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We present a formula for the viscosity subdifferential of the sum of two uniformly continuous functions
on smooth Banach spaces. This formula is deduced from a new variational principle with constraints.
We obtain as a consequence a weak form of Preiss’ theorem for uniformly continuous functions. We use
these results to give simple proofs of some uniqueness results of viscosity solutions of Hamilton-Jacobi
equations and we show how singlevaluedness of the associated Hamilton-Jacobi operators is related to
the geometry of Banach spaces.

1. Introduction

The aim of this paper is to investigate subdifferential calculus for lower semicontinuous
functions and to show that this calculus sheds a new light on the proof of uniqueness of
viscosity solutions of Hamilton-Jacobi equations.

In section 2, we give a formula for the viscosity subdifferential of the sum of two uniformly

continuous functions on spaces which admit a C1 Lipschitz bump function. Our result
extends former work of A. Ioffe [1] and M. Fabian ([2], [3]) on fuzzy calculus and trust-
worthiness. We shall present two different proofs of this result. The first one, valid under
some more restrictive assumption on X, is deduced from a constrained smooth variational
principle. The second proof is a direct one and shows actually that our results remain
true if we assume one of the function locally uniformly continuous and the other one lower
semicontinuous (A. Ioffe and M. Fabian assumed that one of the function was Lipschitz
continuous and the other one lower semicontinuous). Both proofs rely on the smooth
variational principle of R. Deville, G. Godefroy and V. Zizler [4] which is an extension of
the smooth variational principle of J. Borwein and D. Preiss [5].

In section 3, we apply these results to Hamilton-Jacobi equations in infinite dimensions.
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We prove how the formula for the viscosity subdifferential of the sum of two (locally) uni-
formly continuous functions allows us to give a comprehensive proof of uniqueness of vis-
cosity solutions of some Hamilton-Jacobi equations. We also prove a Rademacher-Preiss
type theorem for uniformly continuous functions in spaces which admit a smooth bump
function. As a consequence, we show how the singlevaluedness of the Hamilton-Jacobi
operator associated to a uniformly continuous Hamiltonian is related to the existence of
a smooth bump function on X.
A formula for the second order viscosity subdifferential of the sum of two lower semicon-
tinuous functions is available only in finite dimensions. Very little is known about the
second order subdifferential of the sum of two functions in infinite dimensions. We do not
include here the second order case, since it involves different techniques. We shall treat
this topic in part II.

We now introduce our definitions. Throughout this paper, unless otherwise stated the
notion of differentiability r efer to Fréchet differentiability. Let E be a Banach space and
f : E −→ IR ∪ {+∞} be lower semicontinuous. As usual, we denote by dom(f) the
effective domain of f :

dom(f) := {x ∈ E ; f(x) < +∞}
Recall that whenever x ∈ dom(f) and f is convex, the subdifferential of f at x is the set:

D−f(x) = {p ∈ E∗; f − p has a local minimum at x}
If x ∈ dom(f) and f is not supposed convex, we define:

D−f(x) = {ϕ′(x) ; ϕ : E −→ IR is C1 and f − ϕ has a local minimum at x}
It is not difficult to check that whenever f is convex, these two definitions coincide. We say
that f is subdifferentiable at x if D−f(x) 6= ∅ (for x /∈ dom(f), we define D−f(x) = ∅).
We can define in a similar way the superdifferential of f at x:

D+f(x) = {ϕ′(x) ; ϕ : E −→ IR is C1 and f − ϕ has a local maximum atx}

A first difficulty is that even in finite dimensions, the sets D−f(x) and D+f(x) may

be empty at many points in dom(f). In fact, the sets domD−f = {x ∈ X; f is sub-

differentiable at x} and domD+f = {x ∈ X; f is superdifferentiable at x} need not be
residual in X as shown by the following:

Fact 1.1. If x ∈ domD−f
⋂

domD+f , then f is differentiable at x. Consequently, if

f : X −→ IR is a continuous nowhere differentiable function on X (such functions do

exist even when X = IR), then domD−f
⋂

domD+f = ∅.
Indeed, assume that x ∈ domD−f

⋂
domD+f . So there exists ϕ1, ϕ2 : X −→ IR such

that f−ϕ1 has a local maximum at x and f−ϕ2 has a local minimum at x. Consequently,
ϕ1−ϕ2 has a local minimum at x and so ϕ′1(x) = ϕ′2(x). Let us denote by p this common
value. From the inequalities:

ϕ2(x + h)− ϕ2(x)− 〈p, h〉
‖h‖ ≤ f(x+ h)− f(x)− 〈p, h〉

‖h‖

≤ ϕ1(x + h)− ϕ1(x)− 〈p, h〉
‖h‖
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we deduce that f is differentiable at x.

