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Recent characterizations of various types of differentiable generalized monotone maps by Karamardian–
Schaible–Crouzeix and their strengthened versions by Crouzeix–Ferland are extended to the nonsmooth
case. For nondifferentiable locally Lipschitz maps necessary and/or sufficient conditions for quasimono-
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generalized Jacobian in the sense of Clarke is employed.
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1. Introduction

Generalizations of convex functions have been used in a variety of fields such as eco-
nomics, business administration, engineering, statistics, applied sciences and numerical
mathematics. In 1949 de Finetti introduced one of the primary types, later called quasi-
convex function, which is characterized by convex level sets. Since then numerous types of
generalized convex functions have been proposed according to needs arising in particular
applications. In 1988 a first monograph on the theory and applications of generalized
convexity was published [1].
A characterization of pseudoconvex functions in terms of the gradient without using func-
tion values was derived by Karamardian in 1976 [13]. Meanwhile similar characteriza-
tions of nondifferentiable generalized convex functions appeared, see e.g. [7], [20], [21],
[22]. Karamardian used his characterization of pseudoconvex functions to introduce pseu-
domonotonicity of maps which are not necessarily the gradient of a function. For nonlinear
complementarity problems involving a pseudomonotone map he established the existence
of a solution [13].
Since the article by Karamardian and Schaible in 1990 [14], several papers appeared
that introduce various types of generalized monotone maps, e.g. [2], [3], [8], [17], [18],
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[24], [28]. Usually these are defined in such a way that in case of a gradient map they
characterize some type of generalized convexity of the underlying function. The majority
of the articles in this emerging area of research deals with conceptual matters. However
uses of generalized monotonicity of operators in establishing the existence of solutions of
complementarity problems and variational inequality problems are appearing as well in
the recent literature;e.g. [2], [5], [9], [10], [11], [25], [26], [27].
The present paper attempts to broaden the conceptual basis of generalized monotonicity.
The starting point are necessary and sufficient conditions for differentiable generalized
monotone maps in terms of the Jacobian derived in [15]. These characterizations are
extended to nondifferentiable locally Lipschitz maps using the generalized Jacobian in the
sense of Clarke [4]. For other characterizations of nondifferentiable generalized monotone
maps see [2], [16], [17], [18], [19].
Very recently the characterizations in [15] for differentiable quasimonotone and pseu-
domonotone maps have been extended by Crouzeix and Ferland [6] by significantly weak-
ening the sufficient conditions. We will show in the present paper that the same extensions
can be carried out in the nondifferentiable case. The proofs combine techniques in [6] with
those by Luc [23].
The paper is organized as follows. The remainder of this section presents definitions and
notation used in this paper. Section 2 deals with nondifferentiable monotone maps which
will be characterized in terms of the generalized Jacobian. In Section 3 various necessary
and/or sufficient conditions for quasimonotone maps are derived with help of the gener-
alized Jacobian. In Section 4 analoguous results for pseudomonotone maps are obtained.
Finally Section 5 presents similar results for strictly and strongly pseudomonotone maps.
Throughout this paper S denotes a nonempty convex open subset of the n-dimensional
Euclidean space Rn and F denotes a locally Lipschitz map from S to Rn. The generalized
Jacobian of F at x ∈ S in the sense of Clarke [4] is the set of matrices

∂F (x) := conv{limDF (xi) : xi → x, F is differentiable at xi} ,

where “conv” denotes the convex hull andDF (x) is the usual Jacobian of F at x. Elements
of ∂F (x) are called subgradients.
Furthermore, let g be a real valued differentiable function on S. If the gradient map Dg

from S to Rn is locally Lipschitz, i.e. g is a C1,1 function in the terminology of [12], the
generalized Jacobian of this map at x ∈ S is called generalized Hessian of g and denoted

