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This paper considers the extreme (typically the largest or smallest) singular values of a matrix valued
function. A max characterization, using the Frobenius inner product, of the sum of the largest singular
values is given. This is obtained by giving a lower bound on the sum of the singular values of a matrix,
and necessary and sufficient conditions for attaining this lower bound. The sum f of the largest singular
values of a matrix is a convex function of the elements of the matrix, while the smallest singular value
is a difference of convex functions. For smooth matrix valued functions these results imply that f is a
regular locally Lipschitz function, and a formula for the Clarke subdifferential is given. For a Gâteaux-
differentiable matrix-valued function f is a semiregular functions, while the smallest singular value is the
negative of a semiregular functions. This enables us to derive concise characterizations of the generalized
gradient of functions related to the extreme singular values and the condition number of a matrix.
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1. Introduction

This paper is concerned with the extreme singular values of matrices and matrix valued
functions. Typical functions of interest are the largest and smallest singular values of a

matrix valued function A(x) ∈ IRm×n, where x ∈ IRs is a vector of design parameters. In
control systems many important structural properties, such as robustness and noise sen-
sitivity, can be expressed as inequalities involving the singular values of transfer matrices
(e.g. [4], [5], [6], [23] and [27]). There is also interest in the structured singular value (see
[5], [6] and [31] for example) in better representing system properties.

One well recognized difficulty is that a singular value may not be differentiable when it is
multiple. This has led to a number of algorithms for optimization problems involving sin-
gular values based on nonsmooth (nondifferentiable) optimization principles, such as the
Clarke generalized gradient [2]. Typically these are bundle methods and are only linearly
convergent [24]. If better algorithms are to be developed then a better understanding
of the differential properties of the singular values, and better representations of their
generalized gradients are required.

A motivation for this work is the results of Overton and Womersley [22] on the sum of the
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κ largest eigenvalues of a symmetric matrix valued function. The singular values can be
characterized in terms of the eigenvalues of a symmetric matrix. For example when m ≥ n

the singular values of A are the square roots of the eigenvalues of ATA. Alternatively the
eigenvalues of [

0 A
AT 0

]

are the singular values of A and their negatives. However both these representations

have disadvantages. Working with ATA can destroy nice structure in the matrix valued
function A(x) (for example if A(x) is affine). The second characterization increases the
dimension, hence it is preferable to work directly with the singular values of A in those
applications involving singular values, such as [3, 4, 5, 19, 23, 27].

In Section 2 we establish bounds on the singular values of a matrix. In Section 3 these
bounds are used to derive a max characterization of the sum of the κ largest singular
values of a matrix, in terms of the Frobenius inner product. The max characterization is
established by showing that that the sum of the absolute values of the diagonal elements
of a rectangular matrix is a lower bound of the singular values of the matrix, and giving
a necessary and sufficient condition for attaining this lower bound. This max character-
ization readily shows that the largest singular value of a matrix is a convex function of
the elements of the matrix. Identifying the elements which achieve the maximum gives a
concise formula for the subdifferential (generalized gradient) of the sum of the κ largest
singular values. Bounds on singular values of matrices are widely known (see [14], [16] for
example). Subramani [30] provides a review of the inequalities relevant to characterizing
sums of the largest singular values of a rectangular matrix.

Another convexity property of the largest singular value is given by Sezinger and Overton

[29]. They establish that the largest singular value of eXA0e
−X is convex on any convex

set of commuting matrices in IRn×n, where A0 ∈ IRn×n is fixed. The sensitivity of sums of
singular values has also been studied by Seeger [28]. This paper concentrates on bounds
on singular values and their use in characterizing the subdifferential of functions of the
singular values of matrix valued functions.

The largest singular value of a matrix-valued function is discussed in Section 4, regarding
it as a composite function (see [8] and [32] for typical uses of composite functions). When
the matrix-valued function is smooth (at least once continuously differentiable), the sum of
the κ largest singular values is regular and a formula for its Clarke subdifferential follows.
When the matrix-valued function is only Gâteaux-differentiable, we use the Michel-Penot
subdifferential, a modification of the Clarke subdifferential, to give similar results.

We then discuss the smallest singular value of a matrix in Section 5. The smallest singular
value is the difference of the sum of the singular values of a matrix and the sum of all but
the smallest singular values of a matrix. Hence the smallest singular value is the difference
of convex functions. The properties of d.-c. (difference of convex) functions are studied in
[11]. This framework also provides formulae for the Clarke subdifferential of the spectral
radius of the inverse of a symmetric matrix, and the condition number of square matrix.
These two functions are regular at points at which they exist.

