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Some classical formulas of convex subdifferential calculus in a general Banach space are presented without
any qualification condition, but in a limiting form. Classical formulas are recovered when a qualification
condition such as the Attouch-Brézis condition is assumed.

Several decades after the blossoming of convex analysis, the subject of subdifferential
calculus rule is still very active (see [1]–[4], [15], [16], [23], [30]–[32] for instance). There
are several reasons for that; among them is the attention devoted to calculus rules. Simple
formulas such as

∂ (f1 + f2) (x) = ∂f1 (x) + ∂f2 (x) (0.1)

∂(g ◦ A)(x) = ∂g(A(x)) ◦ A, (0.2)

in which A is linear continuous, f1, f2 and g are closed proper convex functions finite
at x and A(x) respectively, are not valid without additional assumptions, a well known
and disappointing fact, especially for beginners in convex analysis. A general formula for
∂ (f1 + f2) (x) which does not require any qualification condition has been proposed in
[15] (see also [16]). But it involves the approximate subdifferential ∂εf of convex analysis.
Thus this condition is specific to the convex situation. It is our purpose here to present a
formula which is valid without any additional condition and which uses only the ordinary
subdifferential of convex analysis. Such an aim has already been pursued in [2], [3], [14]
and [29]; moreover, in [2], [3] a connection with a notion of variational sum of operators is
pointed out. However the conditions we impose on the sequences involved in our formula
differ from the conditions of Attouch-Baillon-Théra and Thibault: they are more precise
and their interpretation is easier and more amenable to the general nonconvex, nonsmooth
case. Since our approach aims at a link with the general situation of nonsmooth analysis,
an interest for such conditions seems to be justified. It may have consequences on the
evolution of nonsmooth analysis. Moreover, our conditions bear on the coupling functional
and it is well known in nonlinear functional analysis and in the study of partial differential
equations that delicate limiting procedures are to be found for such terms (see [7], [10],
[19] for instance). Thus the analysis of convex functionals which are obtained in terms
of integrals or integro-differential terms as in [5], [8], [13], [25], [26] may benefit from a
closer analysis of calculus rules.
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1. Preliminaries

The following result will be our basic tool. It consists in a slight supplement to the famous
Brønsted-Rockafellar’s theorem [9] and to an extension due to J. Borwein [6], [23]. It has
its own interest. It involves the ε-approximate subdifferential of f given by

∂εf(u) := {u∗ ∈ X∗ : ∀x ∈ X f(x)− f(u) ≥ 〈u∗, x− u〉 − ε} .

This set is a nonempty weak∗ closed convex set whose support function h(·, ∂εf(x0)) :=
sup {〈·, x∗0〉 : x∗0 ∈ ∂εf(x0)} satisfies

h(v, ∂εf(x0)) = inf
t>0

1

t
(f(x0 + tv)− f(x0) + ε) (1.1)

for each v ∈ X. Moreover one has

∂f(x0) =
⋂

ε>0

∂εf(x0). (1.2)

Proposition 1.1. Given a closed proper convex function f on a Banach space X,
α > 0, ε > 0, u0 ∈ dom f, u∗0 ∈ ∂εf (u0) one can find (xε, x

∗
ε) ∈ ∂f and γ ∈ [−1, 1] such

that
‖xε − u0‖+ α | 〈u∗0, xε − u0〉 | ≤

√
ε,

∥∥x∗ε − (1 + αγ
√
ε)u∗0

∥∥ ≤ √ε,
|〈x∗ε − u∗0, xε − u0〉| ≤ ε,

|〈x∗ε, xε − u0〉| ≤ ε+ α−1√ε,
|f (xε)− f(u0)| ≤ ε+ α−1√ε.

Further on we will take α = 1, but it may be useful to dispose of such a parameter: the

choice α = ε−
1
2 is also an interesting one.