In some infinite dimensionsional Banach spaces, a Lipschitz function may be nowhere
subdifferentiable and nowhere superdifferentiable. Take for instance the function f :

`1(N) −→ IR defined by f((xn)) =
∑

n∈IN

|x2n| −
∑

n∈IN

|x2n+1|.

Throughout this paper, a bump b on X is a function from X into IR non identically equal
to zero, with bounded support. A key geometrical assumption on X in this paper will
be the existence of a smooth bump function on X. To motivate this assumption, let us
observe:

Fact 1.2. Let f : X −→ IR be a (Lipschitz continuous) function on X satisfying f(x) > 0

for all x ∈ X and lim
‖x‖→∞

f(x) = 0. If there exists a C1 function ϕ such that f − ϕ has a

global minimum attained at some point x0, then there exists a C1-bump function on X.

Indeed, suppose that there exists x0 ∈ X and a C1-function ϕ : X −→ IR such that f −ϕ
attains its minimum at x0. Without loss of generality, we can assume that ϕ(x0) = f(x0).

Let M > 0 be such that f(x) ≤ f(x0)
2 whenever ‖x‖ ≥ M . Let α : IR −→ IR be a

C1-function such that α(f(x0)) = 1 and α(t) = 0 whenever t ≤ f(x0)
2 . The function α ◦ ϕ

is a C1-function on X such that α ◦ ϕ(x0) = 1 and α ◦ ϕ(x) = 0 if ‖x‖ ≥ M , so it is a

C1-bump on X.

The following smooth variational principle is proved in [4] (see also [7]) and is a converse of
Fact 1.2. We recall that the first smooth variational principle was obtained by J. Borwein
and D. Preiss [5], and was then extended by R. Deville, G. Godefroy and V. Zizler in [4]
with a very simple proof using the Baire category theorem.

We use in the next statement the following definition: a function F : X −→ IR attains
a strong minimum at x0 ∈ X if, by definition, F (x0) = inf{F (x) ; x ∈ X} and every

minimizing sequence (yn) in X (i.e. (yn) satisfies lim
n
F (yn) = x0) converges to x0.

Theorem 1.3. Let X be a Banach space, f : X −→ IR be a lower semicontinuous,

bounded below function such that dom(f) 6= ∅ and ε > 0. Assume that there exists a C1

Lipschitz continuous bump function b on X. Then there exists a C1-function g on X such
that:

(a) f + g has a strong minimum at some point x0 ∈ X,

(b) ‖g‖∞ = sup{|g(x)| ; x ∈ X} < ε and ‖g′‖∞ = sup{‖g′(x)‖∞ ; x ∈ X} < ε

Moreover, we have the following localization property: there exists a constant c > 0 (de-

pending only on the space X) such that whenever y ∈ X satisfies f(y) ≤inf
X
f + cε2, then

the point x0 can be chosen such that ‖y − x0‖ < ε.

Let us point out that M. Fabian, P. Hajek and J. Vanderwerf were able in [6] to remove
the assumption “b Lipschitz continuous” in Theorem 1.3.
A combination of Fact 1.2 and Theorem 1.3 yield:

Corollary 1.4. Let X be a Banach space. The following conditions are equivalent:

(1) There exists a C1-bump function on X.
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(2) For every lower semicontinuous, bounded below real valued function f on X, the set

of all points x ∈ X for which there exists a C1 function ϕ : X −→ IR such that f −ϕ
has a global minimum at x is dense in X.

(3) For every Lipschitz continuous, bounded below real valued function f on X, there

exists a C1 function ϕ : X −→ IR such that f − ϕ has a global minimum on X.

Indeed, (1) implies (2) is a consequence of the variant of the smooth variational principle
of Fabian, Hajek and Vanderwerff and is proved in [6]. Obviously (2) implies (3) while
(3) implies (1) by Fact 1.2.