This is slightly different to the situation for eigenvalues of symmetric matrices, where the
sum of all the eigenvalues of a matrix is equal to the trace of the matrix, and hence is a
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linear function of the elements of the matrix. As the sum of the κ largest eigenvalues of a
symmetric matrix is a convex function of the matrix elements [7], [13], [22] it immediately
follows that the smallest eigenvalue is a concave function of the matrix elements.

Throughout this paper, we use IRm×n and Sn to denote the spaces of all m by n real
matrices and all n by n real symmetric matrices respectively, and use On and Om,n to
denote the spaces of all n by n and all m by n real orthogonal matrices respectively. We use
In to denote the n by n identity matrix, and ||.|| to denote the Euclidean norm for vectors.
We use capital letters to denote matrices and the corresponding small letters to denote
their rows, columns and elements. For example, we use ai., a.j and aij to denote the ith

row, the jth column and the (i, j)-th elements of A respectively. Let p = min {m,n}. We

also use A[i1, i2, . . . , ir] to denote the corresponding principal submatrix of A ∈ IRm×n,

where 1 ≤ i1 < i2 < . . . < ir ≤ p. For a matrix D = diag(d11, . . . , dpp) ∈ IRm×n, all the

off-diagonal elements of D are zero. For a symmetric matrix A, we use ρ(A) to denote
its spectral radius. The positive semi-definite partial ordering on Sn is used to express
matrix inequalities [14]. Thus for A,B ∈ Sn the inequality A ≥ B means that A − B is

positive semi-definite. The Frobenius inner product 〈A,B〉 of two matrices A,B ∈ IRm×n

is

〈A,B〉 = tr(ABT ) =
m∑

i=1

n∑

j=1

aijbij .

For any nonsingular matrices E ∈ IRm×m and F ∈ IRn×n,

〈A,B〉 = 〈E−1A,ETB〉 = 〈AF−1, BF T 〉.

For more properties of Frobenius inner products of matrices see [6], [19], [21] and [22].
Let δii = 1 and δij = 0 if i 6= j.

Let A = (aij) ∈ IRm×n and let p = min{m,n}. The trace of A is

tr(A) =

p∑

i=1

aii.

Define the absolute trace of A by

atr(A) =

p∑

i=1

|aii|,

the absolute sum of A by

asum(A) =
m∑

i=1

n∑

j=1

|aij|,

and the maximum row-column norm of A by

maxn(A) = max{ max
1≤i≤m

||ai.||, max
1≤j≤n

||a.j||}.
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Let the singular values of A ∈ IRm×n be σi ≡ σi(A) for i = 1, . . . , p, where σ1 ≥ σ2 ≥
. . . ≥ σp ≥ 0. By the singular value decomposition [10] or [14] there exist U ∈ Om and
V ∈ On such that

UTAV = Σ = diag(σ1, . . . , σp), (1.1)

where Σ ∈ IRm×n. Note that for any X ∈ Om and Y ∈ On the matrices A,XA,AY and
XAY all have the same singular values.

Let κ ∈ {1, . . . , p}. The sum of the κ largest singular values is a function mapping IRm×n

to IR defined by

fκ(A) =

κ∑

i=1

σi(A).

Particular functions of interest are the largest singular value

f1(A) = σ1(A),

the sum of all the singular values

fp(A) =

p∑

i=1

σi(A),

and the smallest singular value

σp(A) =

p∑

i=1

σi(A) −
p−1∑

i=1

σi(A).

2. Bounds on the singular values

In [25] Qi gave a lower bound for f1(A) as follows:

Proposition 2.1. f1(A) ≥ maxn(A).

Corollary 2.2. For any i and j, |aij | ≤ f1(A). If for some i and j, |aij | = f1(A), then
all the other elements of A in the ith row and the jth column are zero.

We now establish a lower bound and an upper bound for the sum of all the singular values
of A. Consideration of a square diagonal matrix shows that these bounds can be achieved.

Theorem 2.3. atr(A) ≤ fp(A) ≤ asum(A). Moreover if atr(A) = fp(A) then

(a) ars = 0 if r > p or s > p;

(b) |ars| = |asr|, |arrass| ≥ a2
rs and arrassarsasr ≥ 0 if r, s ≤ p.

