (the notation f reminds
us that the norm is a convex function, and ‖ · ‖ measures the distance between points).

Likewise, we will use f ∗ and ‖ · ‖ to denote the norm on Y ′, the dual of Y . We assume

V ⊆ S1 and define V ′ := ∪x∈V∂f(x) ⊆ S ′1. We remind the reader of some of the notation
of Sections 2 and 3 that we will employ. In this notation

ξ′ 7→ ∂f∗(ξ′) is exactly the subdifferential mapping from S ′1 to S ′′1 , and

ξ′ 7→ ∂f∗S1
(ξ′) is the restriction of this of this mapping to V ′ (with range S1).

We will need the following generalization of a lemma which can be found in [5].

Lemma 4.4. Let f be a norm on Y , which is uniformly F−differentiable on V ⊆ S1.
For every ε > 0 there exists a δ > 0 such that if ξ ′ ∈ S ′1 and 〈∇f(x) − ξ′|x〉 < δ, then

‖∇f(x)− ξ′‖ < ε. Further, this δ is independent of x ∈ V.
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Proof. Assume ‖ξ′−∇f(x)‖ = ε. Choose y ∈ S1 such that 〈ξ′−∇f(x)|y〉 ≥ ε/2. Define

α := 4〈∇f(x)− ξ′|x〉/ε > 0. Since ξ′ 6∈ ∂f(x) = {∇f(x)}, α is positive. Then we have

〈∇f(x)− ξ′|x〉 ≤ 〈∇f(x)− ξ′|x〉[4〈ξ′ −∇f(x)|y〉/ε− 1]

= 〈ξ′ −∇f(x)|x〉+ α〈ξ′ −∇f(x)|y〉
= 〈ξ′|x+ αy〉 − ‖x‖ − α〈∇f(x)|y〉
≤ ‖x+ αy‖ − ‖x‖ − α〈∇f(x)|y〉
≤ αE(α).

Thus, we derive the inequality E−1(ε/4) ≤ α, which gives us the inequality

εE−1(ε/4)/4 ≤ 〈∇f(x)− ξ′|x〉. (4.3)

If we define the function Ê ∈ C0(IR) implictly by Ê−1(α) := [αE−1(α)] for all α > 0,

then inequality (4.3) yields ‖ξ′−∇f(x)‖ ≤ 4Ê( 〈∇f(x)− ξ′|x〉 ), which proves our claim.

We start by giving a second sufficient condition for G − [F−]convexity for the case of the
norm on a Banach space. This is a local version of Smulyan’s theorem, which states that
a Banach space with a uniformly Fréchet differentiable dual norm is a uniformly convex
space, that is its norm satisfies (4.1) at each x0 ∈ S1 with a uniform modulus δ.

Theorem 4.5. In the above notation let f ∗ be G-differentiable on V ′ [uniformly F-

differentiable on V ′]. Then f is G − [uniformly F−]convex on V with respect to S1.

Proof. The G-differentability of f ∗ on V ′, Theorem 2.7 and the isometric embedding of
Y in Y ′′ give the G− (or norm to weak) continuity of ξ ′ 7→ ∂f∗S1

(ξ′) on V ′, so that the

results follow by a direct application of Theorem 3.12.

If we assume uniform F -differentiability on V ′, then we can derive µ directly from the
upper estimate E that we can get for e in (2.2). To these ends we embed S1 in S ′′1 and use

Lemma 4.4 applied to Y ′. Choose α ∈ (0, 2), choose x ∈ V, choose ξ ′ ∈ ∂f(x) and choose

y ∈ S1 such that x+αy ∈ S1. By the F -differentiability of f ∗ at ξ′ we have x = ∇f ∗(ξ′),
so that (4.3) together with the pairing 〈ξ ′|y〉 = 〈y|ξ′〉 gives us

αE−1(α/4)/4 ≤ 〈∇f ∗(ξ′)− (x+ αy)|ξ′〉
= − α〈ξ′|y〉, (4.4)

where E ∈ C0(IR) is the uniform estimate ensured by the smoothness of f ∗. Define

µ : [0,∞) → IR by µ(α) := E−1(α/4)/4 > 0 for all α > 0. Thus, inequality (4.4)
shows that µ(α) ≤ infβ≥α{e(β; x, y) : y ∈ S1 ∩ Zβ(x)} for all x ∈ V. This means that by

definition f is uniformly F−convex on V with respect to the unit sphere.

