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Let (X, d) be a separable complete metric space and CL(X) the family of all nonempty closed subsets
of X . We show that the finite Hausdorff topology on CL(X) is Polish. The finite Hausdorff topology
is measurably compatible on CL(X) [1], i.e. its Borel field coincides with the Effros sigma algebra. So
Polishness of this topology can be useful for measurable multifunctions with values in CL(X) equipped
with the finite Hausdorff topology. Polishness of other weak topologies generated by a family of gap and
excess funtionals is also proved.

1. Introduction

Let (X, d) be a separable complete metric space and CL(X) the hyperspace of X, i.e.
the space of all nonempty closed subsets of X. We are interested to find a class of Polish
topologies on CL(X). In [2] it is shown that the Wijsman topology generated by the
metric d is Polish and in [6] is proved that also the Wijsman topology generated by a
metric % topologically equivalent to d is Polish.
We are going to show that, if ∆ is a subfamily of CLB(X) containing the singletons

and separable with respect to the induced Hausdorff metric , then the weak topology τG∆
generated by the family of gap functionals determined by ∆ as well as the weak topology

τGE∆ generated by the family of gap and excess functionals determined by ∆ are Polish.
As a corollary we obtain that the finite Hausdorff topology for a separable complete metric
space is Polish.

It is known [2] that the Borel fields determined by the above mentioned topologies τG∆
and τGE∆ are equal to the Effros sigma algebra, so Polishness of these topologies can be

useful in the study of measurable multifunctions with values in CL(X) .

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag
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2. Preliminaries

In the sequel (X, d) will be a metric space, CL(X) the family of all nonempty closed
subsets of X, CLB(X) the family of all nonempty closed and bounded subsets of X and
K(X) the family of all nonempty compact subsets of X. The open (resp. closed) ball
with center x and radius ε will be denoted by S(x, ε) (resp. B(x, ε)). The distance of x
from a nonempty set A is defined as

d(x,A) = inf{d(x, a) : a ∈ A}.

The open (resp. closed) ε-enlargement of A is the set

S(A, ε) = {x ∈ X : d(x,A) < ε} (B(A, ε) = {x ∈ X : d(x,A) ≤ ε}).

Given two nonempty sets A, B we define the gap between them as

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}

and the excess of A over B as

e(A,B) = sup{d(a, B) : a ∈ A}.

If ∆ is a nonempty subfamily of CL(X), then by τG∆ we mean the weak topology on

CL(X) generated by the family of gap functionals

{D(., B) : B ∈ ∆}

and by τGE∆ we mean the weak topology on CL(X) generated by the family of gap and

excess functionals
{D(., B) : B ∈ ∆} ∪ {e(., B) : B ∈ ∆}.

If ∆ = K(X) then τGEK(X) is just the finite Hausdorff topology ([2]) which will be denoted

by τfH . The finite Hausdorff topology when restricted to K(X) agrees with the Hausdorff

metric topology. Some properties as well as applications of the finite Hausdorff topology
can be found in [3].

If ∆ contains the singleton subsets of X, then τG∆ and τGE∆ are Hausdorff and admissible

and they are unchanged if ∆ is replaced by ∆, the closure of ∆ in the Hausdorff metric

[2, Chapter 4]. Of course τG∆ and τGE∆ are completely regular as weak topologies. We

finish these preliminaries with the following Lemma,which will be used later. By C(Y, Z)
we mean the space of the continuous functions from Y to Z.

Lemma 2.1. Let (Y, e) be a separable metric space and (Z, f) a metric space. Then the
uniformity U of the uniform convergence on compact subsets of Y on every equicontinuous
family F ⊂ C(Y, Z) has a countable base, and so it is metrizable.

Proof. For every compact subset K ⊂ Y and ε > 0 denote by

UK,ε = {(g, h) ∈ F × F : f(g(y), h(y)) < ε for every y ∈ K}.
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Let E be a countable dense set in Y and E the family of the finite subsets of E. Then the
family

{UB, 1n : B ∈ E , n ∈ Z+}

is a base of U . ( Let K ⊂ Y be a compact set in Y and ε > 0. The compactness of K
and the equicontinuity of F imply that there is δ > 0 such that whenever e(x, y) < δ
and x ∈ K then f(g(x), g(y)) < ε

3 for every g ∈ F . Let {x1, ..., xn} be a finite set in K

such that K ⊂ S({x1, ..., xn}, δ2). For every i ∈ {1, 2, ..., n} let ei ∈ E ∩ S(xi,
δ
2). Then

K ⊂ S({e1, ..., en}, δ). It easy to verify that U{e1,...,en}, 1k
⊂ UK,ε where k ∈ Z+ is such

that 1
k <

ε
3 .)