Proof. By the singular value decomposition A = UΣV T ,

aii =

p∑

j=1

uijσj(A)vij ,
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where U = (uij) and V = (vij). Hence,

atr(A) =

p∑

i=1

∣∣∣∣∣∣

p∑

j=1

uijσj(A)vij

∣∣∣∣∣∣

≤
p∑

j=1

σj(A)

p∑

i=1

|uijvij |

≤
p∑

j=1

σj(A)||u.j|| ||v.j ||

=

p∑

j=1

σj(A) ≡ σ(A).

On the other hand, Σ = UTAV , so

σi(A) =

m∑

j=1

n∑

k=1

ujiajkvki.

Hence,

σ(A) =

p∑

i=1

m∑

j=1

n∑

k=1

ujiajkvki

≤
m∑

j=1

n∑

k=1

|ajk|
p∑

i=1

|ujivki|

≤
m∑

j=1

n∑

k=1

|ajk| ||uj.|| ||vk.||

=
m∑

j=1

n∑

k=1

|ajk| ≡ asum(A).

Suppose now that fp(A) = atr(A).

To establish (a) assume that m ≥ r > n ≥ s and that ars 6= 0. Let

B = PA,

where P = (pij) ∈ Om, pij = δij except

prr = pss =
ass√

a2
rs + a2

ss

, psr = −prs =
ars√

a2
rs + a2

ss

.

Then B = PA has the same singular values as A,

bii = aii for i 6= s, (2.2)
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and
b2ss = a2

ss + a2
rs. (2.3)

However,
atr(A) = fp(A) = fp(B) ≥ atr(B). (2.4)

Comparing (2.2), (2.3) and (2.4) we have a contradiction, so ars = 0. A similar argument
holds for s > p.
To establish (b) assume that r, s ≤ p. Let

B = PAQ,

where P = (pij) ∈ Om, pij = δij except

prr = pss = cos θ1, psr = −prs = sin θ1,

tan 2θ1 =
2(arrasr + arsass)

a2
sr + a2

ss − a2
rr − a2

rs
, −π

4
≤ θ1 ≤

π

4
,

and Q = (qij) ∈ On, qij = δij except

qrr = qss = cos θ2, qsr = −qrs = sin θ2,

tan 2θ2 =
2(arrars + asrass)

a2
sr + a2

rr − a2
ss − a2

rs
, −π

4
≤ θ2 ≤

π

4
.

It can be verified that A and B have the same singular values, and

bii = aii (2.5)

for i 6= r, s,
brrbss = arrass − arsasr, (2.6)

and
b2rr + b2ss = a2

rr + a2
sr + a2

ss + a2
rs. (2.7)

By (2.6) and (2.7), we have

(|brr|+ |bss|)2 − (|arr|+ |ass|)2

= (|ars| − |asr|)2 + 2(|arrass − arsasr|+ |arsasr| − |arrass|) ≥ 0. (2.8)

However, (2.4) still holds in this case. By (2.4) and (2.5), the left hand side of (2.8) is
also 0. The conclusions of (b) follow easily.

Corollary 2.4. fp(A) = |tr(A)| if and only if

(a) ars = 0 for all r > p and s > p, and
(b) A[1, . . . , p] ∈ Sp and either A[1, . . . , p] ≥ 0 or A[1, . . . , p] ≤ 0.

Proof. Suppose that |tr(A)| = fp(A). As |tr(A)| ≤ atr(A) ≤ fp(A) we have |tr(A)| =

atr(A) = fp(A), so part (a) follows directly from Theorem 2.3. Also |tr(A)| = atr(A)

if and only if either aii ≥ 0 for i = 1, . . . , p or aii ≤ 0 for i = 1, . . . , p. Hence by (b)
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of Theorem 2.3 we see that A[1, . . . , p] is symmetric. Now for a symmetric matrix tr(B)
is the sum of the eigenvalues of B, while fp(B) is the sum of the absolute values of

the eigenvalues of B. Thus, all the eigenvalues of A[1, . . . , p] are either nonnegative, so
A[1, . . . , p] is positive semi-definite, or nonpositive, so A[1, . . . , p] is negative semi-definite.
The reverse argument follows by noting that if a symmetric matrix B is positive semi-
definite then its diagonal elements are non-negative and tr(B) = atr(B) = fp(B).
Similarly if B is negative semi-definite then its diagonal elements are non-positive and
−tr(B) = atr(B) = fp(B).

3. A max characterization

An key step is a max characterization of the sum of the largest singular values of a matrix.
Let

Φκ = {B ∈ IRm×n : f1(B) ≤ 1, fp(B) = κ}.
Then Φκ is compact. By Corollary 2.2, we have:

Proposition 3.1. For any A = (aij) ∈ Φκ and any i and j, |aij | ≤ 1. If for some i and

j, |aij | = 1, then all the other elements of A in the ith row and the jth column are zero.

