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The subject of this paper concerns the remainder term in the first-order development of a (finite-valued)
convex function. We study functions for which this term is comparable to a squared norm and we relate it
to the corresponding remainder term of the conjugate function. We show that a convex function satisfies
a quadratic growth condition if and only if its subdifferential satisfies a linear growth condition. Finally,

we define a new concept of “tangential regularization”, involving a local decomposition of IRN , along the
subspace where the function is “smooth” and the subspace parallel to the subdifferential.
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1. Introduction

The very first motivation of this paper is to study second-order properties of convex
functions. More precisely, we want to relate the second-order elements of a convex function
ϕ with those of its Moreau-Yosida regularization

Φ(x) := min
y∈IRn

{
ϕ(y) + 1

2‖y − x‖2
}

;

this is done in the companion paper [5]. A key property of such a regularization is the

dual relation Φ∗ = ϕ∗+ 1/2‖ · ‖2, which shows that Φ∗ and ϕ∗ share identical smoothness
properties. This observation strongly motivates the following question: how are related
the second-order elements of a convex function with those of its conjugate? It is precisely
this last question that we investigate here.
The answer is easy in the quadratic case: the Hessians of two mutually conjugate quadratic
functions are inverse to each other, a result which has been generalized in [1] to the C2

case. What we need now is a more general study, in which no first-order differentiability is
assumed. This does make sense: for example, the univariate function ϕ(ξ) := |ξ|+ 1/2ξ2

is not C1 but its conjugate is C2. A close look at this example confirms the intuition given
by the C2 case: nonsmoothness of a function comes together with an affine behaviour of
its conjugate.
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The present paper gives a number of results related with the above question. They
have an interest in their own right, and are exploited in [5], entirely devoted to a study
of the Moreau-Yosida regularization and its Hessian. In Section 2, we start with some
elementary properties of convex sets and normal cones, which will be instrumental for the
sequel. The main content of the paper is then Section 3, which relates the remainder terms
in the first-order developments of two mutually conjugate functions. Finally, Section 4
introduces a useful operation, which consists in “strong-convexifying” affine parts of a
function, thereby regularizing its conjugate.

We use standard notation; the working space is IRN , in which the scalar product is 〈·, ·〉
and ‖ · ‖ is the associated norm. Our study considers finite-valued convex functions ϕ
only. A function denoted by an upper-case letter (Φ) will be some regularized form of
the corresponding lower-cased function (ϕ). Throughout this paper we will consider a

particular subgradient g0 ∈ ∂ϕ(z0) at a particular z0 ∈ IRN ; in general, N and T will
denote the normal and tangent cones N∂ϕ(z0)(g0) and T∂ϕ(z0)(g0). We will use I, σ, ∨+ to

denote the indicator and support functions and the infimal convolution respectively.

2. On the geometry of convex sets

The material in this section is quite elementary and departs from the general flow of the
paper. It can therefore be skipped during a first reading.
In the following results we characterize those convex cones that are subspaces. For the
subspace M in Proposition 2.1, see Theorem 2.7 in [7].

Proposition 2.1. Let N be a closed convex cone and call M := N ∩ {−N} the largest
subspace contained in N . Then

N is a subspace if and only if N ∩M⊥ = {0} .

Moreover, for any ν0 ∈ M⊥ and ν ∈ N ,

〈ν0, ν〉 6= 0 =⇒ −ν /∈ N . (1)

Proof. When the convex cone N is a subspace, it is symmetric: N = −N =M. In this
case, N ∩M⊥ =M∩M⊥ = {0}.
Conversely, when N ∩M⊥ = {0}, suppose for contradiction that N is not a subspace;
we can take ν ∈ N\M, which can be expressed as a direct sum:

ν = νm + ν0 with νm ∈ M and 0 6= ν0 ∈ M⊥ .

Since M is a symmetric set, −νm ∈ M ⊂ N and, since N is a convex cone,

ν0 = ν + (−νm) ∈ N ;

thus we have exhibited a nonzero ν0 ∈ N ∩M⊥. This is the required contradiction.
Finally, we have to prove (1). Take ν0 ∈ M⊥ and ν ∈ N . If −ν were in N , it would be
also in M and this would contradict 〈ν0, ν〉 6= 0.

The next result deals with NS(g0) and TS(g0), the normal and tangent cones to a closed
convex set S at g0 ∈ S.
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Proposition 2.2. Assume S ⊂ IRN is a closed convex set and let g0 ∈ S. Then

N := NS(g0) is a subspace if and only if g0 ∈ riS ,

where ri denotes the relative interior.

