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Two existence results for monotone trajectories of differential inclusions x′(t) ∈ F
(
t, x(t)

)
in a separable

Banach space are obtained; they extend in two directions previous ones due to Aubin-Cellina, Deimling
and Haddad.

Keywords : Nonautonomous differential inclusions, tangent cones, monotone trajectories.

1991 Mathematics Subject Classification: 34A60, 49K24

1. Introduction

Let X be a given nonempty compact subset of a separable Banach space E. A preorder
� on X, that is a reflexive and transitive relation, is defined by a set-valued map P which
to any x ∈ X associates

P (x) = {y ∈ X : y � x};
we recall that � is said to be a continuous preorder (see e.g. [9]) whenever P is a lower
semicontinuous correspondence with a closed graph.

Let F : [0, T ]×X → E be a nonempty convex weakly compact set-valued map. Given x0

in X we look for Lipschitz solutions of the differential inclusion:

w′(t) ∈ F (t, w(t)) w(0) = x0 (1.1)

which are viable, i.e. w(t) ∈ X for all t ∈ [0, T ] and monotone with respect to the preorder
P , that is

for any s, t ∈ [0, T ], s < t impliesw(t) ∈ P (w(s)).

The same problem has been investigated by Haddad [9] (see also [1]) when E is a finite
dimensional space. In [9] F is assumed to be globally upper semicontinuous and satisfies
a tangential condition involving Bouligand’s contingent cone TP (x)(x), where

TP (x)(x) =
{
v ∈ E : lim inf

γ→0+

dP (x)(x + γv)

γ
= 0
}

;

1
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It is well known (see e.g. [1]), that TP (x)(x) is a nonempty closed cone which is larger

than the tangent cone introduced by Clarke [7] which is given by

CP (x)(x) =
{
v ∈ E : lim sup

γ→0+, y→x

dP (x)(y + γv)− dP (x)(y)

γ
= 0
}
.

Tallos [10] studied the existence of viable trajectories for (1.1) in a finite dimensional
space, when F is integrably bounded, measurable in t upper semicontinuous in x and
satisfies a tangential condition involving Clarke’s cone.
Existence theorems of viable solutions in Banach spaces where proven by Benabdellah-
Castaing-Gamal Ibrahim [2] and by Castaing-Moussaoui-Syam [5] when F is measurable
in t and upper semicontinuous in x. We also refer to [1] and [8] for a wide bibliography
on the subject.

The present paper extends in several directions the results obtained by Aubin-Cellina [1],
Deimling [8] and Haddad [9]. Even in the particular case when F is scalarly globally
upper semicontinuous, we need a careful proof of the convergence of the approximated

solutions via new compactness results in L1
E (see e.g. [2], Thm.5.4).

The second difficulty is due to the various weak measurability assumptions on F . The
above mentioned difficulties are solved by approximations techniques involving a careful
proof of the convergence of approximated solutions via a result of convergence due to
Castaing-Moussaoui-Syam [5], Lemma 6.5 (see also Lemma 2.1 below), a multivalued
version of Scorza-Dragoni Theorem [4], Thm.2.2 (see also Theorem 2.3) and a multivalued
version of Dugundji’s “single-valued” extension Theorem [4], Thm.2.3 (see also Theorem
2.4). So Theorem 3.3 and Theorem 3.4 are new achievements on this subject.

In the sequel we shall denote by cwk(E) the set of all nonempty convex weakly compact
subsets of E and by B the closed unit ball of E; further we shall put |A| = sup{||x|| : x ∈
A} for any subset A ⊂ E and refer to λ as the Lebesgue measure on the real line R.

Finally we remind that a multifunction F from a measurable space (S,Σ) to bounded

subsets of a Banach space E is said to be scalarly Σ-measurable, see e.g. [5], if for any e′

in the dual E′ of E the scalar function

δ∗(e′, F (x)) = sup
v∈F (x)

〈e′, v〉

is Σ−measurable; analogously, when S is also a topological space, F is said to be scalarly
upper semicontinuous, see e.g. [5], whenever the scalar function δ∗(e′, F (x)) is upper

semicontinuous for each e′ ∈ E′.
The author takes the opportunity to thank Professor Charles Castaing for his helpful
suggestions and comments.