3. Weak topologies generated by gap functionals

Let (X, d) be a metric space and ∆ a nonempty subfamily of CL(X). In this section we

will study the weak topology τG∆ on CL(X) . It is known that if ∆ = CL(X) we obtain

the proximal topology [5], if ∆ = CLB(X) we obtain the bounded proximal topology [4]
and if ∆ is the family of all nonempty closed bounded and convex sets in a normed linear
space we have the slice topology [2].
We start with the following proposition which generalizes some results from [5] and [4].

Proposition 3.1. Let (X, d) be a metric space and ∆ a subfamily of CL(X) containing

the singletons. If (CL(X), τG∆) is first countable, then X is separable.

Proof. Notice that the family of τG∆ neighbourhoods of X is the same as in the lower

Vietoris topology. So by Proposition 4.3 in [8] we have that X is separable.

Theorem 3.2. Let (X, d) be a metric space and ∆ a subfamily of CL(X) containing
the singletons. The following are equivalent:

(1) (CL(X), τG∆) is metrizable;

(2) (CL(X), τG∆) is second countable;

(3) There is a countable subfamily Σ ⊂ ∆ such that τG∆ = τGΣ on CL(X) .

Proof. (1) ⇒ (2) It is sufficient to prove that (CL(X), τG∆) is separable. Let E be a

countable dense set in X (see Proposition 3.1). It is easy to verify that the finite subsets

of E form a dense set in (CL(X), τG∆ ).

(2) ⇒ (3) is clear.

(3) ⇒ (1) (CL(X), τG∆) is completely regular, Hausdorff and has a countable base. So

(CL(X), τG∆) is metrizable.

We are now going to prove the following result:

Theorem 3.3. Let (X, d) be a complete metric space. Let ∆ ⊂ CL(X) be separable with
respect to the induced Hausdorff metric H. Suppose moreover ∆ contains the singletons.

Then (CL(X), τG∆) is a Polish space.

The proof of Theorem 3.3 is based on the following remarks and lemmas.
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Suppose ∆ ⊂ CL(X) contains the singletons. A net {Aσ : σ ∈ Ω} in CL(X) τG∆ -

converges to A ∈ CL(X) if and only if for every B ∈ ∆ the net {D(Aσ, B) : σ ∈ Ω}
converges to D(A,B). Consider ∆ as a metric space equipped with the induced Hausdorff
metric H. Under the identification A ↔ D(A, .), where D(A, .) is defined on ∆, we can

consider (CL(X), τG∆ ) as a topological subspace of Cp(∆, R), the space of the continuous

real valued functions defined on ∆ equipped with the topology of pointwise convergence.
For every A,B,C ∈ CL(X) we have

|D(A,B)−D(A,C)| ≤ H(B,C),

so for every A ∈ CL(X) D(A, .) is a Lipschitz continuous function with constant 1 ([2],
Proposition 3.2.5.)

Lemma 3.4. Let (X, d) be a metric space. Suppose ∆ is a subfamily of CL(X) separable
with respect to the induced Hausdorff metric H and containing the singletons. Then

CL(X) in Cp(∆, R) is Polish, where CL(X) is the closure of CL(X) in Cp(∆, R).

Proof. The family {D(A, .) : A ∈ CL(X)} of the continuous functions defined on

(∆, H) is equicontinuous, so CL(X) is equicontinuous. By Lemma 2.5.2 in [2] CL(X) is

second countable. On CL(X) the topology of pointwise convergence and the topology of
uniform convergence on compact sets coincide. By Lemma 2.1 the uniformity of uniform

convergence on compact sets on CL(X) is metrizable and of course it is complete, since
R is complete.

Lemma 3.5. Let (X, d) be a metric space. Suppose ∆ is a subfamily of CL(X) con-

taining the singletons. Let F ∈ CL(X) ⊂ Cp(∆, R). Put A = {x ∈ X : F ({x}) = 0}.
Then F = D(A, .) if and only if A 6= ∅ and for every B ∈ ∆, D(A,B) ≤ F (B).