Proof. Call σS the support function of S. By definition of normal cones, s ∈ N exactly
when 〈s, g0〉 = σS(s). The convex cone N is a subspace if and only if it is symmetric.
Thus, N is a subspace if and only if the following property holds:

s ∈ N =⇒ σS(s) + σS(−s) = 0 , [= 〈s, g0〉+ 〈−s, g0〉]

or equivalently

σS(d) + σS(−d) > 0 =⇒ d 6∈ N ,

i.e., applying the definition of N :

σS(d) + σS(−d) > 0 =⇒ ∃gd ∈ S : 〈d, gd − g0〉 > 0 ,

which in turn can be written

σS(d) + σS(−d) > 0 =⇒ σS(d) > 〈d, g0〉 .

By Theorem 13.1 in [7] or Theorem V.2.2.3(ii) in [4], this last property just expresses
g0 ∈ riS.

We finish with an easy result.

Proposition 2.3. The only nonempty compact convex sets in IRN that are relatively
open are the singletons.

Proof. The relative interior of a convex set S is the interior for the topology relative to
aff S, the affine hull of S; this last topological space being connected, it contains only two
open and closed subsets: ∅ and itself. Thus, if the nonempty closed set S is relatively
open, S = aff S. The result follows since the only bounded affine sets are the singletons.

A link between all these results, which will be useful for our purposes, is the following: if

ϕ is a finite-valued convex function and z ∈ IRN is such that N∂ϕ(z)(g) is a subspace for

all g ∈ ∂ϕ(z), then ϕ is differentiable at z.

3. On first-order developments of convex functions

We now present a theory analogous to that of §X.4.2(b) in [4], and of [6], relating upper
bounds on a convex function with lower bounds on its conjugate. However, instead of
finding bounds depending on a particular subgradient at a given point, we consider here
the first-order expansion of a convex function ϕ:

ϕ(z0 + h) = ϕ(z0) + ϕ′(z0; h) + o(‖h‖) .
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We want to estimate the remainder term (which is clearly nonnegative). To bound it from
above means to find ε > 0 and some function ru such that

ϕ(z0 + h) ≤ ϕ(z0) + ϕ′(z0; h) + ru(h) + IBε(h) for all h . (2)

For a lower bound we need likewise ε and rl such that

ϕ(z0 + h) + IBε(h) ≥ ϕ(z0) + ϕ′(z0; h) + rl(h) for all h . (3)

Here and throughout, IBε denotes the indicator function of B(0, ε). For both remainder
functions r = ru and r = rl, the following properties will always be assumed without
further mentioning:

r is convex, nonnegative, differentiable at 0, r(0) = 0, ∇r(0) = 0.

Besides, the following property will be crucial for our development:

there exists c > 0 such that r(h) ≥ 1

2
c‖h‖2 for all h . (4)

Note that (3) and (4) with r = rl hold whenever ϕ is strongly convex, and they imply
that the conjugate ϕ∗ is finite-valued.
Our aim is to study the duality between (2) and (3): if ϕ satisfies one of these inequalities,
does ϕ∗ satisfy the other? The answer is given in Theorems 3.2 and 3.6 below, which play
the role of Theorems X.4.2.7 and X.4.2.6 in [4] respectively.

3.1. On the Lipschitzian regularization

To derive dual relations, we will conjugate both sides of (2) and (3). For this, we will
frequently compute conjugates of the type (ψ + IBε)

∗, i.e., infimal convolutions

Ψ∗ε(g) := (ψ + IBε)
∗ (g) = min

s∈IRN
{ψ∗(g − s) + ε‖s‖} . (5)

The function Ψ∗ε is the so-called Lipschitzian regularization of ψ∗, introduced in [2], and
illustrated by Fig. 1. An important property of this function is that Ψ∗ε coincides with
ψ∗ on a certain set.

Figure 1: Lipschitzian Regularization
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Lemma 3.1. Let ψ be a finite-valued convex function and denote by Ψ∗ε the Lipschitzian
regularization of its conjugate ψ∗.
(i) If there are c > 0 and δ > 0 such that

ψ(h) ≥ ψ(0) + ψ′(0; h) +
1

2
c‖h‖2 for ‖h‖ ≤ δ , (6)

then Ψ∗ε(s) = ψ∗(s) for all ε ≤ δ and s ∈ ∂ψ(0) +B(0, εc/2).

(ii) If ψ has the form ψ(h) = 1
2C‖h‖2 (i.e. ψ∗ = 1

2C ‖ · ‖2) for some C > 0, then

Ψ∗ε(z) =

{
1

2C ‖z‖2 if ‖z‖ ≤ εC

−ε2C
2 + ε‖z‖ if not.