Theorem 3.2. For any κ ∈ {1, . . . , p}

fκ(A) = max{〈A,B〉 : B ∈ Φκ}.

Proof. We have A = UΣV T . Therefore,

max{〈A,B〉 : B ∈ Φκ} = max{〈UΣV T , B〉 : B ∈ Φκ}

= max{〈Σ, UTBV 〉 : B ∈ Φκ} = max{〈Σ, G〉 : G ∈ Φκ},
where the last equality holds because Φκ is invariant under orthogonal transformations

(i.e. B ∈ Φκ ⇐⇒ G = UTBV ∈ Φκ where U ∈ Om and V ∈ On). However,

〈Σ, G〉 =

p∑

i=1

σi(A)gii

where G = (gij). By Theorem 2.3 and Proposition 3.1, |gii| ≤ 1 and
∑p

i=1 |gii| = atr(G) ≤
fp(G) = κ. Therefore, for any G ∈ Φκ,

〈Σ, G〉 ≤ fκ(A).

However, letting G = diag(gii), where gii = 1 for i = 1, . . . , κ, and gii = 0 otherwise, we
have G ∈ Φκ and

〈Σ, G〉 = fκ(A).

This proves the theorem.

Corollary 3.3. For any κ ∈ {1, . . . , p} the function fκ(A) is convex.
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Proof. The function fκ(A) is the maximum of linear functions of A, so is convex [26].

We now characterize the matrices B ∈ Φκ, which achieve the maximum.

Theorem 3.4. Suppose that the singular values of A are

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σκ = . . . = σr+t > σr+t+1 ≥ . . . ≥ σp.

Then matrices B ∈ Φκ achieve the maximum in Theorem 3.2 if and only if B = UGV T ,

where G ∈ IRm×n satisfies Gij = 0 except

(i) gii = 1 for i = 1, . . . , r,

(ii) 0 ≤ gii ≤ 1 for i = r + 1, . . . , r + t and
∑r+t

i=r+1 gii = κ− r,

(iii) gii = 0 for i = r + t + 1, . . . , p,
(iv) G[r+ 1, . . . , r+ t] is symmetric, positive semi-definite and ρ(G[r+ 1, . . . , r+ t]) ≤ 1.

Proof. Let G = UTBV . Then,

max{〈A,B〉 : B ∈ Φκ} = max{〈Σ, G〉 : G ∈ Φκ}.

It is easy to verify that matrices G, described in the theorem, achieve the maximum and
are in Φκ. The if part of the theorem is thus proved. Furthermore, according to the proof
of Theorem 3.2, if G achieves the maximum, its diagonal elements must satisfy the claims
of the theorem. Then fp(G) = atr(G). By Corollary 2.2 and Theorem 2.3 (a)(b), all the

off-diagonal elements of G not in G(r + 1, . . . , r + t) are zeroes. By Theorem 2.3 (c), we
get the conclusions on G[r + 1, . . . , r + t]. This proves the only if part of the theorem.

Denote the set of B in Theorem 3.4 as Fκ(A). It is convex and closed. Let U1 ∈ Om,r and
V1 ∈ On,r consist of the first r columns of U and V respectively. Let U2 ∈ Om,t and V2 ∈
On,t consist of the next t columns of U and V respectively. Let G2 = G(r+ 1, . . . , r+ t).
Then

Fκ(A) = {B = U1V
T

1 + U2G2V
T
2 ∈ IRm×n : G2 ∈ St, 0 ≤ G2 ≤ It, tr(G2) = κ− r}.

As a referee commented, Theorem 3.2 and 3.4 are along the same lines as Ky Fan’s
variational formulation. According to Theorems 3.2 and 3.4, and convex analysis [26],

Corollary 3.5. The subdifferential of fκ at A is

∂fκ(A) = Fκ(A).

Whenever σκ(A) > σκ+1(A), i.e., κ = r + t, the function fκ is differentiable at A and

f ′κ(A) = U1V
T

1 + U2V
T

2 .

4. Matrix-Valued Functions

Suppose now that A is a matrix-valued function mapping IRs to IRm×n. Let gκ be defined
by

gκ(x) = fκ(A(x)).