Proof. We follow the general line of the proof of [6]. Here we endow X with the equiv-
alent norm ‖ · ‖α given by ‖x‖α := ‖x‖+ α | 〈u∗0, x〉 | for x ∈ X.
Since u∗0 ∈ ∂εf (u0) , u0 is an ε-approximate minimizer of the function g := f − 〈u∗0, .〉.
The Ekeland’s variational principle (see for instance [12]) applied to g yields xε ∈ X such
that

g(xε) +
√
ε‖xε − u0‖α ≤ g(u0),

0 ∈ ∂
(
g +
√
ε ‖· − xε‖α

)
(xε) .

Since g(u0) ≤ g(xε) + ε, the first relation implies that

‖xε − u0‖+ α | 〈u∗0, xε − u0〉 |≤
√
ε.

Using familiar subdifferential calculus rules, and denoting by B∗ the closed unit ball of
X∗, the second relation yields

u∗0 ∈ ∂
(
f +
√
ε ‖· − xε‖+ α

√
ε | 〈u∗0, · − xε〉 |

)
(xε) ⊂ ∂f (xε) +

√
εB∗ + α

√
ε [−1, 1] u∗0.
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In other terms, there exists x∗ε ∈ ∂f (xε) , γ ∈ [−1, 1] and v∗ ∈ B∗ such that

x∗ε = (1 + αγ
√
ε)u∗0 +

√
εv∗.

It follows that

|〈x∗ε − u∗0, xε − u0〉| ≤| αγ
√
ε〈u∗0, xε − u0〉 | + |

√
ε〈v∗, xε − u0〉 |≤ ε

and
|〈x∗ε, xε − u0〉| ≤ ε+ | 〈u∗0, xε − u0〉 |≤ ε+ α−1√ε.

Since x∗ε ∈ ∂f (xε) one has

f (u0)− f (xε) ≥ 〈x∗ε, u0 − xε〉 ≥ −ε− α−1√ε.

Since u∗0 ∈ ∂εf (u0) one has

f (xε)− f (u0) ≥ 〈u∗0, xε − u0〉 − ε ≥ −α−1√ε− ε

and the last inequality of the statement holds.

The last assertion of the following corollary could not be obtained without the additional
information we got. Thus, it shows the importance of this information. It suggests a new
definition of stabilized or limiting normals in the nonconvex case; such a proposal will not
be considered here.

Corollary 1.2. Given x0 in the domain dom f of a closed proper convex function f on
X one can find a sequence (xn, x

∗
n) in the graph of ∂f such that (xn) → x0, (f (xn)) →

f (x0) , (〈x∗n, xn − x0〉)→ 0. Moreover, each possible weak∗ cluster point of a sequence or
a net (x∗n) satisfying these properties belongs to ∂f(x0).

Proof. For each n ∈ IN \ {0} we can find y∗n ∈ ∂1/n2f (x0) . Setting u0 = x0, u
∗
0 = y∗n,

α = 1, ε = 1/n2 in the preceding proposition, we get (xn, x
∗
n) ∈ ∂f such that

‖xn − x0‖ ≤ 1/n,

|f (xn)− f (x0)| ≤ 2/n,

|〈x∗n, xn − x0〉| ≤ 2/n.

If x∗0 is a weak∗ cluster point of (x∗n), for each x ∈ X one has

f(x) ≥ lim sup
n

(f(xn) + 〈x∗n, x− x0〉+ 〈x∗n, x0 − xn〉)

≥ f(x0) + 〈x∗0, x− x0〉.

so that x∗0 ∈ ∂f(x0).

We will make use of the following recent results whose proofs are elementary.

Proposition 1.3. ([15], [16]) Let A be a linear continuous operator between two Banach

spaces X, Y, and let g : Y → IR• = IR ∪ {∞} be a closed convex function finite at some
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y0 ∈ Y . Then, denoting by AT the transpose of A and by cl∗C the weak∗-closure of a

subset C of X∗ one has, for any x0 ∈ A−1(y0),

∂(g ◦ A)(x0) =
⋂

ε>0

cl∗AT (∂εg(y0)). (1.3)

When X is reflexive, the weak∗ closure can be replaced by the norm closure.

