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Convergence of martingales, amarts, pramarts, mils, have been extentively studied in recent years by
a lot of authors: Bellow [3], Blake [4], Chatterji [10], Castaing [5], Castaing and Ezzaki [8], Choukairi
([11], [12], [14]), Daures [15], Bagchi [1], Hiai and Umegaki [20], Hess [19], Egghe ([17], [18]), Millet and
Sucheston [26], Lavie [22], Luu ([23], [24], [25]), Slaby [28], Derras [16], Neveu [27], Talagrand [29], and

many others. New convergence results for bounded pramarts in L1
E and in the space L1

wc(E)
of integrably

bounded multifunction with convex weakly compact values are presented. The main purpose of this
paper is to obtain the Linear topology convergence (introduced by Beer [2]) and Mosco-convergence of
multivalued pramarts.

Keywords : multivalued conditional expectation, pramart, kadec-klee’s norm, Mosco topology, linear
topology.
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1. Notations, definitions and preliminaries

Throughout this paper, (Ω, F, P ) denotes a probability space, E a separable Banach space

with the dual space E ′, cw(E) the family of non-empty weakly compact convex subsets
of E; h is the Hausdorff distance.

Given A ∈ cw(E), the distance function d(., A), and the support function δ?(., A) are
defined by:

d(x,A) = inf{‖x− y‖y ∈ A} (x ∈ E)

δ?(x′, A) = sup{〈x′, x〉; x ∈ A} (x′ ∈ E′).
Let (An) be a sequence in cw(E). If the two following conditions hold:

(i) limn→∞ d(x,An) = d(x,A) ∀x ∈ E
(ii) limn→∞ δ?(x′, An) = δ?(x′, A) ∀x′ ∈ E′.
We said that (An) is convergent in the Linear-topology (see [2]) to A. We denote:

τL − lim
n→∞

An = A.
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Lemma 1.1. (Beer [2], Theorem 5.1) On cw(E), we have:

τh ⊃ τL ⊃ τM ,

where τh is the Hausdorff topology, τL is the Linear topology, and τM is the Mosco topology.

Given a sub-σ-field B of F , and a F -measurable multifunction X with values in cw(E)

such that the function d(o, F (.)) ∈ L1(R); Hiai and Umegaki [20] showed the existence of

F -measurable multifunction EB(X) such that

S1
EB(X)(B) = cl{EB(f); f ∈ S1

X(F )}

where S1
X(F ) denotes the set of all F -measurable selections of X and EB(f) is the usual

B-conditional expectation of f the closure being taken in L1
E. But S1

X(F ) is a convex

weakly compact set (see [21]), and EB is a linear continuous operator, so we have:

S1
EB(X)(B) = {EB(f); f ∈ S1

X(F )}.

Let (Fn) be an increasing sequence of sub-σ-fields, of F , such that F = σ(
⋃
n Fn). A

sequence (Xn) of measurable multifunctions with values in cW (E) is said to be adapted
to (Fn) if, for any n, Xn is Fn-measurable. Let T be the set of all bounded stopping
times. Let τ ∈ T , we define the tribe Fτ = {A ∈ F/A ∩ [τ − n] ∈ Fn∀n} where
[τ = n] = {ω ∈ Ω, τ(ω) = n} and the multifunction Xτ (ω) = Xτ (ω)(ω), then (Xτ )τ∈T is

adapted to (Fτ ).

Definition 1.2. Let (Xn, Fn)n≥1 be an adapted sequence. We say that (Xn)n ≥ 1 is

an amart in probability (shortly pramart) if for every ε > 0, there is σ0 ∈ T such that:

∀σ, τ ∈ T, τ ≥ σ ≥ σ0 ⇒ P ({‖EFσ(Xτ )−Xσ‖ > ε) ≤ ε.

If E = R, we say that (Xn) is a subpramart, if for every ε > 0, there is σ0 ∈ T such that:

∀σ, τ ∈ T : τ ≥ σ ≥ σ0 ⇒ P ({Xσ − EFσ(Xτ ) > ε}) ≤ ε.

Now, let (Xm
n , Fn)n≥1(m ∈ N?) be a sequence of real subpramarts. It is called a uniform

sequence of subpramarts if for every ε > 0, there is σ0 ∈ T such that:

∀σ, τ ∈ T : τ ≥ σ ≥ σ0 ⇒ P ({sup
m

(Xm
σ − EFσ(Xm

t )) > ε}) ≤ ε.

1) Every martingale is a pramart, and every uniform amart is a pramart.
2) Every sequence of submartingales is abviously an example of uniform sequence of

subpramarts.