2. Preliminary Results

In this section we summarize some fundamental results useful later on.
We begin with a lemma due to Castaing-Moussaoui-Syam [5]; we shall apply it to show
the convergence of a sequence of approximated solutions.

Lemma 2.1. ([5], Lemma 6.5.) Let (S, d) be a Souslin metrizable space. Let F : [0, T ]×
S → cwk(E) satisfying:
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(i) F is scalarly τλ([0, T ])⊗ B(S)–measurable;
(ii) for any t in [0, T ], F (t, ·) is scalarly upper semicontinuous;
(iii) sup

(t,x)∈[0,T ]×S
|F (t, x)| <∞.

Let (rn)n be a sequence of strictly positive numbers with lim
n→∞

rn = 0. Let (Xn)n≥1 be a

sequence of λ-measurable mappings from [0, T ] to S which converges pointwisely to a λ-

measurable mapping X, (Yn)n≥1 be a sequence in L1
E([0, T ], λ) which σ(L1, L∞) converges

to Y in L1
E([0, T ], λ) and such that

Yn(t) ∈ 1
rn

∫
It,rn

F (s,Xn(t)) ds a.e. with It,rn = [0, T ] ∩ [t, t+ rn]. Then

Y (t) ∈ F (t, X(t)) a.e.

Next lemma is due to Haddad [9]; more precisely he gave his result in a finite dimensional
space, but the same proof holds in an arbitrary Banach space; we shall apply it to construct
a sequence of approximated solutions.

Lemma 2.2. Let X be a locally compact subset of a Banach space E, P : X → X a given
continuous preorder and F : X → cwk(E) a scalarly upper semicontinuous multifunction
satisfying the following tangential condition:

F (x) ∩ TP (x)(x) 6= ∅ for all x ∈ X.

Given x0 ∈ X, let R > 0 be such that X0 = X ∩ (x0 + RB) is compact and let α > 0 be
such that α ≥ Supx∈X0

|F (x)|.
Then for every β > 0 it is possible to find two finite sequences

0 = t0 < t1 < ... < tm−1 < R
α+β ≤ tm and {x0, x1, ..., xm} such that for each k =

0, 1, ..., m−1 we have tk+1− tk < β, xk ∈ X0, xk+1 ∈ P (xk) and the existence of yk ∈ X0

depending on xk and vk ∈ F (yk) satisfying

||xk − yk|| < β, ||xk+1 − xk
tk+1 − tk

− vk|| < β. (2.1)

Proof. We recall that, for convex weakly compact nonempty set valued maps, scalar
upper semicontinuity is equivalent to weak upper semicontinuity, that is upper semicon-
tinuity when E is endowed with weak topology (see [6], Thm.II.20); therefore F (X0) is
weakly compact. The result then follows by the same reasoning given in [9], Lemma I-1.

The following result, due to Castaing-Monteiro Marques [4], is a multivalued version of
Scorza-Dragoni Theorem.

Theorem 2.3. Let X be a Polish space and Y be a convex compact metrizable subset
of a Hausdorff locally convex space.
Let F : [0, T ]×X → ck(Y ) (nonempty convex compact subsets of Y ) be a multifunction
satisfying:

(i) for all t ∈ [0, T ], graph Ft = {(x, y) ∈ X × Y : y ∈ F (t, x)} is closed in X × Y ;
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(ii) for any x ∈ X, F (·, x) admits a (τλ([0, T ]),B(Y ))-measurable selection.

Then, there exists a measurable multifunction F0 : [0, T ] × X → ck(Y ) ∪ {∅} which has
the following properties:

(1) there is a λ-null set M , independent of (t, x), such that

F0(t, x) ⊂ F (t, x), for all t /∈M andx ∈ X;

(2) if u : [0, T ] → X and v : [0, T ] → Y are τλ([0, T ])-measurable functions with v(t) ∈
F (t, u(t)) a.e., then v(t) ∈ F0(t, u(t)) a.e.;

(3) for every ε > 0, there is a compact subset Iε ⊂ [0, T ] such that λ([0, T ] \ Iε) < ε,
the graph of the restriction F0\Iε×X is closed and ∅ 6= F0(t, x) ⊂ F (t, x), for all

(t, x) ∈ Iε ×X.