by ∂2g(x).
We shall often refer to the following mean value theorem in [4]: for every pair of points
a, b ∈ S there exists a matrix A ∈ conv{∂F (x) : x ∈ [a, b]} such that F (b) − F (a) =
A(b − a). Moreover, if f is a locally Lipschitz function from S to R, then there exist a
point x ∈ (a, b) and a vector A ∈ ∂f(x) such that f(b)− f(a) = A(b− a).
In the sequel we will make use of the one-dimensional restriction of F , namely ϕ(t) =
〈F (x+ tu), u〉 defined on the set {t ∈ R : x + tu ∈ S} for a fixed x ∈ S and u ∈ Rn.
Finally we recall the following definitions from [8], [14]:
F is monotone if for all x, y ∈ S, 〈F (x), y − x〉+ 〈F (y), x− y〉 ≤ 0;
F is strictly monotone if the above inequality is strict for all distinct pairs x, y ∈ S;
F is quasimonotone if for all x, y ∈ S, 〈F (x), y − x〉 > 0 implies 〈F (y), y− x〉 ≥ 0;
F is pseudomonotone if for all x, y ∈ S, 〈F (x), y − x〉 > 0 implies 〈F (y), y − x〉 > 0;
or equivalently 〈F (x), y − x〉 ≥ 0 implies 〈F (y), y− x〉 ≥ 0;
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F is strictly pseudomonotone if for all x, y ∈ S, x 6= y, 〈F (x), y − x〉 ≥ 0 implies
〈F (y), y− x〉 > 0;
F is strongly pseudomonotone if for all x ∈ S, u ∈ Rn, ‖u‖ = 1, 〈F (x), u〉 = 0 implies the
existence of positive numbers ε and β such that 〈F (x+ tu), u〉 ≥ βt for all t ∈ [0, ε].
The following implications hold: monotone⇒ pseudomonotone⇒ quasimonotone ; strict-
ly monotone ⇒ strictly pseudomonotone ; strongly pseudomonotone ⇒ strictly pseu-
domonotone.

2. Monotone Maps

Let us first characterize monotone maps in terms of the generalized Jacobian.

Proposition 2.1. The map F is monotone on S if and only if for every x ∈ S the
subgradients A ∈ ∂F (x) are positive semidefinite.

Proof. For the “if” part, let x, y ∈ S. By the mean value theorem,

F (x)− F (y) ∈ conv{∂F (z)(x − y) : z ∈ [x, y] } .

Hence

〈F (x)− F (y), x− y〉 ∈ conv{〈x− y, A(x− y)〉 : A ∈
⋃

z∈[x,y]

∂F (z)} .

By the hypothesis every element of the above convex hull is nonnegative, consequently

〈F (x)− F (y) , x− y〉 ≥ 0

which implies that F is monotone on S.
Conversely, suppose that F is monotone. By the definition of the generalized Jacobian, it
suffices to show that the usual Jacobian DF (x) is positive semidefinite whenever it exists.
In fact, let x ∈ S where DF (x) exists. If DF (x) is not positive semidefinite, then there
can be found u ∈ Rn such that 〈u,DF (x)u〉 < 0.
By the definition of the Jacobian,

DF (x)u = lim
t→0

F (x+ tu)− F (x)

t
.

Hence for t > 0 sufficiently small,

〈u, F (x+ tu)− F (x)〉 < 0 .

Setting y = x + tu for a fixed small t > 0 , we obtain

〈y − x, F (y)− F (x)〉 < 0

which contradicts the monotonicity of F .

We now add a sufficient condition for strict monotonicity.

Proposition 2.2. The map F is strictly monotone on S if for every x ∈ S, the subgra-
dients A ∈ ∂F (x) are positive definite.
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Proof. The argument of the previous proof can be used, assuming x, y ∈ S, x 6= y, and
noting that every element of the set

conv{〈x− y, A(x− y)〉 : A ∈
⋃

z∈[x,y]

∂F (z)}

is strictly positive.

It should be noticed that the above condition for strict monotonicity is only sufficient but
not necessary, as in the differentiable case.

3. Quasimonotone Maps

In preparation of the first result on nonmonotone maps, we recall the following notation
from [23]. For every x ∈ S, u ∈ Rn let

D+F (x; u) = sup{〈u,Au〉 : A ∈ ∂F (x)} ,

D−F (x; u) = inf{〈u,Au〉 : A ∈ ∂F (x)} .
In the above expressions, sup and inf can be replaced by max and min respectively because
F is locally Lipschitz and the set ∂F (x) is nonempty compact.