This result is a consequence of relations ((1.1), (1.2)) and of the relation

∂εf(x0) = cl∗(AT (∂εg(y0))), (1.4)

where f := g ◦ A; this relation amounts to the obvious equalities

h(v, cl∗(AT (∂εg(y0)))) = h(v, AT (∂εg(y0))) = h(Av, ∂εg(y0)),

inf
t>0

1

t
(f(x0 + tv)− f(x0) + ε) = inf

t>0

1

t
(g(y0 + tAv)− g(y0) + ε).

Proposition 1.4. ([15], [16]) Given two closed proper convex functions f1, f2 on the
Banach space X and x0 ∈ dom f1 ∩ dom f2 one has

∂ (f1 + f2) (x0) =
⋂

ε>0

cl∗ (∂εf1 (x0) + ∂εf2 (x0)) .

2. The main results

The main results we have in view are the following ones. Let us start with composition,
the fundamental operation from the point of view of category theory. We first consider a
simple case.

Proposition 2.1. Let A be a linear continuous operator between two Banach spaces
X, Y, let b ∈ Y and let g : Y → IR• := IR ∪ {∞} be a closed proper convex function.
Let f := g ◦ (A + b), x0 ∈ dom f. Suppose that for each element ε of a subset E of

(0,∞) containing 0 in its closure the set AT (∂εg(y0)) is weak∗-closed. Then for each
x∗0 ∈ ∂f(x0) there exist sequences (yn)n∈IN, (y∗n)n∈IN such that y∗n ∈ ∂g(yn) for each

n ∈ IN, (yn)n∈IN → y0 := A(x0) + b, (g(yn))n∈IN → g(y0), (AT (y∗n))n∈IN → x∗0, and

(〈y∗n, yn − y0〉)n∈IN → 0.

Proof. Let (εn) be a sequence of E converging to 0. Proposition 1.3 enables one to

find some u∗n ∈ ∂εng(y0) such that x∗0 = AT (u∗n). Then Proposition 1.1 provides some

yn ∈ B(y0, εn), y∗n ∈ ∂g(yn), γn ∈ [−1, 1] such that ‖y∗n − (1 + γn
√
εn)u∗n‖ ≤

√
εn,

| 〈y∗n, yn − y0〉 |≤ εn +
√
εn, | g(yn) − g(y0) |≤ εn +

√
εn. As (1 + γn

√
εn)AT (u∗n) =

(1 + γn
√
εn)x∗0 → x∗0, we get the result.

When X is reflexive, the condition we obtained characterizes the elements of ∂f(x0), as
shown at the end of the proof of the following statement which deals with the general
case.
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Theorem 2.2. Let A, b, f , g be as above. Then, for any x0 ∈ dom f the subdifferential
of f at x0 is the set of weak∗-limit points x∗0 of nets (x∗n)n∈N such that there exists a

net (yn)n∈N converging to y0 := A(x0) + b and for each n ∈ N, some y∗n ∈ ∂g(yn) with

x∗n = AT (y∗n), (g(yn))n∈N → g(y0) and (〈y∗n, yn − y0〉)n∈N → 0.

If y∗0 is any weak∗-limit point of such a net (y∗n)n∈N then x∗0 = AT (y∗0) and y∗0 ∈ ∂g(y0).
If X is reflexive one can take sequences instead of nets and impose convergence of
(x∗n)n∈N to x∗0 in norm.