Theorem 1.3. (Kadec-Klee) Let E be a separable Banach space. Then on E there exists

an equivalent norm ‖|.‖| and a countable norming set DCE ′ such that if 〈x′, xn〈→ 〈x′, x〉
for each x′ ∈ D and if ‖|xn‖| → ‖|x‖| then xn → x in E.

Proof. See ([18], Theorem II.2.4.4. p. 45).
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Lemma 1.4. (Egghe [18]. Lemma VIII.1.15. p. 298) Let (Xm
n , Fn)n≥1 be a uniform

sequence of positive real subpramarts. Suppose that there is a subsequence (nk)k ≥ 1 such
that:

sup
k

∫
sup
m
Xm
nk
<∞,

then each subpramart (Xm
n , Fn)n≥1 converges a.e. to an integrable function Xm and we

have:

lim
n→+∞

sup
m
Xm
n = sup

m
Xm
∞a.e.

This lemma is a very important result. It will be used in proof of the main result of this
paper (see Theorem 3.3).

2. Convergence results

Now, we introduce a class of subsets of E, by putting

R = {C ∈ cf(E)/C ∩ B(0, r) ∈ cw(E), ∀r > 0}
where B(0, r) denotes the closed ball of radius r and cf(E) the family non-empty closed
convex subsets of E (see [19]).
It is clear that R contains the members of cw(E) which are weakly locally compact. If E
is reflexive we have R = cf(E).

Theorem 2.1. Let E be a separable Banach space. Let (Xn) be a pramart with values
in E which satisfies the following two conditions:

(i) supτ∈T
∫
|Xτ | <∞ (i.e. (Xn) of class (B)).

(ii) There exists a F -measurable multifunction L with values in R such that Xn(ω) ∈ L(ω)
for every n ≥ 1, and every ω ∈ Ω.

Then (Xn) converges strongly a.e.

Proof. Using a result of Millet and Sucheston (see [18], Theorem VII.2.8) and reduction
Lemma (see Castaing [5], Lemma 2.2), we can suppose that:

g = sup
n
|Xn| ∈ L1

R(F ),

so, we have:

Xn(ω) ∈ L(ω) ∩ g(ω)B ∀ω ∈ Ω, ∀n ≥ 1.

B denotes the closed unit ball.
Further let us define the multifunction:

Γ(ω) = L(ω) ∩ g(ω)B.
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Then Γ is an F -measurable integrably bounded multifunction with values in cW (E), and

the set S1
Γ(F ) is convex and σ(L1

E, L
∞
E′s

)-compact (see Klei and Assani [21]). E ′s is the

weak dual.
Since Xn ∈ S1

Γ(F ), there is a subsequence (Xnk)k≥1 which converges to X∞ ∈ L1
E(F )

with σ(L1
E, L

∞
E′s

)-topology.

Now, let D be a countable norming set in E ′ such in Theorem 1.3 and x′ ∈ D. Since

(〈x′, Xn〉, Fn)n≥1 is an L1-bounded real pramart, it converges to 〈x′, X∞〉 almost surely:

this can be viewed as a consequence of Hess’s Lemma ([19], Lemma 5.2). This Lemma
simply has to be particularized to the single-valued case.
Applying Lemma 1.4 to the uniform sequence of positive real subpramarts
(|〈x′, Xn〉|, Fn)n≥1 (x′ ∈ D) we obtain:

lim
n→∞

sup
x′∈D

|〈x′, Xn(ω)〉| = sup
x′∈D

|〈x′, X∞(ω)〉|.

Therefore:
lim
n→∞

‖|Xn(ω)‖| = ‖|X∞(ω)‖| a.e.

And Theorem 1.3 gives the desired conclusion.

Remark 2.2. In [26], assuming that E has Radon-Nikodym property, Millet and
sucheston proved variants of Theorem 2.1.

Remark 2.3. Using a vector version of Brooks and Chacon’s result (see Castaing and

Clauzure [7]), we can extend Theorem 2.1 to L1-bounded pramarts without class (B).
The next result concerns this.

Theorem 2.4. Let E be a separable Banach space. Let (Xn) be a pramart with values
in E which satisfies the following conditions:

(i) supn
∫
|Xn| <∞,

(ii) there exists an F -measurable multifunction L with values in R such that Xn(ω) ∈
L(ω) for every n ≥ 1, and every ω ∈ Ω.

Then (Xn) converges strongly a.e.

Proof. First observe that for every x′ ∈ E′, the real pramart (〈x′, Xn〉) converges a.e.
to an integrable function. Now applying Theorem 3.3 in [7], we can find a decreasing

sequence (Bp)p ≥ 1 in F such that P (
⋂
pBp) = 0, a subsequence (Xnk)k ≥ 1 of (Xn) and

X∞ ∈ L1
E(F ) such that (Xnk | Bc

p)k is uniformly integrable, and

lim
k→∞

∫

A
〈u(ω), Xnk(ω)〉dP (ω) =

∫

A
〈u(ω), X∞(ω)〉dP (ω)

for any u ∈ L∞
E′s

(F ) and A ∈ Bc
p ∩ F . Where Bc

p denotes the complementary of Bp.