Proof. ⇒ This part is easy.
⇐ Let B ∈ ∆. We show that F (B) ≤ D(A,B). Let ε > 0. Pick a ∈ A with D(a, B) <

D(A,B) + ε
3 . F ∈ CL(X), so there is C ∈ CL(X) such that

|F (B)−D(C,B)| < ε

3
and |F ({a})−D(C, {a})| < ε

3
.

So

F (B) < D(C,B) +
ε

3
< D(C, {a}) +D({a}, B) +

ε

3
<
ε

3
+D(A,B) +

ε

3
+
ε

3
.

Since ε > 0 was arbitrary, we have F (B) ≤ D(A,B).

Proof of Theorem 3.3. The assumptions of Theorem 3.3 imply that X is separable. Let
{x1, x2, ..., xn, ...} be a countable dense set in X and {B1, B2, ..., Bn, ...} a countable dense

set in (∆, H). For every n, k ∈ Z+ define

Ω1(n, k) = {F ∈ CL(X) : {x ∈ X : F ({x}) < 1

2n+1
} 6= ∅ and



Ľ. Holá, R. Lucchetti / Polishness of weak topologies generated by gap 287

d(xk, {x ∈ X : F ({x}) < 1

2n+1
}) < F ({xk}) +

1

2n
};

Ω2(n, k) = {F ∈ CL(X) : {x ∈ X : F ({x}) < 1

2n+1
} 6= ∅ and

D({x ∈ X : F ({x}) < 1

2n+1
}, Bk) < F (Bk) +

1

2n
}.

We show that CL(X) =
⋂
n,k

(Ω1(n, k) ∩ Ω2(n, k)).

The inclusion CL(X) ⊂ ⋂
n,k

(Ω1(n, k) ∩ Ω2(n, k)) is clear. Now let

F ∈
⋂

n,k

(Ω1(n, k) ∩ Ω2(n, k)).

To prove that F ∈ CL(X), it is sufficient by Lemma 3.5 to show that

A = {x ∈ X : F ({x}) = 0}

is nonempty, and that for each B ∈ ∆ we have D(A,B) ≤ F (B). Clearly

F ∈
⋂

n,k

Ω1(n, k) and F|X ∈ CL(X) in Cp(X,R).

From the proof of Theorem 2.5.4 in [2] we can see that

A = {x ∈ X : (F|X)(x) = 0} 6= ∅ and

F ({x}) = d(A, x) = D(A, x) for every x ∈ X.
Now we prove that also for every B ∈ ∆ D(A,B) ≤ F (B). First, let B = Bl for some l.

Suppose D(A,Bl) > 0. Let ε > 0. Let n ∈ Z+ be such that

1

2n−1
< min{ε,D(A,Bl)}. Then

D(A,Bl) ≤ D(S(A,
1

2n+1
), Bl) +H(A, S(A,

1

2n+1
))

< F (Bl) +
1

2n
+

1

2n+1
< F (Bl) + ε,

since F ∈ Ω2(n, k) and F|X = d(A, .), so

S(A,
1

2n+1
) = {x ∈ X : d(A, x) <

1

2n+1
} = {x ∈ X : F ({x}) < 1

2n+1
}.

Since ε > 0 was arbitrary, we have D(A,Bl) ≤ F (Bl).
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Now let B ∈ ∆. We show that D(A,B) ≤ F (B) + ε for every ε > 0. Let ε > 0. There
is Bl ∈ ∆ such that H(B,Bl) <

ε
2 . Then |D(A,Bl) − D(A,B)| ≤ H(B,Bl) and also

|F (Bl)− F (B)| ≤ H(B,Bl), so

D(A,B) ≤ D(A,Bl) +H(B,Bl) < F (Bl) +
ε

2
≤ F (B) + ε.

It is very easy to verify that for every n, k ∈ Z+ Ω1(n, k) and Ω2(n, k) are open subsets

of CL(X) in Cp(∆, R). By Lemma 3.4 CL(X) is a Polish space, so also (CL(X), τG∆) is

a Polish space as a Gδ-subset of a Polish space.

Theorem 3.6. Let (X, d) be a separable complete metric space and ∆ a subfamily of

CL(X) containing the singletons. If (CL(X), τG∆ ) is metrizable, then it is Polish.