L. Qi, R. S. Womersley / On extreme singular values of matrix valued functions 161

Then gκ is a composite function. If A is a smooth function, then the max characterization
of fκ in Theorem 3.2 shows that gκ(x) is a convex composition of smooth functions, so it
is a regular locally Lipschitz function. Thus the Clarke subdifferential [2] is appropriate
to describe the subdifferential properties of gκ.
When we are dealing with matrix-valued functions which are not smooth or composite
functions which cannot be expressed as a convex composition the Clarke subdifferen-
tial can be too large. Also the matrix valued function may be defined on an infinite
dimensional space. A general framework can be developed when A is a (Gâteaux) G-
differentiable function. Then we use the Michel-Penot subdifferential [17], [18] to describe
the subdifferential properties of gκ. The Michel-Penot subdifferential coincides with the
G-derivative whenever the later exists, and is contained in the Clarke subdifferential.
Suppose that X is a Banach space, Y is an open subset of X, and φ is a locally Lipschitzian
function defined on Y . Let x be a point in Y and y be a vector in X. The Michel-Penot
directional derivative of φ at x in the direction y is

φ•(x; y) := sup
z∈X
{lim sup

t↓0
[φ(x + ty + tz)− φ(x+ tz)]/t}.

The Michel-Penot subdifferential of φ at x is the set

∂•φ(x) := {u ∈ X∗ : 〈u, y〉 ≤ φ•(x; y), ∀y ∈ X},

which is a nonempty, convex and weak*-compact set for each x. We have

φ•(x; y) ≤ φ◦(x; y), (4.1)

where φ◦(x; y) is the Clarke directional derivative of φ at x in the direction y, and

∂•φ(x) ⊆ ∂◦φ(x), (4.2)

where ∂◦φ(x) is the Clarke subdifferential of φ at x. We also have

φ′(x; y) ≤ φ•(x; y) (4.3)

if the usual directional derivative φ′(x; y) exists, and ∂•φ(x) is a singleton,

∂•φ(x) = {φ′(x)}, (4.4)

if and only if the G-derivative of φ at x exists. Equation (4.4) is not true in general for
the Clarke subdifferential. When (4.1) is satisfied as an equality for all y at x, we say
that φ is normal at x. When the usual directional derivatives exists and (4.3) is satisfied
as an equality for all y at x, we say that φ is semiregular at x. Function φ is regular at x
if and only if it is both normal and semiregular at x. Especially, φ is semiregular at x if
it is G-differentiable at x. If φ is semiregular at x and ∂•φ(x) is known, we may calculate
its directional derivatives at x by

φ(x; y) = φ•(x; y) = max{〈u, y〉 : u ∈ ∂•φ(x)},

which are useful in minimizing or maximizing φ. The following theorem is proved in [1].
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Proposition 4.1. Let X, Y and x be as above. Suppose that φ = ψ ◦ η is a composite
function, where η : Y −→ IRn is locally Lipschitzian and G-differentiable at x, and ψ is
locally Lipschitzian and regular at η(x). Then φ is locally Lipschitzian and semiregular at
x, and

∂•φ(x) = {
n∑

i=1

viηi(x) : vi ∈ ∂◦ψ(η(x))}.

For more general form of Theorem 4.1, see [1]. Returning to our singular value functions,
by Corollaries 3.3, 3.5, and Theorem 4.1, we have

Theorem 4.2. Let A be a matrix-valued function mapping IRs to IRm×n, and let

gκ(x) = fκ(A(x)) ≡
p∑

1

σi(A(x)).

If A is locally Lipschitzian and G-differentiable at x ∈ IRs, then gκ is locally Lipschitzian
and semiregular at x,

∂•gκ(x) = {u ∈ IRs : uk = tr(UT1 Ak(x)V1) + 〈UT2 Ak(x)V2, G2〉, G2 ∈ Ψt},
Ψt = {G2 ∈ St : 0 ≤ G2 ≤ It, tr(G2) = κ− r},

where U1, U2, V1, V2, r and t have the same meanings as in Section 2 with A = A(x), and

Ak(x) =
∂

∂xk
A(x).

If furthermore κ = r + t, then gκ is G-differentiable at x, and

∂

∂xk
gκ(x) = 〈UT1 Ak(x)V1, Ir〉+ 〈UT2 Ak(x)V2, It〉.

If A is smooth at x, then gκ is regular at x.