(iii) With ψ as in (ii) and η ∈]0, ε], there holds

Ψ∗ε(z) ≥ −
η2C

2
+ η‖z‖ for all z.

Proof. [(i)] Apply Proposition XI.3.4.5 of [4]: ψ∗ and its regularization Ψ∗ε coincide on
the set

{s ∈ IRN : ψ∗(s) = Ψ∗ε(s)} = {s ∈ IRN : ∂ψ∗(s) ∩B(0, ε) 6= ∅} .
Since s ∈ ∂ψ(0) means 0 ∈ ∂ψ∗(s), this coincidence set contains in particular ∂ψ(0).
To say that ∂ψ∗(s)∩B(0, ε) 6= ∅ is to say that 〈s, ·〉 −ψ(·) attains its maximum ψ∗(s) on
B(0, ε). Accordingly, let us find an upper bound for

A := sup
‖h‖>ε

{〈s, h〉 − ψ(h)} .

For this, use the convexity of ψ on [0, h]: if h /∈ B(0, ε),

ψ(εh/‖h‖) ≤ ψ(0) +
ε

‖h‖ [ψ(h)− ψ(0)] ,

which, after some algebraic manipulations using (6), gives when ε ≤ δ:

ψ(h) ≥ ψ(0) + ψ′(0; h) +
1

2
cε‖h‖ .

Therefore
A ≤ sup

‖h‖>ε
{〈s, h〉 − ψ(0)− ψ′(0; h)− 1

2cε‖h‖}

≤ −ψ(0) + sup
‖h‖∈IRN

{〈s, h〉 − ψ′(0; h)− 1
2cε‖h‖}

= −ψ(0) +
(
ψ′(0; ·) + 1

2cε‖ · ‖
)∗

(s)

= −ψ(0) +
(
I∂ψ(0) ∨+ IB(0,εc/2)

)
(s) .
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The last infimal convolution is zero when s ∈ ∂ψ(0) +B(0, εc/2). For every such s which
is not in ∂ψ(0), we thus have

A ≤ −ψ(0) = inf ψ∗ < ψ∗(s) .

Then 〈s, h〉 − ψ(h) attains its maximum on B(0, ε); (i) is proved.
[(ii)] For our quadratic function ψ, apply the dual definition (5):

Ψ∗ε(z) =
(

1
2C‖ · ‖2 + IBε

)∗
(z) = sup

x∈B(0,ε)
{〈z, x〉 − 1

2C‖x‖2}

= C sup
x∈B(0,ε)

{〈z/C, x〉 − 1
2‖x‖2}

= C sup
x∈B(0,ε)

{ 1
2‖z/C‖2 −

1

2
‖x− z/C‖2}

= 1
2C‖z‖2 −

C

2
inf

x∈B(0,ε)
‖x− z/C‖2

= 1
2C‖z‖2 −

C

2
d2
B(0,ε)(z/C) .

To finish the proof observe that the distance function dB(0,ε)(z/C) is equal to ε− ‖z‖/C
whenever z/C /∈ B(0, ε).
[(iii)] We consider two cases. If ‖z‖ ≤ εC, the result follows from

Ψ∗ε(z)−
(
−η2C/2 + η‖z‖

)
=

1

2C
‖z‖2 +

1

2
η2C − η‖z‖ =

1

2C
(‖z‖ − ηC)2 .

In the other case, set q(η) := −η2C/2 + η‖z‖ (so q = Ψ∗ε when η = ε). Compute

q′(η) = −ηC + ‖z‖. We see that q is an increasing function when −ηC + ‖z‖ ≥ 0, in
particular when η ≤ ε < ‖z‖/C.

We are now in a position to establish our duality relations between (2) and (3).

3.2. Bounding the conjugate from below

Let us return to our developments (2), (3). When the remainder term ru does not increase
too fast near the origin, (2) becomes a rather natural growth condition: it expresses that
ϕ does not differ too much from its first order approximation. In this case, a lower bound
on ϕ∗ does exist:

Theorem 3.2. Let ϕ be a finite-valued convex function satisfying (2) at a given z0.
Assume also that r = ru satisfies (4) and

ru(h) ≤ 1

2
C‖h‖2 for all h . (7)

Then, for all g0 ∈ ∂ϕ(z0) and s ∈ B(0,
εc2

2C
), we have

ϕ∗(g0 + s) ≥ ϕ∗(g0) + 〈s, z0〉+ min
γ∈∂ϕ(z0)

r∗u(g0 + s− γ) . (8)
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Proof. We conjugate both sides in (2): for all g ∈ IRN