Reference. Castaing-Monteiro Marques ([4], Thm.2.2).

We also need the following multivalued version of Dugundji’s extension Theorem.

Theorem 2.4. Let X and E be Banach spaces and I ⊂ X, D ⊂ E be nonempty closed
sets. Let Eσ be the vector space E endowed with the σ(E,E ′)-topology. Let F : I×D → Eσ
be an upper semicontinuous multifunction with nonempty convex compact values in Eσ
such that

F (t, x) ⊂ c(t)(1 + ‖x‖)B for all (t, x) ∈ I ×D,
and some positive function c defined on I.
Let (Uλ)λ∈Λ be a locally finite open covering of X \ I such that, for all λ ∈ Λ, 0 <

diamUλ ≤ d (Uλ, I), where

d(Uλ, I) = inf{‖tλ − s‖ : tλ ∈ Uλ, s ∈ I}.

Let (ψλ)λ∈Λ be a continuous partition of unity of X \I associated to the covering (Uλ)λ∈Λ.

For every λ ∈ Λ, choose tλ ∈ I such that dUλ(tλ) < 2d(Uλ, I) where

dUλ(tλ) = inf{‖tλ − s‖ : s ∈ Uλ}.

Then the multifunction F̃ defined on X ×D by

F̃ (t, x) =

{
F (t, x), if t ∈ I, x ∈ D∑
λ∈Λ

ψλ(t)F (tλ, x), if t ∈ X \ I, x ∈ D

is an upper semicontinuous extension of F from X×D to Eσ with convex compact values

in Eσ. Moreover, we have F̃ (X × D) ⊂ coF (I × D) (convex hull of the set F (I × D))

and, if c is constant, F̃ (t, x) ⊂ c(1 + ‖x‖)B. In particular, if F (t, x) ⊂ K for all (t, x),

where K is a convex set, then F̃ (t, x) ⊂ K.

Reference. Proof is a trivial adaptation of ([4], Thm.2.3) and it is omitted.
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3. Existence results

We first give a local existence result (Theorem 3.1) for an autonomous r.h.s. F = F (x),
followed by a global existence one (Theorem 3.2) for F = F (t, x), both of them under
tangential conditions for the preorder P involving Bouligand’s cone; in such results F is
assumed to be scalarly upper semicontinuous.
In the sequel, under stronger tangential conditions involving Clarke’s cone, we deal with
the cases when F = F (t, x) is scalarly measurable in (t, x) and scalarly upper semicontin-
uous in x (Theorem 3.3) and when F = F (t, x) is separately measurable in t and scalarly
upper semicontinuous in x (Theorem 3.4).

Theorem 3.1. Let X be a locally compact subset of a separable Banach space E,
P : X → X a given continuous preorder and F : X → cwk(E) a scalarly upper semicon-
tinuous multifunction. Assume the following tangential condition:

F (x) ∩ TP (x)(x) 6= ∅ for all x ∈ X. (3.1)

Then, for every x0 ∈ X, there exist T0 > 0 and a Lipschitz function w : [0, T0] → X
satisfying

w(0) = x0, w′(t) ∈ F (w(t)) for almost all t ∈ [0, T0]

w is monotone with respect to the preorder P.
(3.2)

Proof. Given x0 ∈ X, let R > 0 be such that X0 = X ∩ (x0 + RB) is compact and let
α > 0 be such that α ≥ Supx∈X0

|F (x)|.
Fix a strictly positive integer n; applying Lemma 2.2 with β = 1

n , we can associate three

finite sequences {t(n)
k }k=0,1,...,m, {x(n)

k }k=0,1,...,m and {y(n)
k }k=0,...m−1 with the properties

given by the lemma; notice that it is not restrictive to put t
(n)
m = R

α+ 1
n

. Let R
α = T0 and

define the function wn : [0, T0]→ E as follows

wn(t) =




x

(n)
k + (t− t(n)

k )
x

(n)
k+1
−x(n)

k

t
(n)
k+1
−t(n)

k

for t ∈ [t
(n)
k , t

(n)
k+1) and k = 0, 1, ..., m− 1

x
(n)
m for t ∈ [t

(n)
m , T0].