Proposition 3.1. The map F is quasimonotone on S if and only if the following
conditions hold for every x ∈ S, u ∈ Rn:

(i) 〈F (x), u〉 = 0 implies D+F (x; u) ≥ 0 ;

(ii) 〈F (x), u〉 = 0 , 0 ∈ {〈u,Au〉 : A ∈ ∂F (x)} and 〈F (x + tu), u〉 > 0 for some t < 0

imply the existence of t̃ > 0 such that

〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .

Proof. We begin with the “only if” part. If (i) does not hold, one can find x ∈ S and
u ∈ Rn such that 〈F (x), u〉 = 0 and D+F (x; u) < 0.
Consider the function

ϕ(t) = 〈F (x+ tu), u〉
as defined in Section 1. This function is quasimonotone and ϕ(0) = 0. Using the mean
value theorem, for every t sufficiently small, there can be found t0 between 0 and t ,
α ∈ ∂ϕ(t0) such that

ϕ(t)− ϕ(0) = αt . (3.1)

By the calculus rule of the generalized Jacobian [4],

∂ϕ(t0) ⊆ {〈u,Au〉 : A ∈ ∂F (x + t0u)} .

By the upper semicontinuity of the function D+F (·, u) (Lemma 2.2 of [23]),

D+F (x+ tu; u) < 0 for t small enough .

This and (3.1) show that ϕ(t) > 0 if t < 0 and ϕ(t) < 0 if t > 0, which contradict the
quasimonotonicity of ϕ.
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If (ii) does not hold, there exists t0 > 0 such that 〈F (x), u)〉 = 0 , 〈F (x + tu), u〉 > 0

for some t < 0 and 〈F (x+ t0u), u〉 < 0. Define x0 = x + tu and y0 = x + t0u. We have

〈F (y0), x0 − y0〉 = 〈F (x+ t0u), (t− t0)u〉 > 0 ,

〈F (x0), y0 − x0〉 = 〈F (x+ tu), (t0 − t)u〉 > 0 .

These inequalities contradict the quasimonotonicity of F .
Conversely, suppose that F is not quasimonotone on S. Then there exist x, y ∈ S such
that

〈F (x), y − x〉 > 0 and 〈F (y), x− y〉 > 0 .

Let u = y − x and consider the function ϕ(t) = 〈F (x + tu), u〉 . We have ϕ(0) > 0 ,
ϕ(1) < 0. Since ϕ is continuous, there exists t0 ∈ (0, 1) such that

ϕ(t0) = 0 and ϕ(t) < 0 for all t, 1 ≥ t > t0 . (3.2)

Define x0 = x + t0u. Then ϕ(t0) = 〈F (x0), u〉 = 0 and D−F (x0; u) ≤ 0. Consequently
0 ∈ {〈u,Au〉 : A ∈ ∂F (x0)} because of (i). It follows from (ii) that one can find a positive

t̃ such that
ϕ(t0 + t) = 〈F (x0 + tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .

This contradicts (3.2) and the proof is complete.

The above proof reveals that conditions (i) and (ii) are equivalent to the following one:

〈F (x), u〉 = 0, D−F (x; u) ≤ 0 and 〈F (x+ tu), u〉 > 0 for some t < 0 imply the existence

of t̃ > 0 such that 〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ]
In light of the recent characterization of quasimonotone maps by Crouzeix and Ferland
[6], we shall present a nonsmooth version of Theorem 2.3 of [6]. The following lemma will
be needed in the sequel (see also the proof of Theorem 2.2 of [6] for the smooth case).

Lemma 3.2. Suppose that for each x ∈ S, u ∈ Rn, 〈F (x), u〉 = 0 implies D−F (x, u) ≥
0. Then for every x ∈ S, u ∈ Rn such that F (x) 6= 0 and 〈F (x), u〉 = 0 there exists a

positive t̃ such that 〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃]

Proof. Suppose to the contrary that for some x0 ∈ S with F (x0) 6= 0 and 〈F (x0), u〉 = 0,

for every positive t sufficiently small there exists t1 ∈ [0, t ] such that 〈F (x0 +t1u), u〉 < 0.