ϕ∗(g)− 〈g, z0〉 ≥
[
ϕ(z0) + ϕ′(z0; ·) + ru + IBε

]∗
(g)

= −ϕ(z0) +
(
I∂ϕ(z0) ∨+ (ru + IBε)

∗) (g)

= −ϕ(z0) +
(
I∂ϕ(z0) ∨+ R

∗
ε

)
(g)

= −ϕ(z0) + min
γ∈∂ϕ(z0)

R∗ε(g − γ) ,

(9)

where R∗ε denotes the Lipschitzian regularization of r∗u, see (5). We will prove that, for g
close enough to ∂ϕ(z0), R∗ε can be replaced by r∗u in (9).
First, observe that (4) and (7) are transformed in the dual space to

1

2C
‖ · ‖2 ≤ r∗u ≤

1

2c
‖ · ‖2 . (10)

These inequalities are transmitted to the Lipschitzian regularizations; by Lemma 3.1 (iii)
we therefore have, for all η ∈]0, ε],

R∗ε(z) ≥
1

2

(
−η2C + 2η‖z‖

)
for all z.

Apply (10) to obtain by division

r∗u(z)

R∗ε(z)
≤ ‖z‖2
−η2cC + 2ηc‖z‖ for all z. (11)

Let γg denote an optimal γ in (9). From (10) and (11),

1

2C
‖g − γg‖2 ≤ r∗u(g − γg) ≤

‖g − γg‖2
−η2cC + 2ηc‖g − γg‖

R∗ε(g − γg) .

To this chain of inequalities, we append additional upper bounds, using the optimality of
γg, R

∗
ε ≤ r∗u, and (10): for all γ ∈ ∂ϕ(z0),

1

2C
≤ 1

−η2cC + 2ηc‖g − γg‖
‖g − γ‖2

2c
.

After some algebra this results in

‖g − γg‖ ≤
C

2ηc2
‖g − γ‖2 +

ηC

2

for γg optimal in (9) , η ≤ ε
and γ arbitrary in ∂ϕ(z0).

(12)

To obtain (8), take η = εc
2C , g0 ∈ ∂ϕ(z0) and s ∈ B(0, εc

2

2C ). For g := g0 + s, let γ in (12)

be the projection of g onto ∂ϕ(z0): we do have ‖g − γg‖ ≤ εc/2. Then Lemma 3.1 (i)

allows us to replace R∗ε by r∗u in (9). The result follows, since ϕ(z0) +ϕ∗(g0) = 〈g0, z0〉.
The remainder term in (8) may be deemed abstract. However it can be relaxed to a more
explicit form.
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Corollary 3.3. Let ϕ be a finite-valued convex function satisfying (2), with ru = 1
2C‖·‖2.

Then, for all g0 ∈ ∂ϕ(z0) and s ∈ B(0, εC/2), we have

ϕ∗(g0 + s) ≥ ϕ∗(g0) + 〈s, z0〉+
1

2C
‖g0 + s− P(g0 + s)‖2 , (13)

where P is the projection onto ∂ϕ(z0).
As a result

〈s, x− z0〉 ≥
‖s‖2
2C

for all s ∈ N∂ϕ(z0)(g0) ∩ B(0, εC/2) and x ∈ ∂ϕ∗(g0 + s) . (14)

Proof. Use Theorem 3.2 with ru = 1
2C‖ · ‖2, so that r∗u = 1

2C ‖ · ‖2. To prove (14), use

the subgradient inequality ϕ∗(g0) ≥ ϕ∗(g0 + s)− 〈s, x〉 for x ∈ ∂ϕ∗(g0 + s), and observe
that g0 + s is projected onto g0.

This result becomes even more suggestive in terms of the Moreau decomposition of the

space IRN . Recall that, if N and T are two mutually polar cones, then IRN = N ⊕ T .

More precisely, any s ∈ IRN can be written

s = sN + sT where sN := ProjN (s) and sT := ProjT (s)

(see Theorem III.3.2.5 of [4], for example). We will use this decomposition with N =
N∂ϕ(z0)(g0) and T = T∂ϕ(z0)(g0).