More precisely, on every interval [t
(n)
k , t

(n)
k+1], with k = 0, 1, ..., m − 1, wn is the linear

function interpolating x
(n)
k and x

(n)
k+1, while wn is extended with continuity on [t

(n)
m , T0].

We shall show that (wn)n admits a subsequence which pointwisely converges in norm

topology on [0, T0], to a Lipschitz function w satisfying both (3.2) and the requested
monotonicity.

First of all it is convenient to introduce, for every n ∈ N , the following piecewise constant
function yn : [0, T0]→ X0 given by

yn(t) =




y

(n)
k for t ∈ [t

(n)
k , t

(n)
k+1) and k = 0, 1, ..., m− 1

y
(n)
m−1 for t ∈ [t

(n)
m , T0].
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Since w′n(t) is piecewise constant with

w′n(t) =





x
(n)
k+1
−x(n)

k

t
(n)
k+1
−t(n)

k

for t ∈ (t
(n)
k , t

(n)
k+1) and k = 0, 1, ..., m− 1

0 for t ∈ (t
(n)
m , T0),

from (2.1) it yields

w′n(t) ∈ F (yn(t)) ∪ {0}+
1

n
B for almost all t ∈ [0, T0], (3.3)

and this implies

||w′n(t)|| ≤ α +
1

n
≤ α+ 1 a.e. (3.4)

Moreover, for t ∈ [t
(n)
k , t

(n)
k+1] and k = 0, 1, ..., m− 1, since t

(n)
k+1 − t

(n)
k < 1

n , we have

||wn(t)− x(n)
k || = ||wn(t)− wn(t

(n)
k )|| ≤ (t− t(n)

k )(α + 1) ≤

≤ (t
(n)
k+1 − t

(n)
k )(α+ 1) ≤ α + 1

n

and wn(t) ≡ x
(n)
m on [t

(n)
m , T0]. Therefore we obtain

wn(t) ∈ X0 +
(α + 1

n

)
B for all t ∈ [0, T0] and n ∈ N. (3.5)

Let us consider now the sequence (w′n)n; by (3.4) it is bounded and uniformly integrable

in L1
E([0, T0], λ); by (3.3) it holds

w′n(t) ∈ F (X0) ∪ {0}+
1

n
B a.e. in [0, T0];

denote with Φ the balanced convex hull of F (X0), then Φ is convex weakly compact and
we have

w′n(t) ⊂ Φ +
1

n
B a.e. in [0, T0].

Using measurable selections, w′n(t) can be expressed as w′n(t) = vn(t) + hn(t), for all
t ∈ [0, T0], where vn belongs to the set SΦ of all measurable selections of Φ and hn
is measurable with hn(t) ∈ 1

nB, ∀t. Since SΦ is weakly compact, (vn)n is relatively

weakly compact. Since hn → 0 in L1, (w′n)n is relatively σ(L1, L∞) compact. So we

can extract a subsequence, again denoted (w′n)n converging to w′ ∈ L1
E([0, T0], λ) in

σ(L1, L∞)-topology.

Let w : [0, T0] → E be given by w(t) = x0 +
∫ t

0 w
′(s) ds; by (3.4) w is an α−Lipschitz

function satisfying wn(t) ⇀ w(t) in the σ(E,E ′)-topology, for all t ∈ [0, T0].
Notice that, by (3.5) the following set W = {wn(t) : t ∈ [0, T0] and n ∈ N} is relatively
compact for the norm topology, hence we have wn(t)→ w(t) in norm for all t ∈ [0, T0].
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Therefore, by the inequalities after (3.4) and by Lemma 2.2, also the sequence (yn)n

converges pointwisely to the function w in [0, T0], since, for every t ∈ [t
(n)
k , t

(n)
k+1) with

k = 0, 1, ..., m− 1, it holds

||yn(t)− w(t)|| ≤ ||y(n)
k − x

(n)
k ||+ ||wn(t

(n)
k )− wn(t)||+ ||wn(t)− w(t)||.