Again, the necessary condition for x to be a minimizer of gκ is

0 ∈ ∂•g(x). (4.5)

If A is affine, then gκ is convex, and thus (3.5) is also sufficient. Proposition 2.8.8 of
Clarke [2], Hiriart-Urruty and Ye [13] and Overton and Womersley [21] discuss extremal
eigenvalue functions of smooth symmetric matrix-valued functions. Their results can also
be generalized to G-differentiable matrix-valued functions. Notice the spectral radius of
a symmetric matrix is its largest singular value. So our results also cover the spectral
radius of symmetric matrix-valued functions.

5. The Smallest Singular Value

Another interesting function is the smallest singular value function µ. Let our notation

be the same as in Section 2. Then µ is a function mapping IRm×n to R, defined by

µ(A) = σp(A).
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Theorem 5.1. The smallest singular value µ is the difference of a smooth convex
function and a convex function. Thus, −µ is a regular function. Suppose that the singular
values of A are σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp. Let t = p − r. Let U3 ∈ Om,t and
V3 ∈ On,t consist of the last t columns of U and V respectively. Then

∂◦µ(A) = {U3G3V
T
3 : G3 ∈ St, 0 ≤ G3 ≤ It, tr(G3) = 1}. (5.1)

When the smallest singular value of A has multiplicity 1, µ is differentiable at A, and

µ(A) = uvT , (5.2)

where u and v are the unit left and right singular vectors corresponding to σp(A).

Proof. In fact,
µ = fp − fp−1.

By Corollary 3.3, both fp and fp−1 are convex functions. By Corollary 3.5, fp is differen-
tiable and

f ′p(A) = UV T .

Since eigenvectors of AAT are continuous, U and V are continuous functions of A. There-
fore, fp is smooth. Therefore, −µ = fp−1 + fp is the sum of two regular functions, thus
also a regular function. Furthermore, by Corollary 2.8,

∂fp−1(A) = {UGV T : G ∈ IRm×n, as described in Theorem 2.7}.

But
∂◦µ(A) = f ′p(A)− ∂fp−1(A).

A little calculation leads to (5.1). When σp(A) is simple, the right side of (5.1) is single-
valued. The last conclusion thus follows.

Remark 5.2. Function µ is neither a convex function nor a concave function. Let

A,B,C ∈ IR2×2, and A = (B + C)/2. Let B = I2 = −C. Then A = 0. We have

µ(A) = 0 < (µ(B) + µ(C))/2 = (1 + 1)/2 = 1.

Let B = diag(2, 0) and C = diag(0, 2). Then A = I2. We have

µ(A) = 1 > (µ(B) + µ(C))/2 = (0 + 0)/2 = 0.

When A is symmetric and nonsingular,

ρ(A−1) = 1/µ(A).

Thus, by Proposition 2.3.14 of [2],

Corollary 5.3. Let ζ : IRm×n −→ IR, be defined by

ζ(A) = ρ(A−1).
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If A is symmetric and nonsingular, then ζ is regular at A, and

∂◦ζ(A) = {−U3G3V
T

3

[µ(A)]2
: G3 ∈ St, 0 ≤ G3 ≤ It, tr(G3) = 1}.

If furthermore the smallest singular value of A is simple, then ζ is differentiable at A, and

ζ(A) = − uvT

[µ(A)]2
,

where u and v have the same meanings as in Theorem 5.1.

Let m = n and h(A) be the condition number of A. By Corollary 2.8, Theorem 4.1 and
Proposition 2.3.14 of [2],

Corollary 5.4. If A is nonsingular, then h is regular at A, and

∂◦h(A) = {µ(A)U1G1V
T
1 − f1(A)U3G3V

T
3

[µ(A)]2

: G1 ∈ Sq, G3 ∈ St, 0 ≤ G1 ≤ Iq, 0 ≤ G3 ≤ It, tr(G1) = tr(G3) = 1},
where q is the multiplicity of the largest singular value of A, U1 ∈ Om,q and V1 ∈ On,q
consist of the first q columns of U and V respectively. If furthermore q = t = 1, then h is
differentiable at A, and

h(A) =
µ(A)ūv̄T − f1(A)uvT

[µ(A)]2
,

where ū, v̄, u and v are the left and right singular vectors corresponding to the largest and
the smallest singular values of A respectively.

We may derive theorems for the smallest singular value and the condition number of a
matrix-valued function, similar to Theorem 3.2, by Theorems 3.1, 5.1 and Corollary 5.4.
This has also been discussed in [13]. One may discuss minimizing these extremal singular
value functions of a matrix-valued function as done in [3], [10], [12], [13], [19], [20], [22], [33]
do for the extremal eigenvalue functions of a smooth symmetric matrix-valued function.
We do not go to the detail of these.
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