Proof. Without loss of generality we may suppose b = 0. Let P be a family of semi-
norms on X∗ whose unit balls form a base of neighborhoods of 0 for the weak∗ topology.
Given x∗0 ∈ ∂f(x0), using Proposition 1.3, for any k ∈ K := IN\{0} and for any p ∈ P one

can find z∗k,p ∈ ∂1/k2g(y0) such that p(AT (z∗k,p)−x∗0) < 1/k. Then, by Proposition 1.1 and

Corollary 1.2, one can pick (yk,p, y
∗
k,p) ∈ ∂g and γk,p ∈ [−1, 1] such that ‖yk,p−y0‖ < 1/k,

| g(yk,p)−g(y0) |< 2/k, 〈y∗k,p, yk,p−y0〉 ≤ 2/k and ‖z∗k,p−(1+k−1γk,p)y
∗
k,p‖ < 1/k. Setting

N := K × P with the product order and x∗n := ATy∗k,p for n := (k, p), and observing that

(1 + k−1γk,p)
−1AT (z∗k,p)→ x∗0

for the weak∗ topology, so that

AT (y∗k,p)→ x∗0

by the continuity of AT , we get the announced nets. The assertion about limit points of

the net (y∗k,p) follows from Corollary 1.2 and the weak∗ continuity of AT . Moreover, we

observe that when X is reflexive we can replace the weak∗-closure by the norm closure

and take P :=
{
k−1‖ · ‖ : k ∈ K

}
, so that we get a sequence rather than a net and strong

convergence instead of weak∗ convergence.
Conversely, if x∗0, (y∗n)n∈N , (yn)n∈N are as in the statement, for each x ∈ X we have

〈x∗0, x− x0〉 = lim
n
〈y∗n, A(x)− A(x0)〉 = lim

n
〈y∗n, A(x)− yn〉

≤ lim sup
n

(g(A(x))− g(yn)) ≤ g(A(x))− g(A(x0))

by the lower semicontinuity of g, and thus x∗0 belongs to ∂f(x0).

Now let us turn to the sum.

Theorem 2.3. Let X be a Banach space, let f = f1 + f2 with fi closed proper
convex on X and let x0 ∈ dom f. Then ∂f (x0) is the set of weak∗- limits of nets of
the form (x∗1,n + x∗2,n)n∈N with x∗i,n ∈ ∂fi (xi,n), (xi,n)n∈N → x0, (fi (xi,n))n∈N →
fi (x0) ,

(
〈x∗i,n, xi,n − x0〉

)
n∈N

→ 0 for i = 1, 2. If X is reflexive the preceding nets

can be replaced by sequences and the convergence of x∗1,n + x∗2,n can be taken in the strong

topology.

Proof. Let us show how this result can be deduced from the composition result. Given
f = f1 + f2 , we set Y := X × X and we define A and g by A(x) := (x, x), g(y) :=
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f1(x1) + f2(x2) for y = (x1, x2); then f = g ◦ A. Given x∗0 ∈ ∂f(x0), let (y∗n)n∈N ,

(yn)n∈N be as in Theorem 2.1, with y∗n := (x∗1,n, x
∗
2,n), yn := (x1,n, x2,n), y0 = (x0, x0).

Since x∗i,n ∈ ∂fi(xi,n) as easily seen, we have

f1(x1,n)− f1(x0) ≤ 〈x∗1,n, x1,n − x0〉 ≤ 〈y∗n, yn − y0〉 − (f2(x2,n)− f2(x0)).

Since (g(yn)) → g(y0), the lower semicontinuity of f1 and f2 entails that (fi(xi,n) −
fi(x0))→ 0 and we get (〈x∗1,n, x1,n − x0〉)→ 0 from the convergence (〈y∗n, yn − y0〉)→ 0;

similarly (〈x∗2,n, x2,n − x0〉)→ 0. Moreover

AT (x∗1,n, x
∗
2,n) = x∗1,n + x∗2,n → x∗0

for the weak∗ convergence.

Conversely, let us suppose

x∗0 = lim
n

(
x∗1,n + x∗2,n

)

with
x∗i,n ∈ ∂fi (xi,n) , (xi,n)→ x0, (αi,n) := (fi (xi,n)− fi (x0))→ 0,

(γi,n) :=
(
〈x∗i,n, xi,n − x0〉

)
→ 0 for i = 1, 2.