We shall prove now that w satisfies the differential inclusion (3.2) for almost all t ∈
[0, T0]. Let (e′k)k be a dense sequence in E ′ for the Mackey topology. Let k, n ∈ N and
A ∈ τλ([0, T0]); by (2.1) we get, in particular

w′n(t) ∈ F (yn(t)) +
1

n
B for almost every t ∈ [0, t

(n)
m ],

we also recall that w′n(t) ≡ 0 on (t
(n)
m , T0) with T0 − t(n)

m → 0 when n → +∞; therefore
we have

∫

A
〈e′k, w′n(t)〉 dt ≤

≤
∫

A
δ∗
(
e′k, F (yn(t))

)
dt+

λ(A)

n
||e′k|| − λ(A ∩ [t

(n)
m , T0])δ∗(e′k, F (y

(n)
m−1));

since w′n converges to w′ in σ(L1, L∞), yn converges pointwisely to w and F is scalarly
upper semicontinuous, applying Fatou’s Lemma we obtain

∫

A
〈e′k, w′(t)〉 dt ≤

∫

A
δ∗
(
e′k, F (w(t))

)
dt.

Hence we can find a negligible set M in [0, T0] such that

〈e′k, w′(t)〉 ≤ δ∗
(
e′k, F (w(t))

)
for all t ∈ [0, T0]\M and k ∈ N ;

this implies (see [6], Lemma III.34)

w′(t) ∈ F (w(t)) for almost all t ∈ [0, T0]

and (3.2) holds.

To complete the proof it remains to show that w is a monotone function with respect to
the preorder P . To this end take s, t ∈ [0, T0] with s < t.

First suppose t < T0; in this case, for n large enough, we have s ∈ [t
(n)
h , t

(n)
h+1) and

t ∈ [t
(n)
k , t

(n)
k+1) with h + 1 ≤ k and h, k ∈ {1, ..., m}. Then by the transitivity of P we

deduce from Lemma 2.2 x
(n)
k ∈ P (x

(n)
h+1). By pointwise convergence of (wn)n to w and

Lemma 2.2 it is easy to prove that (t
(n)
h , x

(n)
h ) → (s, w(s)) and (t

(n)
k , x

(n)
k ) → (t, w(t)) as

n→ +∞; as the graph of P is closed we then get w(t) ∈ P (w(s)).
When t = T0, we obtain w(T0) ∈ P (w(s)) by the continuity of w.
The proof is then complete.
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Theorem 3.2. Let X be a compact subset of a separable Banach space E;
P : X → X a given continuous preorder and F : [0, T ]× X → cwk(E) a scalarly upper
semicontinuous correspondence satisfying the following tangential condition

F (t, x) ∩ TP (x)(x) 6= ∅ for all (t, x) ∈ [0, T ]×X. (3.6)

Then, for every x0 ∈ X, there exists a Lipschitz function w : [0, T ]→ X such that

w(0) = x0, w′(t) ∈ F (t, w(t)) for almost all t ∈ [0, T ]

w is monotone with respect to the preorder P.

Proof. Consider the following multifunctions

H : [0,+∞)×X → R× E defined by

H(t, x) =

{ {1} × F (t, x) when t ≤ T

{1} × F (T, x) when t > T

and

P̂ : [0,+∞)×X → [0,+∞)×X given by

P̂ (t, x) = [t,+∞)× P (x).

It is easy to show that H is a nonempty convex weakly compact set-valued map; moreover,

for any η′ in (R×E)′ one has δ∗(η′, H(t, x)) = η′((1, 0E)) + δ∗(e′, F (t, x)) for all t ∈ [0, T ]

and x ∈ X, where e′ denotes the restriction of η′ to {0R} × E; hence H is also scalarly

upper semicontinuous. Finally P̂ is a continuous preorder on [0,+∞)×X.
We recall (see e.g. [1]) that an element v of E belongs to the cone TP (x)(x) if and only if

there exists a sequence (γn)n of positive numbers converging to zero and a sequence (xn)n
in P (x) such that xn−x

γn
→ v as n→ +∞, hence

{1} × TP (x)(x) ⊂ TP̂ (t,x)(t, x), for every (t, x) ∈ [0,+∞)×X;

thus condition (3.6) implies the following tangential condition on H

H(t, x) ∩ TP̂ (t,x)(t, x) 6= ∅ for all (t, x) ∈ [0,+∞)×X

and we have verified that all the assumptions of Theorem 3.1 hold.
Therefore, given x0 ∈ X, it is possible to find a positive constant µ and a Lipschitz
function u : [0, µ]→ [0,+∞)×X satisfying

u(0) = (0, x0), u′(ξ) ∈ H(u(ξ)) for almost every ξ ∈ [0, µ]

u is monotone with respect to the preorder P̂ .