Proof of Theorem 3.6. Theorem 3.2 and the metrizability of (CL(X), τG∆) imply that

there is a countable subfamily Σ of ∆ such that τGΣ = τG∆ . Let {x1, x2, ..., xn, ...} be a

countable dense set in X. Put

Γ = Σ ∪ {{xi} : i ∈ Z+},

where the closure is taken with respect to the Hausdorff metric H. Then by Theorem 3.3

(CL(X), τGΓ ) is a Polish space and τGΓ = τG∆ on CL(X) .

Observe that actually it is not necessary to suppose the separability of X (Proposition
3.1).

Remark 3.7. If (X, d) is a separable complete metric space then the Wijsman topology
induced by the metric d on CL(X) is Polish ([2]). So it is of interest to know conditions

on ∆ under which τG∆ is different from the Wijsman topology. Results of this type can be

found in [7].

Remark 3.8. By using Theorem 3.3 we can find another proof of Polishness of the slice
topology. Let X be a Banach space with strongly separable dual. Let E be a countable
dense set in X and E∗ a countable dense set in X∗. Put

B = {B(e, q) : e ∈ E, q ∈ Q}

where Q are positive rationals. The family S of slices of balls from B generated by elements

from E∗ and rationals is countable. Put ∆ = S, where the bar means the closure in the

Hausdorff metric induced by the norm of X. By Theorem 3.3 we have that (CL(X), τG∆ )

is Polish. The family C(X) of the nonempty closed convex sets is closed in (CL(X), τG∆),

so (C(X), τG∆) is Polish and τG∆ on C(X) is just the slice topology.

4. Weak topologies generated by gap and excess functionals

Let (X, d) be a metric space and ∆ a nonempty subfamily of CL(X). In this section we

will study the weak topology τGE∆ on CL(X) . If ∆ = K(X) we have the finite Hausdorff

topology τGfH ([2]).
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We start with the following Proposition:

Proposition 4.1. Let (X, d) be a separable metric space and ∆ a nonempty subfamily
of CL(X) which contains the singletons. The following are equivalent:

(1) (CL(X), τGE∆ ) is metrizable;

(2) (CL(X), τGE∆ ) is second countable;

(3) There is a countable subfamily Σ ⊂ ∆ such that τGEΣ = τGE∆ on CL(X) .

Proof. (1) ⇒ (2) It is sufficient to prove that (CL(X), τGE∆ ) is separable. Let E be a
countable dense set in X. It is easy to verify that finite subsets of E form a dense set in
(CL(X), τGE∆ ).
(2) ⇒ (3) This is clear.

(3)⇒ (1) (CL(X), τGE∆ ) is completely regular (as a weak topology), has a countable base

and it is Hausdorff. So (CL(X), τGE∆ ) is metrizable.

Now we will formulate the main result of this part:

Theorem 4.2. Let (X, d) be a separable complete metric space and ∆ a subfamily of

CLB(X) which contains the singletons. If (CL(X), τGE∆ ) is metrizable, then (CL(X),

τGE∆ ) is Polish.

We will deduce the above Theorem from the following one:

Theorem 4.3. Let (X, d) be a complete metric space and ∆ a subfamily of CLB(X)
separable with respect to the induced Hausdorff metric H and containing the singletons.
Then (CL(X), τGE∆ ) is a Polish space.

The proof of theorem 4.3 is based on the following remarks and lemmas.
Suppose ∆ ⊂ CL(X) contains the singletons. A net {Aσ : σ ∈ Ω} in CL(X) τGE∆ -
converges to A ∈ CL(X) if and only if for every B ∈ ∆ the net {D(Aσ, B) : σ ∈ Ω}
converges to D(A,B) and the net {e(Aσ, B) : σ ∈ Ω} converges to e(A,B).
Let u be the usual metric on [0,∞). By [0,∞] we mean the one-point compactification
of [0,∞). So [0,∞] can be equipped with a separable complete metric f . Put Y =
[0,∞)× [0,∞] and consider the box metric % on Y generated by u and f .
Let ∆ be equipped with the induced Hausdorff metric H. Under the identification

A↔ (D(A, .), e(A, .))

(D(A,.) and e(A,.) are defined on ∆) we can consider (CL(X), τGE∆ ) as a topological
subset of Cp(∆, Y ).

Lemma 4.4. Let (X, d) be a metric space and ∆ a subfamily of CL(X) containing
the singletons. Let ∆ be equipped with H and Y with %. Then CL(X) ⊂ Cp(∆, Y ) is
equicontinuous.