It follows from the continuity of F that one can find a small positive t̃ and t0 ∈ [0, t̃ ] such
that

〈F (x0 + t0u), u〉 = 0

〈F (x0 + tu), u〉 < 0 (3.3)

for every t ∈ [t0, t̃ ], and F (x0 + t0u) 6= 0.
Without loss of generality, we may assume that x0 + t0u = 0;F (0) = (0, · · · , 0, 1) and

〈F (tu), u〉 < 0 for all t ∈ (0, t̃]. (3.4)

We shall write x = (y, z) ∈ Rn−1 × R. Let H(x) be the last coordinate of F (x) and

G(x) the first (n − 1) coordinates, i.e. F (x) = (G(x), H(x)) ∈ Rn−1 × R. G and H are
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then locally Lipschitz functions of (y, z) ∈ Rn−1 × R. We have G(0, 0) = 0 ∈ Rn−1 and
H(0, 0) = 1.

Observe also that u = (v0, 0) with some v0 ∈ Rn−1 because 〈F (0), u〉 = 0.
Following [6] let us consider the following differential equation:

H(tv0, g(t))g′(t) + 〈G(tv0, g(t)), v0〉 = 0, g(0) = 0. (3.5)

Since G and H are locally Lipschitz and H(0, 0) = 1 , the system (3.5) has a differentiable

solution g(y) with locally Lipschitz gradient, i.e. g is a C1,1 function on a sufficiently small

interval (−ε, ε) ⊆ (−t̃, t̃) on which

H(tv0, g(t)) > 0, t ∈ (−ε, ε). (3.6)

We now prove that g is concave. In fact, because of (3.5), for every t ∈ (−ε, ε) one has

〈F (tv0, g(t)), (v0, g
′(t))〉 = 〈G(tv0, g(t)), v0〉+H(tv0, g(t)) . g′(t) = 0 .

Hence
D−F ((tv0, g(t)) ; (v0, g

′(t))) ≥ 0, (3.7)

according to the assumption of the lemma. By a technique of the proof of Proposition
4.1 in [23], we have

∂2g(t) ⊆ − 1

H(tv0, g(t))
{v0Ayyv0 + v0Ayzg

′(t) + [ATzyv0 + Azzg
′(t)]g′(t) :

(
Ayy Ayz
Azy Azz

)
∈ ∂F (tv0, g(t))} .

Consequently, every element of ∂2g(t) is nonpositive because of (3.7). Thus g is concave
on (−ε, ε).
Observe that g(t) ≤ 0 and g′(t) ≤ 0 for t ∈ [0, ε) because g is concave and g(0) = g′(0) = 0.
Actually we have the strict inequalities

g(t) < 0 and g′(t) < 0 for all t ∈ (0, ε). (3.8)

In fact, if for some t ∈ (0, ε) one had g′(t) = 0, then using (3.5) one should obtain
〈F (tu), u〉 = 0, a contradiction with (3.4). The first inequality in (3.8) follows from the
second one and the initial condition g(0) = 0.
Pick δ ∈ (0, ε). On one hand 〈F (δv0, 0), u〉 < 0 according to (3.4). On the other hand
〈F (δv0, g(δ)), u〉 > 0 because of (3.5). Hence by continuity of F there exists a negative
λ > g(δ) such that

〈F (δv0, λg(δ)), u〉 = 0. (3.9)

Let us further consider the same differential equation as (3.5) but with another initial
condition:

H(tv0, h(t))h′(t) + 〈G(tv0, h(t)), v0〉 = 0 , h(δ) = λ. (3.10)

As before the solution of this equation is concave and exists on an interval [τ, δ] (where
τ ∈ [0, δ]) on which the relation h(t) ≥ g(t) holds (using (3.6)).
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Observe that h′(δ) = 0 according to (3.9). Moreover

h(t) ≤ λ and h′(t) ≥ 0 for all t ∈ [τ, δ]. (3.11)

This and the fact that g(0) = 0 > λ imply the existence of a negative λ0 ∈ [τ, δ] such that
h(λ0) = g(λ0). For this λ0 one has 〈G(λ0v0, g(λ0)), v0〉 > 0 according to (3.5), (3.8), and
〈G(λ0v0, h(λ0)), v0〉 ≤ 0 according to (3.10) and (3.11). The contradiction completes the
proof.

With help of the above lemma we are able to derive the following result.

Proposition 3.3. Suppose that for every x ∈ S , u ∈ Rn, u 6= 0 the following conditions
hold

(i) 〈F (x), u〉 = 0 implies D−F (x; u) ≥ 0 ;

(ii) F (x) = 0 , D−F (x; u) = 0 and 〈F (x+ tu), u〉 > 0 for some t < 0 imply the existence

of t̃ > 0 such that

〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .

Then F is quasimonotone on S.

Proof. Let us show that conditions (i) and (ii) of Proposition 3.1 are satisfied. Obviously
(i) holds because D+F (x; u) ≥ D−F (x; u) , and (ii) holds if F (x) = 0, in view of the
second condition of Proposition 3.3. For the remaining case F (x) 6= 0 , we invoke Lemma

3.2 to obtain the existence of t̃ in (ii) of Proposition 3.1. This completes the proof.

Note that the sufficient condition of Proposition 3.3 is not necessary as can be seen from
an example in [23].

4. Pseudomonotone Maps

In this section we shall derive characterizations of pseudomonotone maps similar to the
ones in the quasimonotone case.

Proposition 4.1. The map F is pseudomonotone on S if and only if the following
conditions hold for every x ∈ S, u ∈ Rn:

(i) 〈F (x), u〉 = 0 implies D+F (x; u) ≥ 0 ;

(ii) 〈F (x), u〉 = 0 and 0 ∈ {〈u,Au〉 : A ∈ ∂F (x)} imply the existence of t̃ > 0 such that

〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .

Proof. Let us begin with the “only if” case. Since pseudomonotonicity implies quasi-
monotonicity, (i) follows from Proposition 3.1.

For (ii), if this is not true, there exists t̂ > 0 sufficiently small such that 〈F (x+ t̂u), u〉 < 0.

Let y = x + t̂u. Since 〈F (x), u〉 = 0, one has

〈F (x), y − x〉 = 〈F (x), t̂u〉 = 0 . (4.1)

On the other hand
〈F (y), x− y〉 = 〈F (x+ t̂u),−t̂u〉 > 0 .
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However pseudomonotonicity of F implies 〈F (x), y − x〉 < 0 , which contradicts (4.1) .
Conversely, if F is not pseudomonotone, there exists x, y ∈ S such that 〈F (x), y−x〉 ≥ 0
and 〈F (y), x− y〉 > 0. Let u = y − x and consider the function ϕ(t) = 〈F (x + tu), u〉.
We have ϕ(0) ≥ 0 and ϕ(1) < 0. By the continuity of ϕ, there exists t0 ∈ [0, 1] such that

ϕ(t0) = 0 and ϕ(t) < 0 (4.2)

for all t with t0 < t ≤ 1. It is evident that D−F (x + t0u; u) ≤ 0. Hence 0 ∈ {〈u,Au〉 :
A ∈ ∂F (x+ t0u)} in view of (i). It follows from (ii) that 〈F (x+ tu), u〉 ≥ 0 for all t ≥ t0,
sufficiently close to t0. This contradicts (4.2) and the proof is complete.

Similar to the quasimonotone case, conditions (i) and (ii) of the preceding proposition are
equivalent to the following one: 〈F (x), u〉 = 0 and D−F (x; u) ≤ 0 imply the existence of

t̃ > 0 such that 〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .
Now we present sufficient conditions for pseudomonotonicity.

Proposition 4.2. The map F is pseudomonotone on S if the following conditions hold
for every x ∈ S, u ∈ Rn:

(i) 〈F (x), u〉 = 0 implies D+F (x; u) ≥ 0 ;

(ii) 〈F (x), u〉 = 0 and 0 ∈ {〈u,Au〉 : A ∈ ∂F (x)} imply the existence of t̃ > 0 such that

D−F (x + tu; u) ≥ 0 for all t ∈ [0, t̃ ] .

Proof. By Proposition 4.1, it suffices to show that 〈F (x + tu), u〉 ≥ 0 for all t ∈ [0, t̃].

In fact, if this is not the case, i.e. 〈F (x+ tu), u〉 < 0 for some t ∈ (0, t̃ ], one has ϕ(0) = 0
and ϕ(t) < 0 where as before ϕ(t) = 〈F (x + tu), u〉. By the mean value theorem, there
can be found t0 ∈ (0, t) and α ∈ ∂ϕ(t0) such that t0α = ϕ(t)− ϕ(0) < 0. Consequently,
D−F (x+ t0u; u) < 0 because α ∈ [D−F (x+ t0u; u) , D+F (x+ t0u; u)]. This contradicts
the assumption of the proposition.