Proposition 3.4. Let ϕ∗ be a closed convex function satisfying (13) for all g0 ∈ ∂ϕ(z0)
and s ∈ B(0, εC/2). Then, for all such g0 and s, we have

ϕ∗(g0 + s) ≥ ϕ∗(g0) + 〈s, z0〉+
1

2C
‖sN ‖2 . (15)

Proof. By definition of a tangent cone, T contains ∪t>0[∂ϕ(z0)− g0]/t, hence ∂ϕ(z0) ⊂
g0+T and ‖g0+·−P(g0+·)‖ ≥ ‖g0+·−Projg0+T (g0+·)‖ = ‖·−ProjT (·)‖ = ‖ProjN (·)‖.
Then (13) proves the result.

The Cauchy-Schwarz inequality in (14) suggests a sort of “tangential radial Lipschitz
behaviour” of particular subgradients. Indeed, for x close to z0, consider those g =
g0 + s ∈ ∂ϕ(x) that are projected onto g0 ∈ ∂ϕ(z0): they satisfy ‖g − g0‖ ≤ 2C‖x− z0‖.
Instead of proving this informal observation, we rather state a more global result:

Corollary 3.5. For a finite-valued convex function ϕ and g0 ∈ ∂ϕ(z0), the following
statements are equivalent:

∃ε, C > 0 : ‖h‖ ≤ ε⇒ ϕ(z0 + h) ≤ ϕ(z0) + ϕ′(z0; h) +
C

2
‖h‖2 , (16)

∃δ,D > 0 : ‖h‖ ≤ δ ⇒ ∂ϕ(z0 + h) ⊂ ∂ϕ(z0) +B(0, D‖h‖) . (17)
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Proof. Let ε and C be as in (16). Because ∂ϕ(z0) is compact and ∂ϕ has a closed graph,
we can find δ > 0 such that

‖h‖ ≤ δ ⇒ ∂ϕ(z0 + h) ⊂ ∂ϕ(z0) +B(0, εC/2) .

Take now arbitrary h ∈ B(0, δ), g ∈ ∂ϕ(z0 + h) and set g0 := P(g). Then s := g − g0 ∈
N∂ϕ(z0)(g0) ∩ B(0, εC/2) and z0 + h ∈ ∂ϕ∗(g). When (16) holds, Corollary 3.3 applies

with ru = 1
2C‖ · ‖2 and (17) follows from (14).

Conversely, write the Mean-Value Theorem: for some θ ∈]0, 1[ and some gθ ∈ ∂ϕ(z0 +θh),

ϕ(z0 + h)− ϕ(z0)− ϕ′(z0; h) = 〈gθ, h〉 − max
g∈∂ϕ(z0)

〈g, h〉

= min
g∈∂ϕ(z0)

〈gθ − g, h〉

≤ min
g∈∂ϕ(z0)

‖gθ − g‖ ‖h‖ .

Assume (17) and take h ∈ B(0, δ), hence θh ∈ B(0, δ). Then the last term is smaller than

θD‖h‖2 ≤ D‖h‖2 and the growth property (16) holds.

When ϕ has a gradient at z0, this result becomes a coarse form of Theorem 2.12 in [3];
the difference is that the latter deals with approximations, rather than inequalities or
inclusions.

3.3. Bounding the conjugate from above

Now, we proceed to study the effect on ϕ∗ of the growth property (3), (4). We will see
that this property is quite strong.
It is not clear whether our assumptions (4) and (7) are really essential for Theorem 3.2.
At least, (7) is natural: useful lower bounds for ϕ∗ need nontrivial upper bounds for ϕ;
but the role of (4) is more obscure. By contrast, the assumptions in the following dual
counterpart to Theorem 3.2 seem rather minimal.

Theorem 3.6. Let ϕ be a finite-valued convex function satisfying (3) at a given z0, with
r = rl satisfying (4). Then, for all g0 ∈ ∂ϕ(z0), ϕ∗ is differentiable at g0 (∇ϕ∗(g0) = z0)
and, for all s ∈ B(0, εc/2), we have

ϕ∗(g0 + s) ≤ ϕ∗(g0) + 〈s, z0〉+ min
γ∈∂ϕ(z0)

r∗l (g0 + s− γ) . (18)

Proof. Proceed as in the proof of Theorem 3.2. Clearly (6) holds with ψ = ϕ and δ = ε,
so Lemma 3.1 (i) can be applied to conjugate the lefthand side of (3):

ϕ∗(g)− 〈g, z0〉 ≤ −ϕ(z0) + min
γ∈∂ϕ(z0)

r∗l (g − γ) for g ∈ ∂ϕ(z0) +B(0, εc/2) .

Set g = g0 + s, with s as stated, and observe that ϕ(z0) +ϕ∗(g0) = 〈g0, z0〉 to obtain (18).