Let T0 = min{µ, T}; the previous condition then implies the existence of a Lipschitz
function w : [0, T0]→ X such that

w(0) = x0, w′(t) ∈ F (t, w(t)) for almost all t ∈ [0, T0]

w is monotone with respect to the preorder P ;
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in fact it is enough to put u(ξ) = (t(ξ), w(ξ)) and notice that t′(ξ) ≡ 1.

Observe that H is bounded on [0,+∞) × X, and let α = Sup(t,x)∈[0,+∞)×X |H(t, x)|; if

T0 < T , Theorem 3.1 can be applied again as from the initial condition (T0, w(T0)), then
w can be extended to [0, T ] in such a way that it remains α-Lipschitz and monotone with
respect to P and this completes the proof.

Theorem 3.3. Let X be a compact subset of a separable Banach space E,
P : X → X a given continuous preorder and F : [0, T ]×X → cwk(E) a correspondence
satisfying:

(i) F is scalarly τλ([0, T ])⊗ B(X)–measurable;
(ii) F (t, ·) is scalarly upper semicontinuous on X, for any t ∈ [0, T ];
(iii) there exists a balanced convex weakly compact set K in E such that F (t, x) ⊂ K for

all (t, x) ∈ [0, T ]×X;
(iv) F (t, x) ∩ CP (x)(x) 6= ∅ for all (t, x) ∈ [0, T ]×X.

Then, for every x0 ∈ X, there exists a Lipschitz function w : [0, T ]→ X satisfying

w(0) = x0, w′(t) ∈ F (t, w(t)) for almost all t ∈ [0, T ]

w is monotone with respect to the preorder P.

Proof. The following method will be used: for h > 0 we shall define an approximation
Fh of the set-valued map F which enjoys more regularity than F , in fact Fh is globally
scalarly upper semicontinuous and apply to Fh Theorem 3.2; thanks to new results due to
Castaing-Moussaoui-Syam [5] (see also Lemma 2.1) we then pass to the limit when h→ 0
and obtain a monotone trajectory satisfying the original inclusion.

First notice that conditions (i) and (iii) imply τλ–measurability of F (·, x) on [0, T ] for every
x ∈ X; indeed, since τλ([0, T ]) is a complete tribe, the class of universally measurable sets
originated from τλ([0, T ]) coincides with τλ([0, T ]) (see [6], page 73), hence the assertion
follows from [6], Thm.III-37.

Let (rn)n be a sequence of strictly positive numbers converging to zero.

For every n ∈ N and t ∈ [0, T ], put It,rn = [0, T ]∩[t, t+rn] and consider the correspondence

Fn : [0, T ]×X 7−→ E given by

Fn(t, x) =
1

rn

∫

It,rn

F (s, x) ds,

where
∫
It,rn

F (s, x) ds is the Aumann integral of F (·, x) on It,rn.

Since F is convex and weakly compact, by [5], Thm. 3.2 we derive that the set Sx of all

integrable selections of F (·, x) is convex weakly compact in L1
E([0, T ], λ); hence Fn(t, x)

is a convex weakly compact subset of E, for all n ∈ N and (t, x) ∈ [0, T ]×X; moreover,
reasoning as in [5], Prop.5.3, we obtain that Fn is scalarly upper semicontinuous.
Given (t, x) ∈ [0, T ]×X, consider the measurable multifunction F (·, x)∩CP (x)(x) defined

on [0, T ]; in consequence of (iv) it is nonempty valued; let v : [0, T ]→ E be an integrable

selection of F (·, x) ∩ CP (x)(x); we have 1
rn

∫
It,rn

v(s) ds ∈ Fn(t, x) and since CP (x)(x) is
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a closed convex cone we also get 1
rn

∫
It,rn

v(s) ds ∈ CP (x)(x), hence tangential condition

(3.6) holds for each Fn.