Then for each x ∈ dom f we have

f (x)− f (x0)− 〈x∗0, x− x0〉

=
2∑

i=1

(fi (x)− fi (xi,n) + αi,n − γi,n − 〈x∗i,n, x− xi,n〉) + 〈x∗1,n + x∗2,n − x∗0, x− x0〉.

Passing to the limit and using the relations

fi (x)− fi (xi,n)− 〈x∗i,n, x− xi,n〉 ≥ 0

we get
f (x)− f (x0)− 〈x∗0, x− x0〉 ≥ 0,

and x∗0 ∈ ∂f(x0).

Remark 2.4. The preceding statement shows that the familiar conditions

(xi,n)→ x0, (fi (xi,n))→ fi (x0)

which are of common use in nonsmooth analysis have to be supplemented with the third
condition (

〈x∗i,n, xi,n − x0〉
)
→ 0

which represents a coupling condition on the sequence
(
xi,n, x

∗
i,n

)
. Obviously, the three

conditions imply the condition

(
fi (xi,n)− 〈x∗i,n, xi,n − x0〉

)
→ fi (x0)
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imposed in [29]. The latter condition seems to be more difficult to interpret. Moreover,
our conditions being more stringent, given an element x∗0 of ∂f(x0) we get more informa-
tion about its limiting decomposition. This additional information may be precious, for
instance for writing optimality conditions in terms of subdifferentials.

Remark 2.5. When receiving the first version of this paper, L. Thibault has kindly
informed us that a related condition appears in [2] and [3] in the Hilbertian case, where
it is obtained with quite different methods. Again, our three conditions are more precise

when X is reflexive, so that one uses sequences : the conditions
(
x∗1,n + x∗2,n

)
→ x∗0,

(
〈x∗i,n, xi,n − x0〉

)
→ 0 for i = 1, 2 imply the conditions

(
〈x∗i,n, x1,n − x2,n〉

)
→ 0 for i = 1, 2.

However, the variational interpretation obtained in [3] is no more present here and there
is no connection with sums of monotone operators as in [3].

Remark 2.6. The preceding two theorems are equivalent statements. In order to show
that the sum theorem implies the composition theorem let f, g, A, b be given as in Theorem
2.2, and let us set f1(x, y) = g(y), f2(x, y) = ιG(x, y), where G = {(x,Ax + b) : x ∈ X}
and ιG is the indicator function of G, so that f = f1 + f2. The derivation is then
straightforward in view of the obvious relationship between ∂f1 and ∂g.

Remark 2.7. Let us observe that for any nets (yn)n∈N , (y∗n)n∈N as in Theorem 2.2 and
for each ε > 0 one has y∗n ∈ ∂εg (y0) for n ∈ N, n ≥ n(ε) where n(ε) is chosen in such a
way that | 〈y∗n, yn − y0〉 | + | g(yn)− g(y0) |≤ ε for n ≥ n(ε) since for each y ∈ Y one has

g(y)− g(y0) ≥ 〈y∗n, y − y0〉+ 〈y∗n, y0 − yn〉+ g(yn)− g(y0).

Let us derive a sufficient condition for a composition formula.

Corollary 2.8. Suppose with the notations of Proposition 2.1 that for some η > 0 and
each r > 0 there exists some s > 0 such that

y∗ ∈ ∂ηg(y0), ‖AT (y∗)‖ ≤ r ⇒ ‖y∗‖ ≤ s.

Then
∂(g ◦ A)(x0) = AT (∂g(y0)).

Proof. The Krein-Smulian Theorem shows that for ε < η the convex set C := AT (∂εg(y0))
is weak∗-closed since for each r > 0

C ∩ rBX∗ = AT (∂εg(y0) ∩ sBY ∗) ∩ rBX∗

and the image by AT of the weak∗ compact set ∂εg(y0) ∩ sBY ∗ is weak∗ compact.
Then if we take sequences (u∗n)n∈N , (yn)n∈N , (y∗n)n∈N as in Proposition 2.1, the assump-
tion shows that (u∗n)n∈N is bounded, hence has a converging subnet whose limit y∗0 is also

the limit of (y∗n)n∈N , and belongs to ∂g(y0) by Corollary 1.2 and obviously x∗0 = AT (y∗0).
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In order to derive sufficient conditions for the validity of formula (0.1) let us introduce
the following notion which differs slightly from analogous concepts of nonsmooth analysis
(see [20], [21], [27], [17], [28] for instance).