We have shown not only the implications that the smoothness of the dual norm has for
the convexity of the primal norm, but we also found the modulus of convexity of the
primal norm in terms of the estimate on the smoothness of the dual norm. We will turn
this around shortly and show how to derive an estimate of the smoothness of the primal



J. Read / A bornological approach to rotundity and smoothness 137

norm in terms of the modulus of convexity of the dual norm. Our first result reiterates
Corollary 3.20, while adding uniformity in x ∈ V. It is actually valid for any bounded,
convex function.

Lemma 4.6. Let f be uniformly F−convex on V ⊆ S1. Then ξ′ 7→ ∂f∗S1
(ξ′) is norm to

norm uniformly continuous on V ′ := ∪x∈V∂f(x).

Proof. Let x ∈ Sα(x0) for some α > 0 and define y := (x− x0)/α. Using the moduli of

convexity of f on V and at x we can write µx(α) ≤ 〈ξ′|y〉 for any ξ′ ∈ ∂f(x), and we can

write µV(α) ≤ −〈ξ′0|y〉 for any ξ′0 ∈ ∂f(x0). This gives

µV(α) ≤ µV(α) + µx(α)

≤ 〈ξ′ − ξ′0|y〉 (4.5)

≤ ‖ξ′ − ξ′0‖.

Now since µV(α) > 0 if α > 0 and continuous at the origin, we can invert it (taking the
obvious precautions if µV is constant or discontiuous anywhere), so that from (4.5) we get

‖x− x0‖ ≤ µ−1
V (‖ξ′ − ξ′0‖) (4.6)

for any x ∈ Sα(x0), for any ξ′0 ∈ ∂f(x0) and for any ξ′ ∈ ∂f(x). Since µV is the modulus
of convexity for all x0 ∈ V, we get norm to norm uniform continuity that we seek.

4.3. Local Duality and Smulyan’s Theorem

Using the notation of Section 4.2, we can summarize our results. We begin with the weak
equivalencies (for a reflexive space).

Theorem 4.7. Consider the statements:

(i) f is G−convex on V with respect to S1.

(ii) ξ′ 7→ ∂f∗S1
(ξ′) is single valued on V ′.

(iii) ξ′ 7→ ∂f∗(ξ′) is single valued on V ′.
(iv) f∗ is G−differentiable on V ′.
(v) ξ′ 7→ ∂f∗(ξ′) is norm to weak∗ continuous on V ′.
(vi) ξ′ 7→ ∂f∗S1

(ξ′) is norm to weak continuous on V ′.
Then we have (i)⇔(ii)⇐(iii)⇔(iv)⇔(v)⇔(vi), and all are equivalent if Y is reflexive.

Proof. In Theorem 3.10 we demonstrated (i)⇔(ii) pointwise for any bounded, convex
function. The implication (ii)⇐(iii) is trivial, and we get equivalency if Y is reflexive.
In [11] the author shows that (iii)⇔(iv) pointwise for any convex function. Theorem 2.7
gives (iv)⇔(v) pointwise. The implication (v)⇒(vi) is trivial, since the weak∗ topology on

S ′′1 ∩ S1 is the same as the weak topology on S1. We get the equivalency by an argument

similar to that showing (ii)⇒(iii) in the next result. Theorem 3.12 gives (vi)⇒(i) pointwise
for any bounded, convex function with equivalency if Y is reflexive.

Theorem 4.8. (A local Smulyan result) The following are equivalent:

(i) f is uniformly F−convex on V with respect to S1.
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(ii) ξ′ 7→ ∂f∗S1
(ξ′) is norm to norm uniformly continuous on V ′.

(iii) ξ′ 7→ ∂f∗(ξ′) is norm to norm uniformly continuous on V ′.
(iv) f∗ is uniformly F−differentiable on V ′.
Proof. The implication (i)⇒(ii) follows from Lemma 4.6. By arguments similar to those
in [5], or by a modification of Theorem 2.9 we get (iii)⇒(iv). Theorem 4.5 gives us the
implication (iv)⇒(i). That (ii)⇒(iii) can be derived by applying monotonicity of the
subdifferential mapping and Bishop-Phelps in the following way. Consider some δ−ball

Bδ(ξ′0) about ξ′0 ∈ S ′1. We let Ŷ be the embedding of Y in Y ′′ and let X ′′ be the

weak∗ closure of the convex hull of the set ∂f ∗(Bδ(ξ′0)) ∩ Ŷ . Suppose there is η′′0 ∈
∂f∗(Bδ(ξ′0))\X ′′. Choose ξ′ ∈ S ′1 such that 〈η′′0 |ξ′〉 > α > maxX ′′〈η′′|ξ′〉 for some α > 0.