Now, in view of (4), r∗l ≤ 1
2c‖ · ‖2, so (18) gives

ϕ∗(g0 + s)− ϕ∗(g0)− 〈s, z0〉 ≤
1

2c
min

γ∈∂ϕ(z0)
‖g0 + s− γ‖2 ≤ 1

2c
‖s‖2 .
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Because the lefthand side is nonnegative, this clearly implies ∇ϕ∗(g0) = z0.

It is interesting to compare this result with Proposition X.4.2.6 in [4]. Our upper bound
(18) is stronger than (X.4.2.5) in [4], just because our starting assumption (3) is stronger.

In §3.2, (8) was relaxed to (13) and also to (15). Here, (18) could likewise be relaxed to

ϕ∗(g0 + s) ≤ ϕ∗(g0) + 〈s, z0〉+
1

2c
‖s‖2 .

Actually, we prefer another relaxed form of (18), which gives a counterpart to (15):

Corollary 3.7. Let ϕ be a finite-valued convex function satisfying (3), with r = rl
satisfying (4), and let g0 ∈ ∂ϕ(z0). Take the Moreau decomposition s = sT + sN of an
arbitrary s along T and N , the tangent and normal cones to ∂ϕ(z0) at g0. Then

lim sup
t↓0

ϕ∗(g0 + ts)− ϕ∗(g0)− t 〈s, z0〉
t2

≤ 1

2c
‖sN ‖2 . (19)

Proof. When t ↓ 0, by definition of the tangent cone, there is some gt = g0 +tsT +o(t) ∈
∂ϕ(z0). From here, the result is an easy consequence of Theorem 3.6. However, we prefer
a more direct proof, which does not use the preceding machinery. From (3) and knowing

that ϕ′(z0; h) ≥ 〈g0, h〉,

ϕ(z0 + h) ≥ ϕ(z0) + 〈gt, h〉+
1

2
c‖h‖2 + o(‖h‖2)

for all h. Apply Proposition X.4.2.6 in [4]: for all ν,

ϕ∗(gt + ν) ≤ ϕ∗(gt) + 〈ν, z0〉+
1

2c
‖ν‖2 + o(‖ν‖2).

Combining the subgradient inequality at gt, this gives

ϕ∗(gt + ν) ≤ ϕ∗(g0) + 〈gt − g0 + ν, z0〉+
1

2c
‖ν‖2 + o(‖ν‖2) .

Take ν := ts − gt + g0 = tsN + o(t) and divide by t2. The result follows because

o(‖ν‖2) = o(t2).

Beware that (19) is much stronger than (15) (written in the dual space and mutatis
mutandis). In particular, it implies the existence of ∇ϕ∗(g0) = z0. In fact Theorem 3.6
explains why full duality cannot hold between the pairs (2), (7) and (3), (4). Indeed,
suppose that the following statement were true: if (2), (7) hold, then (3), (4) hold with ϕ
replaced by ϕ∗ and rl = r∗u. Then Theorem 3.6, used with ϕ and ϕ∗ interchanged, would
imply the existence of ∇ϕ(z0).
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4. A tangential regularization

We just mentioned that the growth properties (2), (7) and (3), (4) cannot be dual to
each other, unless ∇ϕ(z0) exists. In fact, Proposition 3.4 shows that, when ϕ satisfies an
appropriate form of (2), then ϕ∗ satisfies (15). Now (15) is a weakened form of (3)-(4) (for
ϕ∗) and the following informal calculation shows that it cannot be improved because its
last quadratic term cannot contain the sT -component. Given a point z0 and g0 ∈ ∂ϕ(z0),
assume there is another g ∈ ∂ϕ(z0) and set sT := g − g0 ∈ T . Then, for t ∈]0, 1[,

ϕ∗(g0 + tsT ) = −ϕ(z0) + 〈g0 + tsT , z0〉 = ϕ∗(g0) + t 〈sT , z0〉 .

We conclude that ϕ∗ is locally affine in T .
Knowing that (2), (7) imply (15) and nothing more, a natural question therefore arises:
conversely, when (15) holds, what can be expected from ϕ in terms of the growth property
(2)? The knack is to introduce an artificial sT -term in ϕ∗: indeed, the function

φ∗T (s) := ϕ∗(g0 + s) +
1

2
‖sT ‖2 (20)

satisfies the appropriate growth condition (3) (for ϕ∗) and triggers the dualization mech-
anism of section 3.3.