In addition, we have a nonsmooth version of Theorem 2.3, (ii) [6] for pseudomonotonicity.

Proposition 4.3. Suppose that for every x ∈ S, u ∈ Rn the following conditions hold:

(i) 〈F (x), u〉 = 0 implies D−F (x; u) ≥ 0 ;

(ii) F (x) = 0 and D−F (x; u) = 0 imply the existence of t̃ > 0 such that

〈F (x+ tu), u〉 ≥ 0 for all t ∈ [0, t̃ ] .

Then F is pseudomonotone on S.

Proof. We can follow the same arguments as in the proof of Proposition 3.3 by using
Lemma 3.2 and Proposition 4.1.

As in the quasimonotone case, the condition of Proposition 4.3 is not necessary for pseu-
domonotonicity as seen by the same example in [23]. An immediate consequence of
Proposition 4.3 is the following result.

Corollary 4.4. Suppose that for every x ∈ S and u ∈ Rn the following conditions hold:

(i) 〈F (x, ), u〉 = 0 implies D−F (x; u) ≥ 0 ;
(ii) F (x) = 0 implies D−F (x; u) > 0.
Then F is pseudomonotone on S.
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5. Strictly and Strongly Pseudomonotone Maps

In this last section we give sufficient conditions and necessary conditions for special types
of pseudomonotone maps.

Proposition 5.1. The map F is strictly pseudomonotone on S if the following condition
holds: for every x ∈ S, u ∈ Rn , 〈F (x), u〉 = 0 implies D−F (x; u) > 0.

Proof. It is clear that the condition above implies conditions (i) and (ii) of Proposition
4.2. Hence F is pseudomonotone. If it is not strictly pseudomonotone, then there can be
found x, y ∈ S such that 〈F (x), y − x〉 ≥ 0 and 〈F (y), x− y〉 ≥ 0.
By pseudomonotonicity, it follows that

〈F (x), y − x〉 = 0 and 〈F (y), y− x〉 = 0 . (5.1)

The condition of the proposition implies that D−F (x; y − x) > 0. Hence for t > 0
sufficiently close to t = 0, one has 〈F (x + t(y − x)), y − x〉 > 0 . The latter inequality
in turn implies that 〈F (y), y − (x + t(y − x))〉 > 0 by pseudomonotonicity. Hence
〈F (y), y− x〉 > 0, which contradicts (5.1).

Proposition 5.2. If the map S is strongly pseudomonotone on S, then for every x ∈ S,
there exists β > 0 such that 〈F (x), u〉 = 0 and ||u|| = 1 imply D+F (x; u) ≥ β.
Conversely, if for every x ∈ S there exists β > 0 such that 〈F (x), u〉 = 0 and ||u|| = 1
imply D−F (x; u) ≥ β, then F is strongly pseudomonotone.

Proof. To prove the first part of the proposition, it suffices to show that 〈F (x+tu), u〉 ≥
βt for all t ∈ [0, ε] implies D+F (x; u) ≥ β. For this purpose, let us consider the function
ϕ(t) = 〈F (x + tu), u〉. One has ϕ(0) = 0 and ϕ(t) ≥ βt for every t ∈ [0, ε]. Using the
mean value theorem, for each t ∈ (0, ε) one can find t0 ∈ (0, t) and α ∈ ∂ϕ(t0) such that
αt = ϕ(t)− ϕ(0) ≥ βt. Consequently α ≥ β and D+F (x; u) ≥ β.
For the second part, suppose to the contrary that F is not strongly pseudomonotone.
There exist x ∈ S and u ∈ Rn with 〈F (x), u〉 = 0 and ||u|| = 1 such that for each positive
ε and β there can be found tεβ ∈ [0, ε] satisfying the inequality

〈F (x+ tεβu), u〉 < βtεβ .

Applying the mean value theorem to the function ϕ, we can find t0 ∈ (0, tεβ) and α ∈
∂ϕ(t0) such that

tεβα = ϕ(tεβ)− ϕ(0) < βtεβ .

Since β is arbitrary small, the latter inequality shows that D−F (x; u) ≤ 0. This contra-
dicts the assumption.
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