Therefore Fn satisfies all the assumptions of Theorem 3.2 and for every x0 ∈ X it is
possible to find a Lipschitz function wn : [0, T ]→ X such that

wn(0) = x0, w′n(t) ∈ Fn(t, wn(t)) a.e.

wn is monotone with respect to P.
(3.7)

For each n ∈ N , by (iii) and the definition of Fn, we obtain Fn(t, x) ⊂ K for all (t, x) ∈
[0, T ] × X, so given α > 0 with |K| ≤ α, the sequence (wn)n turns out to be equi–α–
Lipschitz.

Now recall that the set SK of all measurable selections of K is convex and σ(L1, L∞)

compact (see [6], Corollary V.4); by (3.7) w′n(t) ∈ K a.e., we can then apply Eberlein-

Šmulian’s Theorem to extract a subsequence, again denoted (w′n)n, converging, for the

σ(L1, L∞)–topology, to a function w′ ∈ SK , hence (wn(t))n weakly converges to w(t) =

x0 +
∫ t

0 w
′(s) ds, for every t ∈ [0, T ].

Notice now that, for all n ∈ N and t ∈ [0, T ], wn(t) belongs to the compact set X,
therefore the sequence pointwisely (wn(t))n converges to w(t) in norm topology.

By (3.7) all trajectories wn are monotone with respect to the preorder P , since P has
closed graph also w is monotone with respect to P .

To complete the proof it remains thus to show that w′(t) ∈ F (t, w(t)) for almost every

t ∈ [0, T ]. According to (3.7) we then apply Lemma 2.1 to (w′n)n, (wn)n and to F so that

we obtain w′(t) ∈ F (t, w(t)) a.e. as desired.

Let us mention that when F is only scalarly measurable on [0, T ] for each fixed x ∈ X and
scalarly upper semicontinuous on X for each fixed t ∈ [0, T ], the conclusion of Theorem
3.3 does not hold (see e.g. Bothe [3], Example 2). We deal now with a stronger tangential
condition and a weaker measurable assumption. Namely we have the following version of
Theorem 3.3.

Theorem 3.4. Let X be a compact subset of a separable Banach space E,
P : X → X a given continuous preorder and F : [0, T ]×X → cwk(E) a correspondence
satisfying

(i) F (·, x) admits a τλ([0, T ])-measurable selection, for all x ∈ X;
(ii) F (t, ·) is scalarly upper semicontinuous on X, for any t ∈ [0, T ];
(iii) there is a balanced convex weakly compact subset K of E such that F (t, x) ⊂ K ∩

CP (x)(x) for each (t, x) ∈ [0, T ]×X.

Then, for every x0 ∈ X, there exists a Lipschitz function w : [0, T ]→ X satisfying

w(0) = x0, w′(t) ∈ F (t, w(t)) for almost all t ∈ [0, T ]

w is monotone with respect to the preorder P.

Proof. In consequence of (ii), F (t, ·) is for each t upper semicontinuous from X to Eσ,

where Eσ denotes the vector space E endowed with the weak σ(E,E ′)-topology (see [6],
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Thm.II.20); hence it is obvious that graph Ft = {(x, y) ∈ X×K : y ∈ F (t, x)} is compact
in the compact metrizable space X×Kσ, where Kσ denotes K with the metric associated
to the weak topology, for which it is a compact convex set.

By virtue of Theorem 2.3, there exists a multifunction F0 : [0, T ] ×X → cwk(K) ∪ {∅}
which has the properties (1)-(3) of Theorem 2.3, that is

(1) there is a λ-null set M , independent of (t, x), such that

F0(t, x) ⊂ F (t, x), for all t /∈M and x ∈ X;

(2) if u : [0, T ] → X and v : [0, T ] → K are τλ([0, T ])-measurable functions with v(t) ∈
F (t, u(t)) a.e., then v(t) ∈ F0(t, u(t)) a.e.;

(3) for every ε > 0, there is a compact subset Iε ⊂ [0, T ] such that λ([0, T ] \ Iε) < ε, the
graph of the restriction F0\Iε×X is closed in Iε ×X ×Kσ and ∅ 6= F0(t, x) ⊂ F (t, x),

for all (t, x) ∈ Iε ×X.