For each p, the sequence (Xnk | Bc
p)k is uniformly integrable; hence for every x′ ∈ E′, for

every A ∈ Bp ∩ F we have:

lim
k

∫

A
〈x′, Xnk〉 =

∫

A
lim
k
〈x′, Xnk〉 =

∫

A
〈x′, X∞〉.
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Then for every x′ ∈ D, every p, there is a negligible set Np,x′ in Bc
p such that for ω ∈ Bc

p |
Np,x′

lim
k
〈x′, Xnk〉 = 〈x′, X∞〉.

Since limp P (Bc
p) = 1, for fixed x′ ∈ D, we have

lim
n
〈x′, Xn〉 = 〈x′, X∞〉 a.s.

thus, we can finish as in the proof of Theorem 2.1.

Remark 2.5. In ([5], Theorem 3.5) Castaing proved results similar to ours, when (Xn)
is a martingale.

3. The main result

In this section we shall present a convergence result for multivalued pramarts with values
in cw(E).

Definition 3.1. Let (Xn) be an adapted sequence of multifunctions. We say that (Xn)
is a pramart (resp. w-pramart) if for every ε > 0, there is σ0 ∈ T such that:

∀σ, τ ∈ T τ ≥ σ ≥ σ0 ⇒ P ({h(EFσ(Xτ ), Xσ) > ε}) ≤ ε

(resp. (δ?(x′, Xn))n≥1 is a real pramart ∀x′ ∈ E′).
We begin by simple Lemma

Lemma 3.2. Let F 6= ∅, H ⊂ F , and f :F → R such that there exists x0 ∈ H with

f(x0) = 0. Then supx∈H f(x) = supx∈H f
+(x) where f+ = sup(f, 0).

The next Theorem is the main result of this paper. It concerns the τL-convergence and
Mosco-convergence of multivalued pramarts.

Theorem 3.3. Let E be a separable Banach space. Let (Xn, Fn)n≥1 an adapted sequence

with values in cw(E). Suppose that:

co(
⋃

n

Xn(ω)) ∈ cw(E). a.e.

1) If (Xn) is a w-pramart such that supn
∫
|δ?(x′, Xn)| < ∞ for every x′ ∈ E′. Then

there exist a measurable multifunction X∞: Ω → cw(E) and a negligible subset N of
Ω such that:

lim
n→∞

δ?(x′, Xn(ω)) = δ?(x′, X∞(ω)) ∀ω ∈ Ω | N ; ∀x′ ∈ E′.

2) If (Xn) is a pramart such that supn
∫
d(0, Xn) <∞, then S1

X∞(F ) = ∅, and

τL − lim
n→∞

Xn(ω) = X∞(ω) a.e.
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In particular, this yields:

M − lim
n→∞

Xn(ω) = X∞(ω) a.e.

3) If the hypothesis in 2) is replaced by the stronger one:

sup
n

∫
|Xn| <∞

then X∞ is integrably bounded.

Proof. 1) We denote by D?
1 a countable subset which is dense for the Mackey topology

in the closed unit ball B? of E′.
D? will denote the set of all rational linear combinations of members of D?

1. It is clear

that D? is a countable dense subset of E ′ for the Mackey topology.

Suppose that (Xn) is a w-pramart such that supn
∫
|δ?(x′, Xn)| < ∞ for every x′ ∈ D?.

Since (δ?(x′, Xn))n≥1 is a bounded real pramart, we deduce that it admits a limit. There-

fore, the Hess’s Lemma ([19], Lemma 5.2) shows that there is a measurable multifunction
X∞: Ω→ cw(E) and a negligible subset N1 such that:

lim
n→∞

δ?(x′, Xn(ω)) = δ?(x′, X∞(ω)) ∀x′ ∈ E′, ∀ω ∈ Ω | N1.

2) Now suppose that (Xn) is a pramart such that supn
∫
d(0, Xn) < ∞. Let D be a

countable subset which is dense for the norm topology in E, and fix x ∈ D.
For every x′ ∈ E′, n ≥ 1, ω ∈ Ω, we put:

ϕn(ω, x′) = 〈x′, x〉 − δ?(x′, Xn(ω)).

Let us prove that ((ϕ+
n (., x′), Fn)n≥1,x′∈D? is a uniform sequence of positive real subpra-

marts (see Definition 1.2), where ϕ+
n = sup(ϕn, 0).