Proof. Let B ∈ ∆ and ε > 0. There is δ > 0, δ < ε such that whenever u(x, y) < δ
x, y ∈ [0,∞) then f(x, y) < ε. By proposition 3.2.5. in [2] we can deduce that if C ∈ ∆
is such that H(B,C) < δ, then

%((D(A,B), e(A,B)), (D(A,C), e(A,C)) < ε

for every A ∈ CL(X).



290 Ľ. Holá, R. Lucchetti / Polishness of weak topologies generated by gap

Lemma 4.5. Let (X, d) be a metric space, ∆ a subfamily of CL(X) separable with
respect to the induced Hausdorff metric and containing the singletons and let Y be equipped

with the metric %. Then CL(X) in Cp(∆, Y ) is Polish, where CL(X) is the closure of

CL(X) in Cp(∆, Y ).

Proof. CL(X) in Cp(∆, Y ) is equicontinuous, since by Lemma 4.4 CL(X) is equicon-

tinuous. By Lemma 2.5.2 in [2] CL(X) is second countable. On CL(X) the topology
of pointwise convergence and the topology of uniform convergence on compact sets coin-

cide. By Lemma 2.1 the uniformity of uniform convergence on compact sets on CL(X)
is metrizable and it is complete, since Y is complete.

In what follows we will suppose that ∆ is a subset of CLB(X). So if A ∈ CLB(X) then
the function e(A, .) defined on ∆ has values in [0,∞) and if A ∈ CL(X) is unbounded
then e(A, .) defined on ∆ is identically equal to ∞. The following lemma describes the

behaviour of the elements of CL(X).

Lemma 4.6. Let (X, d) be a metric space and ∆ a subfamily of CLB(X) containing the

singletons. Let F = (F1, F2) ∈ CL(X) in Cp(∆, Y ). If there is B ∈ ∆ with F2(B) = ∞
then for every K ∈ ∆ F2(K) =∞.

Proof. Of course if F ∈ CL(X) we are done. Otherwise suppose there is K ∈ ∆ such

that F2(K) <∞. Let ε > 0. F ∈ CL(X), so there is A ∈ CL(X) such that

e(A,K) ∈ (F2(K)− ε, F2(K) + ε) and e(A,B) > F2(K) + ε+H(K,B).

Since e(A,K) <∞ also e(A,B) <∞ and by Proposition 3.2.5 in [2] we have

e(A,B) ≤ e(A,K) +H(K,B).

So e(A,B) < F2(K) + ε+H(K,B), a contradiction.

Lemma 4.7. Let (X, d) be a metric space and ∆ a subfamily of CLB(X) containing

the singletons. Let F = (F1, F2) ∈ CL(X) in Cp(∆, Y ) be such that F2(B) <∞ for every

B ∈ ∆. Then for every ε > 0 the set H = {x ∈ X : F1({x}) < ε} is bounded.

Proof. Let ε > 0 and suppose that

H = {x ∈ X : F1({x}) < ε}

is unbounded. Let x0 ∈ X be a fixed point of X. Let M ∈ Z+ be such that F2({x0}) < M

and let K ∈ Z+ be such that KM > M + ε. There is a ∈ H such that F1({a}) < ε and

a /∈ B(x0, KM + 2ε). F ∈ CL(X), so there is B ∈ CL(X) such that

|D(B, {a})− F1({a})| < ε and also |e(B, {x0})− F2({x0})| < ε.

Thus
e(B, {x0}) < F2({x0}) + ε and D(B, {a}) < 2ε.
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Let b ∈ B be such that d(b, a) < 2ε. We claim that d(b, x0) > KM. Suppose d(b, x0) ≤
KM . Then

d(x0, a) ≤ d(b, x0) + d(b, a) ≤ KM + 2ε,

a contradiction. Thus d(b, x0) > KM and so e(B, {x0}) > KM , a contradiction.

Lemma 4.8. Let (X, d) be a metric space and ∆ a subfamily of CLB(X) containing the

singletons. Let F = (F1, F2) ∈ CL(X) in Cp(∆, Y ). Let A = {x ∈ X : F1({x}) = 0}.
(1) If for every B ∈ ∆ F2(B) < ∞, then (F1, F2) = (D(A, .), e(A, .)) ⇔ A 6= ∅, A is

bounded and for each K ∈ ∆, D(A,K) ≤ F1(K) and e(A,K) ≥ F2(K).