By property (3), one gets a sequence of compact sets In ⊂ [0, T ] with λ([0, T ] \ In) =
εn → 0 such that the restriction of F0 to In ×X has compact graph in In ×X ×Kσ; we
may also assume that (In)n is increasing.
Since, for each n, F0 is upper semicontinuous from In × X to Eσ, by Theorem 2.4 it

admits an upper semicontinuous extension F̃n from [0, T ] × X to Eσ with nonempty
convex compact values in Eσ satisfying

F̃n(t, x) ⊂ K ∩ CP (x)(x) for all (t, x) ∈ [0, T ]×X.

Let α = sup{‖k‖ : k ∈ K}; notice that each F̃n is also scalarly upper semicontinuous
(see [6], Thm.II.20), hence, for every n, we can apply Theorem 3.2 in order to obtain an
α-Lipschitz function wn : [0, T ]→ X such that

wn(0) = x0,

w′n(t) ∈ F̃n(t, wn(t)) a.e.

wn is monotone with respect to the preorder P.

(3.8)

By the construction of F̃n, (3.8) implies

w′n(t) ∈ F0(t, wn(t)), for all t ∈ In \Mn (3.9)

with λ(Mn) = 0.

Since K is convex weakly compact and w′n(t) ∈ K a.e., repeating the same arguments

given in the proof of Theorem 3.3, we can extract a subsequence, again denoted (w′n)n,

such that w′n converges for the σ(L1, L∞)-topology to w′ ∈ SK and for all t

lim
n→+∞

wn(t) = w(t) = x0+
t∫
0

w′(s) ds with respect to the norm topology.

Let M0 = ([0, T ] \ ∪nIn)∪∪nMn, which is a set with zero measure. If t /∈M0, then there

is p = p(t) such that t ∈ In \Mn for all n ≥ p, so that by (3.9) w′n(t) ∈ F0(t, wn(t)), hence

follows 〈e′, w′n(t)〉 ≤ δ∗
(
e′, F0(t, wn(t))

)
for all e′ ∈ E′.
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For t /∈M0 and e′ ∈ E′, since F0 is scalarly upper semicontinuous in Ip×X and wn(t)→
w(t) in norm topology, we have

lim sup
n→+∞

δ∗
(
e′, F0(t, wn(t))

)
≤ δ∗

(
e′, F0(t, w(t))

)

so that, for such t

lim sup
n→+∞

〈e′, w′n(t)〉 ≤ δ∗
(
e′, F0(t, w(t))

)

where the right-hand side is a measurable function.
For all measurable sets A ⊂ [0, T ] and every e′ ∈ E′, by Fatou’s Lemma, it follows

∫

A
〈e′, w′(t)〉 dt = lim

n→+∞

∫

A
〈e′, w′n(t)〉 dt ≤

∫

A
δ∗
(
e′, F0(t, w(t))

)
dt.

Since E is separable, this is known to imply that

w′(t) ∈ F0(t, w(t)) ⊂ F (t, w(t)) a.e.

Finally, we recall that P has closed graph, by (3.8) w is then monotone with respect to
P and this completes the proof.

4. Comments

It is worth to compare the results obtained here with those given by Aubin-Cellina [1],
Deimling [8] and Haddad [9].

For dim E <∞, Haddad [9] proved a necessary and sufficient condition for the existence
of monotone solutions of (1.1).

Via a constructive algorithm based on Lemma 2.2, Theorem 3.3 extends in two directions
the sufficient condition given by Haddad, since dim E = ∞ and F is globally scalarly
measurable and scalarly upper semicontinuous in x ∈ X.

Theorem 3.3 extends even a result given by Aubin-Cellina ([1], Thm.4.2.3) dealing with
the case when E is a Hilbert space and F is globally upper semicontinuous, with norm-
compact convex values.

Deimling obtained an existence result ([8], Thm.4) in Banach spaces when X is only closed,
P has closed graph, F is independent of t and satisfies the normal growth conditions; he
also assumed the following compactness type condition α(F (B)) ≤ kα(B) for some k ≥ 0
and all bounded B ⊂ X, where α denotes the Kuratowski’s measure of noncompactness;
such condition implies the compactness, with respect to the norm topology, of F (x) for
all x ∈ X and consequently Deimling’s Thm.4 [8] and Theorem 3.1 are not comparable.
Finally Deimling proved his result with a different method based on the use of a measure
of noncompactness and Zorn’s Lemma.
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