Proposition 4.1. Let ϕ be a finite-valued convex function and g0 ∈ ∂ϕ(z0). The
conjugate of φ∗T in (20) is

φT (x) = min
y∈x+T

{ϕ(y)− 〈g0, y〉+ 1
2‖x− y‖2} , (21)

whose subdifferential is

∂φT (x) = −g0 + {g ∈ ∂ϕ(pT (x)) : ProjT (g0 − g) = pT (x)− x} . (22)

Here pT (x) is the unique minimizer in (21), characterized by

∃g ∈ ∂ϕ(pT (x)) : pT (x) = x+ ProjT (g0 − g) . (23)

In particular, pT (z0) = z0, φT (z0) = ϕ(z0)− 〈g0, z0〉 and ∇φT (z0) = 0 exists.

Proof. Take the conjugates of the functions making up the sum in (20): (ϕ∗(g0 + ·))∗ =
ϕ(·)− 〈g0, ·〉, and

(1
2‖ProjT (·)‖2)∗ = (1

2‖ · −ProjN (·)‖2)∗ = (minu∈N {1
2‖ · −u‖2})∗

= (1
2‖ · ‖2 ∨+ IN )∗ = 1

2‖ · ‖2 + IT .

Their infimal convolution is the righthand side in (21); this is a finite-valued convex
function of x, which is therefore the conjugate of φ∗T .

To obtain the expression of ∂φT , write

φT (x) = min
y+z=x

{ϕ(y)− 〈g0, y〉+ 1
2‖z‖2 + IT (−z)}
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and apply Theorem XI.3.4.1 in [4]:

∂φT (x) = [∂ϕ(pT (x))− g0] ∩ [x− pT (x)− NT (pT (x)− x)] .

Thus the subgradients of φT at x are the vectors g − g0, with g ∈ ∂ϕ(pT (x)), such that
x− pT (x)− (g − g0) ∈ NT (pT (x)− x), i.e., x− pT (x)− (g − g0) ∈ NT (pT (x)− x). Use

γ ∈ NT (pT (x)− x) ⇐⇒ pT (x)− x = ProjT (γ + pT (x)− x) , (24)

with γ = x − pT (x) − (g − g0): altogether, the subgradients of φT at x are the vectors
g − g0, with g ∈ ∂ϕ(pT (x)) such that pT (x)− x = ProjT (g0 − g). This is just (22).
The optimality condition characterizing the unique minimum in (21) is 0 ∈ ∂ϕ(pT (x))−
g0 + pT (x)− x+ Nx+T (pT (x)), i.e.,

∃g ∈ ∂ϕ(pT (x)) : g0 − g + x− pT (x) ∈ Nx+T (pT (x)) .

Observe that Nx+T (pT (x)) = NT (pT (x) − x), and use again the equivalence (24): the
characterization above can be written pT (x)− x = ProjT (g0 − g), which is just (23).
In particular, when x = z0, we can take g = g0 ∈ ∂ϕ(z0), and this shows that z0 satisfies
the characterization (23) of pT (z0). In other words, pT (z0) = z0, and the value φT (0)
follows easily. Finally, we have

∂φT (0) = [∂ϕ(z0)− g0] ∩ NT (0) ⊂ T ∩ NT (0) = T ∩ N ,

which is the singleton {0}.
From its definition (21), φT appears as a “tangential” Moreau-Yosida regularization in
the cone T ; and pT appears likewise as a “tangential” proximal operator. This explains
our notation.
The above result is true for a rather arbitrary closed convex function ϕ∗. When additional
properties are assumed, φT enjoys the properties involved in Corollary 3.5.

Proposition 4.2. Let the convex functions ϕ and ϕ∗ be both finite-valued, with ϕ∗

satisfying (13) for g0 ∈ ∂ϕ(z0) and ‖s‖ small enough. Then

∃ε, C ′ : ‖h‖ ≤ ε⇒ φT (z0 + h) ≤ φT (z0) +
C ′

2
‖h‖2 ,

or equivalently

∃δ,D > 0 : ‖h‖ ≤ δ ⇒ ∂φT (z0 + h) ⊂ B(0, D‖h‖) . (25)

Proof. From its definition (20), φ∗T is finite-valued. Using Proposition 3.4, φ∗T (s) ≥
φ∗T (0) + 1

2C′ |s‖2, with C ′ := max{1, C}; so (3) holds, with ϕ replaced by φ∗T and rl =
1

2C′ ‖·‖2. Then Theorem 3.6 can be applied. Knowing that∇φT (z0) = 0 (Proposition 4.1),

we obtain the growth property on φT . The radial Lipschitz property (25) then follows
from Corollary 3.5.