(2) If for every B ∈ ∆ F2(B) = ∞ then (F1, F2) = (D(A, .), e(A, .)) ⇔ A 6= ∅, A is
unbounded and, for each K ∈ ∆, D(A,K) ≤ F1(K).

Proof. 1) ⇒ This implication is obvious.

⇐ Suppose A 6= ∅, A bounded and for each K ∈ ∆

D(A,K) ≤ F1(K) and e(A,K) ≥ F2(K).

We have to prove also the opposite inequalities. Take K ∈ ∆ and ε > 0. There is a ∈ A
such that

d(a,K) > e(A,K)− ε

3
.

F ∈ CL(X), so there is B ∈ CL(X) such that

|F2(K)− e(B,K)| < ε

3
and also |F1({a})−D(B, {a})| < ε

3
.

For every C ∈ CL(X) d(a,K) ≤ e(C,K) + D(C, a). (Take η > 0. There is c ∈ C such
that d(a, C) < D(C, a) + η. Then d(a,K) ≤ d(c,K) + d(a, c) ≤ e(C,K) + D(C, a) + η.)
We have

e(A,K) < d(a,K) +
ε

3
< e(B,K) +D(B, a) +

ε

3

< F2(K) +
ε

3
+
ε

3
+
ε

3
= F2(K) + ε.

To prove F1(K) ≤ D(A,K) we use the same idea as in the proof of Lemma 3.5.

2) ⇒ This implication is obvious.

⇐ Suppose A 6= ∅, A is unbounded and for each K ∈ ∆ D(A,K) ≤ F1(K). With
the same proof of the Lemma 3.5 we obtain F1(K) = D(A,K) for every K ∈ ∆. The
unboundedness of A implies that e(A,K) = ∞ for every K ∈ ∆. So F2(K) = ∞ =
e(A,K) for every K ∈ ∆.

Proof of Theorem 4.3. Now we prove that CL(X) is a Gδ-set in CL(X).

Let {x1, x2, ..., xn, ...} be a countable dense set in X and {B1, B2, ..., Bn, ...} a countable
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dense set in ∆. For every n, k ∈ Z+ put

Ω1(n, k) = {F ∈ CL(X) : {x ∈ X : F1({x}) < 1

2n+1
} 6= ∅ and

d(xk, {x ∈ X : F1({x}) < 1

2n+1
}) < F1({xk}) +

1

2n
}

∩ {F ∈ CL(X) : F2(Bk) ∈ R}

∩ {F ∈ CL(X) : D(Bk, {x ∈ X : F1({x}) < 1

2n+1
}) < F1(Bk) +

1

2n
}

∩ {F ∈ CL(X) : e({x ∈ X : F1({x} < 1

2n+1
}, Bk) > F2(Bk)− 1

2n
}.

It is easy to verify that if A ∈ CL(X) is bounded, then

(D(A, .), e(A, .)) ∈
⋂

n,k

Ω1(n, k).

For every n, k ∈ Z+ Ω1(n, k) is open in CL(X) ⊂ Cp(∆, Y ). We prove only that the set

L = {F ∈ CL(X) : {x ∈ X : F1({x}) < 1

2n+1
} 6= ∅}

∩ {F ∈ CL(X) : F2(Bk) ∈ R}

∩ {F ∈ CL(X) : e({x ∈ X : F1({x}) < 1

2n+1
}, Bk)

> F2(Bk)− 1

2n
}

is open in CL(X).

Let G ∈ L. By Lemma 4.7 the set {x ∈ X : G1({x}) < 1
2n+1} is bounded. Let ε > 0 be

such that

e({x ∈ X : G1({x}) < 1

2n+1
}, Bk)− ε > G2(Bk)−

1

2n
+ ε.

Let x0 ∈ X be such that

G1({x0}) <
1

2n+1
andd(x0, Bk) > e({x ∈ X : G1({x}) < 1

2n+1
}, Bk)− ε.