Definition 2.9. Given a closed proper convex function f on X, x0 ∈ dom f, the
asymptotic subdifferential of f at x0 is the set ∂∞f (x0) of u∗ ∈ X∗ such that there
exist nets (tn)n∈N → 0+, ((xn, x

∗
n))n∈N in ∂f with (xn)n∈N → x0, (f (xn))n∈N →

f (x0) , (〈x∗n, xn − x0〉)n∈N → 0 and (tnx
∗
n)n∈N → u∗ in X∗ weak∗.

When ∂f(x0) is nonempty, taking xn = x0 for each n we see that this set is larger than
the asymptotic cone (∂f(x0))∞ of ∂f(x0) and is larger than the corresponding sets in
[17], [20], [21], [27], [28] given by

∂∞f (x0) =
{
u∗ ∈ X∗ : (u∗, 0) ∈ N

(
Ef , (x0, r0)

)}
(2.1)

where r0 = f (x0) , Ef is the epigraph of f and N (C, a) denotes the normal cone to C at
a :

N (C, a) = {x∗ : 〈x∗, x− a〉 ≤ 0 ∀x ∈ C} .
Here we recall that ∂f (x0) × {−1} = N

(
Ef , (x0, r0)

)
∩ (X∗ × {−1}). In fact, given

y∗0 ∈ ∂f(x0), for any u∗ ∈ ∂∞f(x0) and any (tn)→ 0+ we have x∗n := t−1
n u∗+y∗0 ∈ ∂f(x0)

as N
(
Ef , (x0, r0)

)
is a convex cone, and (tnx

∗
n) → u∗. Let us note that the coupling

condition (〈x∗n, xn − x0〉)→ 0 is useful in order to shrink ∂∞f(x0) as most as possible, so
that the qualification condition presented below will not be too exacting.
Let us first give a more precise identification of ∂∞f(x0).

Proposition 2.10. For any closed proper convex function f on X and any x0 ∈ Df :=

dom f one has ∂∞f (x0) ⊂ ∂∞f (x0) = N(Df , x0). Equality holds if ∂f(x0) is nonempty.

Proof. The second equality is a direct consequence of the definitions. Since we already
observed the inclusion ∂∞f (x0) ⊃ ∂∞f (x0) when ∂f(x0) is nonempty, and since for
u∗, tn, xn, x∗n as in Definition 2.9 we have ((xn, rn)) → (x0, r0) for r0 = f (x0) , rn =

f (xn) , (tn (x∗n,−1))→ (u∗, 0) weak∗ in (X × IR)∗,

〈tn (x∗n,−1) , (xn, rn)− (x0, r0)〉 = tn〈x∗n, xn − x0〉 − tn (rn − r0)→ 0,

the first inclusion and the proposition are consequences of the following result of indepen-
dent interest.

Lemma 2.11. Let C be a convex subset of a normed vector space Z, let (an)n∈N be a

net in C with limit a, and let a∗n ∈ N (C, an) be such that (〈a∗n, an − a〉) → 0 and (a∗n)
weak∗ converges to some a∗. Then a∗ ∈ N (C, a).

Let us observe that if we deal with a sequence rather than a net the condition (〈a∗n, an − a〉)
→ 0 is automatically satisfied.

Proof. The result is a special case of the last assertion of Corollary 1.2 for the indicator
function of C.