Another closely related question concerns the regularity of the mapping pT (·). More
precisely, is this tangential proximal operator Lipschitzian? Our next result gives a partial
answer: under mild assumptions, pT (·) is radially Lipschitzian at z0.
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Corollary 4.3. Let the convex functions ϕ and ϕ∗ be both finite-valued, with ϕ∗ satis-
fying (13) for g0 ∈ ∂ϕ(z0) and ‖s‖ small enough. Then

∃δ, L > 0 : ‖x− z0‖ ≤ δ ⇒ ‖pT (x)− z0‖ ≤ L‖x− z0‖ ,
or equivalently

∃δ,D > 0 : ‖x− z0‖ ≤ δ ⇒ ‖pT (x)− x‖ ≤ D‖x− z0‖ . (26)

Proof. The equivalence between both statements is straighforward from the triangu-
lar inequality, let us prove (26). Combining (22) from Proposition 4.1 with (25) from
Proposition 4.2, there exist δ,D > 0 such that ‖x− z0‖ ≤ δ implies

−g0 + {g ∈ ∂ϕ(pT (x)) : ProjT (g0 − g) = pT (x)− x} ⊂ B(0, D‖x− z0‖) .
Take a vector −g0 + g as described in the above lefthand side. Since ProjT (·) is nonex-
pansive and ProjT (0) = 0, we can write

‖pT (x)− x‖ = ‖ProjT (g0 − g)‖ ≤ ‖g0 − g‖ ≤ D‖x− z0‖
and (26) follows.

Let us give a simple example showing how these results can be interpreted.
Take ϕ := max(ϕ1, ϕ2), with each ϕi smooth. Then (2), (7) always hold. Take z0 such
that ϕ(z0) = ϕ1(z0) = ϕ2(z0) but ∇ϕ1(z0) 6= ∇ϕ2(z0). Then take α ∈]0, 1[ and g0 =
α∇ϕ1(z0)+(1−α)∇ϕ2(z0), so that g0 ∈ ri ∂ϕ(z0). We claim that, for x close to z0, pT (x)
satisfies ϕ1(pT (x)) = ϕ2(pT (x)). In fact, if ϕ1(pT (x)) > ϕ2(pT (x)), then ∇ϕ(pT (x)) =
∇ϕ1(pT (x)) is far from g0 and, from Proposition 4.1, ∇φT (x) = ∇ϕ(pT (x)) − g0 is far
from 0 = ∇φT (z0). This contradicts the continuity of ∇φT .
Roughly speaking, when x describes a ball around z0, pT (x) describes a portion of the
surface S := {z : ϕ1(z) = ϕ2(z)} where ϕ is not differentiable. We show now that, when
restricted to this surface, ϕ is pretty smooth at z0.

Theorem 4.4. Let ϕ be a (finite-valued) strongly convex function satisfying (2), with
ru satisfying (7), and take g0 ∈ ri ∂ϕ(z0). Then there exists D > 0 such that, with pT (x)
defined by (23),

ϕ(pT (x)) ≤ ϕ(z0) + 〈g0, pT (x)− z0〉+
1

2
D‖pT (x)− z0‖2 ,

for x close enough to z0 such that ‖(x− z0)T ‖ = O(‖(x− z0)N ‖).

Proof. We are in the conditions of Corollary 3.3 and Proposition 4.2 (recall in particular

that (4) holds and implies ϕ∗ < +∞); so we can write φT (x) ≤ φT (z0) + 1
2‖x − z0‖2.

Using (21) we get

ϕ(pT (x))− 〈g0, pT (x)〉+
1

2
‖pT (x)− x‖2 ≤ ϕ(z0)− 〈g0, z0〉+

1

2
‖x− z0‖2 ,

from which we obtain

ϕ(pT (x)) ≤ ϕ(z0) + 〈g0, pT (x)− z0〉+
1

2
‖x− z0‖2 .
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By assumption, ‖x − z0‖2 = O(‖(x − z0)N ‖2). Since g0 ∈ ri ∂ϕ(z0), T is a subspace
(Proposition 2.2); then (x − z0)N = (x − pT (x))N + (pT (x) − z0)N = (pT (x) − z0)N
(remember x− pT (x) ∈ T ). The result follows because ‖(pT (x)− z0)N ‖ ≤ ‖pT (x)− z0‖.

When restricted to points of the form pT (·) (and z0 is such a point), the function ϕ is
differentiable at z0 and locally comparable to a quadratic function. From there, the way
is open to obtaining a real second-order development. This is done in [5].
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[4] J.-B. Hiriart-Urruty and C. Lemaréchal: Convex Analysis and Minimization Algorithms,

Springer-Verlag, 1993. (two volumes).
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