Then the set

{F ∈ CL(X) : F1({x0}) <
1

2n+1
}

∩ {F ∈ CL(X) : F2(Bk) ∈ R}
∩ {F ∈ CL(X) : F2(Bk) < G2(Bk) + ε}

is an open neighbourhood of G which is contained in L.
Thus

⋂
n,k

Ω1(n, k) is a Gδ-set. Now we show that
⋂
n,k

Ω1(n, k) = CLB(X). Let

G ∈
⋂

n,k

Ω1(n, k).
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So

G ∈
⋂

n,k

{F ∈ CL(X) : {x ∈ X : F1({x}) < 1

2n+1
} 6= ∅}

∩ {F ∈ CL(X) : d(xk, {x ∈ X : F1({x}) < 1

2n+1
}) < F1{xk}+

1

2n
}.

Following the proof of Theorem 2.5.4 in [2] we can see that A = {x ∈ X : G1({x}) =
0} 6= ∅ and G1({x}) = d(x,A) for every x ∈ X. By Lemma 4.7 A is bounded. By Lemma
4.8 1) it is sufficient to prove that D(A,K) ≤ G1(K) and e(A,K) ≥ G2(K) for every
K ∈ ∆. But this is routine.
Now let x0 be a fixed point from X. Put

Ω2(n, k) = {F ∈ CL(X) : {x ∈ X : F1({x}) < 1

2n+1
} 6= ∅ and F2(Bk) > n}

∩ {F ∈ CL(X) : d(xk, {x ∈ X : F1({x}) < 1

2n+1
}) < F1({xk}) +

1

2n
}

∩ {F ∈ CL(X) : D(Bk, {x ∈ X : F1({x}) < 1

2n+1
}) < F1(Bk) +

1

2n
}

∩ {F ∈ CL(X) : {x ∈ X : F1({x}) < 1

2n+1
} ∩ B(x0, n)c 6= ∅}.

It is easy to verify that Ω2(n, k) is open in Cp(∆, Y ) for every n, k ∈ Z+. If A ∈ CL(X)

is unbounded, then A ∈ ⋂
n,k

Ω2(n, k).

Now suppose that (F1, F2) ∈ ⋂
n,k

Ω2(n, k). Again from the proof of Theorem 2.5.4 in [2]

A = {x ∈ X : F1({x}) = 0} 6= ∅.

We prove that A is unbounded. Let n ∈ Z+. We show that B(x0, n)c ∩ A 6= ∅. As

{x ∈ X : F1({x}) < 1

22n+1
} ∩ B(x0, 2n)c 6= ∅,

there is z ∈ X such that

F1({z}) < 1

22n+1
and d(z, x0) > 2n.

So

F1({z}) = d(z, A) <
1

22n+1
,

and there is a ∈ A such that d(z, a) < 1
22n+1 . We claim that d(a, x0) > 2n− 1

22n+1 . Suppose

not. Then

d(z, x0) ≤ d(a, x0) + d(z, a) ≤ 2n− 1

22n+1
+

1

22n+1
= 2n,
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a contradiction. From the above results we have

CL(X) =
⋂

n,k

Ω1(n, k) ∪
⋂

n,k

Ω2(n, k).

So CL(X) is a Gδ-set in CL(X), i.e. (CL(X), τGE∆ ) is a Polish space.

Now let (X, d) be a separable completely metrizable space. We are going to show that if
∆ is a subfamily of CLB(X) containing the singletons and separable with respect to the

induced Hausdorff metric, then τG∆ and τGE∆ are Polish. As a corollary we obtain that the

finite Hausdorff topology for a separable completely metrizable space is Polish.

We prove only the case of τG∆ ; the proof for τGE∆ is the same.

Let (X̃, d̃) be the completion of (X, d). Let {x1, x2, ..., xn, ...} be a countable dense set in
X and {B1, B2, ..., Bn, ...} a countable dense set in (∆, H).
Put

∆X̃ = {CLX̃B1, CLX̃B2, ..., CLX̃Bn, ...} ∪ {x : x ∈ X̃}.
Define the map

L : (CL(X), τG∆)→ (CL(X̃), τG∆X̃
)

as follows: L(A) = CLX̃A. It is easy to verify that L is a topological embedding. By

Theorem 3.3 (CL(X̃), τG∆X̃
) is a Polish space. By [6] CL(X) is a Gδ-subset of CL(X̃)

equipped with the Wijsman topology induced by d̃, so CL(X) is a Gδ-subset of CL(X̃)

equipped with τG∆X̃
, since the Wijsman topology on CL(X̃) induced by d̃ is weaker than

τG∆X̃
.
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