We are ready to present a qualification condition which is new in the context of convex
analysis. We need to introduce some terminology.
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Definition 2.12. A convex subset C of a n.v.s. Z is said to be normally compact at
z ∈ C if for any net (zn)n∈N of C with limit z, any net (z∗n)n∈N such that z∗n ∈ N(C, zn),
‖z∗n‖ = 1 for each n ∈ N has a non null cluster weak∗ point z∗. A convex function

f : X → IR• on a n.v.s. X is said to be subdifferentially compact at x0 ∈ dom f if, for

any net ((xn, x
∗
n))n∈N in ∂f with (xn) → x0, (‖x∗n‖)→∞, the net (‖x∗n‖−1x∗n) has a non

null weak∗ cluster point.
Clearly, in a finite dimensional n.v.s., any convex set is normally compact and any function
is subdifferentially compact. Moreover one has the following criteria. Note that assertion
(a) below is valid for the more general class of epi-Lipschitzian sets, but here we do not
wish to leave the framework of convex analysis.

Lemma 2.13.
a) If the interior of a convex set C is nonempty, then C is normally compact at each

z ∈ C;
b) If the epigraph Ef of a convex function f is normally compact at z0 := (x0, f(x0)),

then f is subdifferentially compact at x0;
c) If the convex function f is continuous at some point of its domain, then f is subdif-

ferentially compact at each point of its domain.

Proof. a) Let a ∈ C and r > 0 be such that the ball B(a, r) is contained in C. Then,
for any net (zn)n∈N of C with limit z ∈ C, any net (z∗n)n∈N such that z∗n ∈ N(C, zn),
‖z∗n‖ = 1 for each n ∈ N, one has for each u in the unit ball of Z

〈z∗n, a+ ru− zn〉 ≤ 0

hence

〈z∗n, a− zn〉 ≤ −r‖z∗n‖ = −r,
so that each cluster weak∗ point z∗ of (z∗n)n∈N satisfies

〈z∗, a− z〉 ≤ −r

and is nonzero.
b) Let ((xn, x

∗
n))n∈N be a net in ∂f with (xn) → x0, (‖x∗n‖)→∞, for zn := (xn, f(xn)).

For n large enough (u∗n, rn) := (‖x∗n‖−1x∗n,−‖x∗n‖−1) ∈ N(Ef , zn) and is a unit vector;

then, if (u∗, r) is a non null weak∗ cluster point of ((u∗n, rn)) one has r = 0, u∗ 6= 0 and

and the net (‖x∗n‖−1x∗n) has a non null weak∗ cluster point u∗.
Assertion c) follows from the preceding two assertions.

Corollary 2.14. Let X be a Banach space and let f1, f2 be two closed proper convex
functions on X. Let x0 ∈ dom f1 ∩ dom f2 be such that

∂∞f1 (x0) ∩ (−∂∞f2 (x0)) = {0} (2.2)

and such that f1 is subdifferentially compact at x0. Then

∂ (f1 + f2) (x0) = ∂f1 (x0) + ∂f2 (x0) .
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Proof. Given x∗0 ∈ ∂ (f1 + f2) (x0), Theorem 2.1 ensures that for i = 1, 2 there exists

nets (xi,n)n∈N → x0,
(
x∗i,n
)
n∈N

such that

x∗i,n ∈ ∂fi(xi,n), (fi (xi,n))→ fi (x0) ,
(
〈x∗i,n, xi,n − x0〉

)
→ 0 with

(
x∗1,n + x∗2,n

) w∗→x∗0.

Let rn =
∥∥∥x∗1,n

∥∥∥. If (rn) has a bounded subnet we may assume that
(
x∗1,n

)
w∗−converges

and then
(
x∗2,n

)
w∗−converges too. In view of Corollary 1.2, the limit (x∗1, x

∗
2) of

(
x∗1,n, x

∗
2,n

)
belongs to ∂f1 (x0) × ∂f2 (x0), and x∗1 + x∗2 = x∗0. If (rn) → ∞, setting

u∗1,n = r−1
n x∗1,n we use our assumption to get that

(
u∗1,n

)
has a converging subnet whose

limit u∗1 is non null and belongs to ∂∞f1 (x0). Since

lim r−1
n x∗2,n = lim r−1

n x∗0 − lim r−1
n x∗1,n = −u∗1

belongs to ∂∞f2 (x0) we reach a contradiction with our assumption (2.2).
The opposite inclusion being obvious, we get the announced equality.