Clearly, we can find a η′ ∈ Bδ(ξ′0) such that η′′ ∈ ∂f∗(η′). Choose β > 0 small enough

that η′ + βξ′ ∈ Bδ(ξ′0). Monotonicity of the subdifferential operator gives

α < 〈η′′|ξ′〉
≤ max

∂f∗(η′)
〈ω′′|ξ′〉

≤ min
∂f∗(η′+βξ′)

〈ω′′|ξ′〉.

By weak∗ upper semi-continuity (see Theorem 2.7 or [11]) of the subdifferential mapping,

there exists an open neighborhood V of η′ + βξ′ such that inf∂f∗(V )〈ω′′|ξ′〉 > α. But this

contradicts the Bishop-Phelps theorem which says that ∂f ∗(V )∩X ′′ 6= ∅. Thus, we have

∂f∗(Bδ(ξ′0)) ⊆ X ′′. Now, (ii) means that for every ε > 0 there is some δ > 0 such that if

ξ′ ∈ V ′ and x ∈ ∂f(ξ′).then we get the set inclusion

∂f∗S1
(Bδ(ξ′)) ⊆ Bε(x).

Now we take the weak∗ closure of the convex hull of the above inclusion, and apply the
results we just derived and we get exactly (iii). Note that the same ε and δ hold [7].

Next we show the impact that convexity of the dual norm has on the smoothness of the
primal norm. This is the dual concept of Theorem 4.5 and allows us to derive a modulus
of smoothness for the primal norm in terms of the modulus of convexity of the dual norm.

Theorem 4.9. If f ∗ is G− [uniformly F−] convex on V ′ with respect to the dual
unit sphere, then f is G- [uniformly F-]differentiable on V. For G−convexity we need
reflexivity.

Proof. Reflexivity of Y and the G−convexity of f ∗ on V ′ allows us to apply Theorem
4.7 to get this result. Likewise, we can apply Theorem 4.8 to get that the second dual
norm is uniformly F−differentiable on the restriction of V ′′ back to V ⊆ S1, giving the
result. We now go on to derive a modulus of smoothness.

Assuming uniform convexity we can apply (4.6) to the proof of Theorem 2.7 to get

αe(α; x0, y) = f(x0 + αy)− f(x0)− αdf(x0); y)

≤ α〈ξ′α − ξ′0|y〉
≤ |α| · ‖ξ′α − ξ′0‖
≤ |α| · µ−1

V (|α|),
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where ξ′α ∈ ∂f(x0 + αy) and ξ′0 ∈ ∂f(x0). Define the function Ê on the set (−δ, δ) by

Ê(α) := sgn(α)µ−1
W (|α|) for some δ > 0. Then Ê is continuous at the origin and satisfies

|Ê(α)| > 0 if α > 0. Thus, we can find some E ∈ C0(IR) with αÊ(α) ≤ αE(α) for all
α ∈ [−δ, δ] and we get uniform F -differentiability of f on V.

4.4. Applications to Convergence Rates

The last section puts us in a position to get a convergence rate for Theorem 3.19 in the
case of the norm as follows.

Theorem 4.10. Assume that f is uniformly F−differentiable on Bρ(x0) for some

x0 ∈ S1 and some ρ ∈ (0, 1) and F−convex with respect to S1 at x0 with modulus µ. Let
fL be a sequence of norms on Y such that |fL(x) − f(x)| < δL → 0 for all x ∈ Bρ(x0).

Further, let {xL} ⊂ Y with fL(xL) → 1 and ξ′L → ∇f(x0) (where ξ′L ∈ ∂fL(xL)), then

we can derive a convergence rate in terms of f(xL), δL and ‖ξ′L −∇f(x0)‖.

Proof. By Theorem 3.19 there is some L0 ∈ IN such that xL ∈ Bρ(x0) for L ≥ L0. For

any such L we can define x̂L := xL/f(xL) ∈ S1. The results of Theorem 2.9 allow us to

write ‖ξ′L − ∇f(x)‖ ≤ 2
√
δL + E(

√
δL) for all x ∈ Bρ(x0). This estimate together with

(4.6) and the positive homogeneity of f give

‖xL − x0‖ ≤ ‖xL − x̂L‖+ ‖x̂L − x0‖
≤ |f(xL)− 1|+ µ−1(‖∇f(xL)−∇f(x0)‖)
≤ |f(xL)− 1|+ µ−1(‖∇f(xL)− ξ′L‖+ ‖ξ′L −∇f(x0)‖)
≤ |f(xL)− 1|+ µ−1(2

√
δL + E(

√
δL) + ‖ξ′L −∇f(x0)‖),

which is what we want to show.
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