Given τ, σ ∈ T with τ ≥ σ. By Jensen’s inequality there exists a negligible subset Nx′,x
such that:

|EFσ(ϕτ )(ω, x′)| ≤ EFσ(|ϕτ |(ω, x′)) ∀ω ∈ Ω|Nx′,x.

Note that Nx =
⋃
x′∈D?1 Nx′,x, then for every ω ∈ Ω | Nx:

ϕ+
σ − EFσ(ϕ+

τ ) =
1

2
[ϕσ + |ϕσ| − EFσ(ϕτ )− EFσ(|ϕτ |)]

=
1

2
[ϕσ − EFσ(ϕτ ) + |ϕσ| − EFσ(|ϕτ |)]

≤ 1

2
[ϕσ − EFσ(ϕτ ) + |ϕσ − EFσ(ϕτ )]

= [ϕσ − EFσ(ϕτ )]+.
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Hence,

sup
x′∈D?1

[ϕ+
σ (ω, x′)− EFσ(ϕ+

τ )(ω, x′)]

≤ sup
x′∈D?1

[δ?(x′, EFσ(Xτ )(ω))− δ?(x′, Xσ(ω))]+

≤ h(Xσ(ω), EFσ(Xτ )(ω)).

Since (Xn) is a pramart, there exists σ0 ∈ T such that:

∀τ, σ ∈ T : τ ≥ σ ≥ σ0

we have:

P ( sup
x′∈D?1

[(ϕ+
σ (., x′)− EFσ(ϕ+

τ )(., x′)] ≥ ε)) ≤ ε

for every ε > 0.

On the other hand, by 1) we have:

lim
n→∞

ϕ+
n (ω, x′) = ϕ+(ω, x′)

where ϕ(ω, x′) = 〈x, x′〉 − δ?(x′, X∞(ω)).

Applying Egghe’s Lemma (see Lemma 1.4) to the uniform sequence of positive real sub-

pramarts ((ϕ+
n (., x′), Fn)n ≥ 1, x′ ∈ D?

1 we obtain for every ω ∈ Ω | N1 ∪Nx

lim
n→∞

sup
x′∈D?1

ϕ+
n (ω, x′) = sup

x′∈D?1
ϕ+(ω, x′).

If we put N = N1 ∪
[⋃

x∈DNx
]
, Lemma 3.2 show that:

lim
n→∞

d(x,Xn(ω) = lim
n→∞

sup
x′∈D?1

ϕn(ω, x′)

= lim
n→∞

sup
x′∈D?1

ϕ+
n (ω, x′)

= sup
x′∈D?1

ϕ+(ω, x′)

= sup
x′∈D?1

ϕ(ω, x′) = d(x,X∞(ω))

for every x ∈ D, and ω ∈ Ω | N .

But the sequence (d(., Xn(ω)))n≥1 being equicontinuous, for each ω ∈ Ω | N , we deduce
that:

lim
n→∞

d(x,Xn(ω)) = d(x,X∞(ω))

remains valid for any x ∈ E.
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So

τL − lim
n→∞

Xn(ω) = X∞(ω) a.e.

In particular, this yields:

M − lim
n→∞

Xn(ω) = X∞(ω) a.e.

On the other hand, Fatou’s Lemma shows that:

∫
d(0, X∞) ≤ lim

n→∞

∫
d(0, Xn) ≤ sup

∫
d(0, Xn) <∞.

So S1
X∞(F ) 6= ∅.

3) is an obvious consequence of Hess’s Lemma ([19], Lemma 5.2).

Remark 3.4. .Consider a subset K of cw(E) which is separable for the topology
generated by the Hausdorff distance. If the values of pramart (Xn) lie in K, then Bagchi [1]
proved that:

lim
n→∞

h(Xn(ω), X∞(ω)) = 0 a.e.

Remark 3.5. Since every martingale (and uniform amart) is a pramart, Theorem 3.3
generalises some results which were obtained before by Choukairi ([11], Theorem 2.11 and
[12] Theorem 4.3) Lavie ([22], Theorem 4.1) and Hess ([19], Prop. 5.7).

Remark 3.6. Now, it is natural to ask the following questions:
1) Is it possible to prove a version of Theorem 3.3 for unbounded pramart, or multivalued

mil (martingale in limit)?
2) We know that any multivalued martingale (Fn) has a martingale selection (fn) (i.e.

fn(ω) ∈ Fn(ω) a.e.).
Now, it is natural to ask the same question with multivalued pramart and mil.

Many of this problems were formulated by Professor C. Castaing during his visit to the
University of Sciences at Marrakech.

Acknowledgment. The author would like to express many thanks to Prof. C. Castaing for

suggesting the problem in Section 3. He is also grateful to the referee.
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