Remark 2.15. The qualification condition (2.2) seems to have been used for the first
time (and in a nonconvex framework, but in finite dimensions) in [20], [21].The familiar
qualification condition: f1 is finite and continuous at some point a of dom f2 implies
assumption (2.2). In fact, if B(a, r) ⊂ dom f1 and if u∗ ∈ ∂∞f1 (x0) ∩ (−∂∞f2 (x0)), in
view of Proposition 2.10 we have 〈u∗, a+ ru−x0〉 ≤ 0 for each u in the unit ball BX , and
〈−u∗, a− x0〉 ≤ 0, hence −r〈u∗, u〉 ≤ 0 for each u ∈ BX and u∗ = 0.

Let us conclude by observing that the classical qualification condition of [27]

IR+(dom f1 − dom f2) = X (2.3)

entails condition (2.2) since it can be equivalently written

IR+(dom f1 − x0)− IR+(dom f2 − x0) = X

so that for any x ∈ X and any u∗ ∈ N(dom f1, x0)∩(−N(dom f2, x0)) one has 〈u∗, x〉 ≤ 0,
hence u∗ = 0.
It is shown in [29] that condition (2.3) is a qualification condition in order to get a sum
rule. In fact it can be shown that the more general condition

X0 := IR+(dom f1 − x0)− IR+(dom f2 − x0)) is a closed vector subspace (2.4)

of Attouch and Brézis ([1], see also [18] Th 3.6.1 for a similar condition in an algebraic
framework) can be deduced from Theorem 2.3. Similarly, the following qualification
condition

Y0 := IR+(dom g − y0)− A(X) is a closed vector subspace (2.5)

can be derived from Theorem 2.2.
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Corollary 2.16. Given two closed proper convex functions f1, f2 on the Banach space
X such that condition (2.4) is satisfied, then for any x0 ∈ dom f1 ∩ dom f2 one has

∂ (f1 + f2) (x0) = ∂f1 (x0) + ∂f2 (x0) .

Given f, g, X, Y, A, b, x0, y0 as in Theorem 2.2 such that condition (2.5) is satisfied one
has

∂f(x0) = AT (∂g(y0)).

Proof. For the sake of brievity, we prove only the second assertion, both being related, as
seen in a previous remark. Here one has to observe that if C1 and C2 are two convex cones
of X such that X0 := C1 − C2 is a closed vector subspace of X, then Y0 := C1 × C2 −D
is a closed vector subspace of Y := X ×X, D being the diagonal of Y .
Let us first suppose Y0 = Y . Let us show that the assumption of Corollary 2.8 is satisfied.

Given r > 0 let us show that the set D := ∂εg(y0) ∩ (AT )−1(rBX∗) is bounded. This
follows from the Banach-Steinhaus Theorem and the fact that for each y ∈ Y one can
find t > 0, z ∈ dom g, x ∈ X such that y = t(z − y0)− A(x) hence for each y∗ ∈ D

〈y∗, y〉 = t〈y∗, z − y0〉 − 〈AT (y∗), x〉
≤ t(g(z)− g(y0) + ε) + r‖x‖,

a number independent of y∗.
Now, as is well-known ( see [1]), the general case can be deduced from the special case by
setting g0(y) := g(y+y0) for y ∈ Y0 and by observing that any continuous linear extension
y∗ ∈ Y ∗ of some y∗0 ∈ ∂g0(0) belongs to ∂g(y0) as Y0 contains A(X) and dom g − y0, (so
that

g′(y0, v) =∞
for any v ∈ Y \ Y0) and is such that AT (y∗) = x∗0 if AT (y∗0) = x∗0.
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