2. The viscosity subdifferential of the sum of two uniformly continuous func-
tions in infinite dimension

In this section, we shall prove the following formula which extends a result of A. Ioffe ([1],
[8]):

Theorem 2.1. Let X be a Banach space such that there exists a C1 Lipschitz bump
function on X. Let u1, u2 be two real valued functions defined on X such that u1 is
lower semicontinuous and u2 is uniformly continuous. Suppose that x0 ∈ X and p ∈
D−(u1 +u2)(x0) are given. Then, for each ε > 0, there exists x1, x2 ∈ X, p1 ∈ D−u1(x1)

and p2 ∈ D−u2(x2) such that:

(1) ‖x1 − x0‖ < ε and ‖x2 − x0‖ < ε
(2) |u1(x1)− u1(x0)| < ε and |u2(x2)− u2(x0)| < ε
(3) ‖p1 + p2 − p‖ < ε

Let us recall that according to Rademacher’s Theorem, every Lipschitz continuous func-
tion in IRn is differentiable almost everywhere. D. Preiss [9] has recently extended this
result to an infinite dimensional setting. He proved that if X is an Asplund space, then
every locally Lipschitz continuous real valued function defined on X is differentiable on
a dense subset of X. We recall that a Banach space is an Asplund space if every convex
continuous function on X is Fréchet-differentiable on a dense subset of X. It is well known
that if there exists on X a C1 bump function, then X is an Asplund space. The converse,
which is an open problem in general, is true if X is separable (see [10], [11] for recent
developments on this problem and for references). The following result can be seen as a
weak form of Preiss theorem for uniformly continuous functions.

Corollary 2.2. Let X be a Banach space such that there exists a C1 Lipschitz bump
function on X. Let u be a uniformly continuous function defined on X. Then for every

x ∈ X and every ε > 0, there exists x1, x2 ∈ X, p− ∈ D−u(x1) and p+ ∈ D+u(x2) such
that:

(1) ‖x1 − x‖ < ε and ‖x2 − x‖ < ε

(2) ‖p− − p+‖ < ε

In order to prove Corollary 2.2, it is enough to apply Theorem 2.1 with u1 = u and
u2 = −u, and to observe that D−(−u)(x2) = −D+u(x2). Let us here stress the fact that
Preiss’ result is considerably harder to prove.
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Remark 2.3. (1) If the function u of Corollary 2.2 is nowhere differentiable, then the

points x1 and x2 are necessarily different. It is unknown whether one can take p− = p+

when the function u in Corollary 2.2 is an arbitrary uniformly continuous function (this
problem is related to the problem of the singlevaluedness of the Hamilton-Jacobi operator,
see Remark 3.6). Let us notice here that the answer to this question is yes if dim X = 1.
Indeed, when X = IR, for x ∈ IR, we have two possibilities: either there is an open interval
I containing x such that u is of bounded variation on I. In this case, u is differentiable at

some point x0 of I and we can choose x1 = x2 = x0 and p− = p+ = u′(x0). Otherwise, for
every open interval I containing x, u is not of bounded variation on I. So for every such

interval I,
⋃{D−u(y); y ∈ I} = IR and

⋃{D+u(y); y ∈ I} = IR and it is then certainly

possible to have p+ = p−.
(2) It is possible in Theorem 2.1 and Corollary 2.2 to replace the assumption “uniformly
continuous” by “locally uniformly continuous” (see the second proof of Theorem 2.1 be-
low). We recall that a function u : X −→ IR is locally uniformly continuous if for every
x ∈ X, there exists a neighbourhood V of x such that u is uniformly continuous on V .
However, we were unable to prove a formula for the subdifferential of the sum of two
lower semicontinuous functions in infinite dimensions and to prove a Preiss type theorem
for functions which are only continuous.

We shall give two different proofs of Theorem 2.1. The first one uses a constrained
variational principle and requires some further assumptions. The second one is more
technical but yields Theorem 2.1 in full generality.
In order to proceed with the first proof, let us recall that a norm ‖ . ‖ on a Banach space
E is locally uniformly rotund if for all x in the unit sphere of E and for all sequences (xn)

in the unit sphere of E, lim
n
‖x + xn‖ = 2 implies lim

n
‖x − xn‖ = 0. Let us consider the

following assumptions:

(1) E has an equivalent norm whose dual norm is locally uniformly rotund in X∗.

(2) E has an equivalent Fréchet differentiable norm.

(3) E admits a C1 Lipschitz bump function.

It is well known that (1) implies (2) and (2) implies (3). It has been shown by M.
Talagrand [12] that (2) does not imply (1) and by R. Haydon [13], [14] that (3) does
not imply (2). However, assertions (1), (2) and (3) are equivalent for separable Banach
spaces. The following result can be seen as a variational principle with constraint.

Theorem 2.4. Let E be a Banach space and ∆ be a closed linear subspace of E.
Assume that there is an equivalent norm on E whose dual norm is locally uniformly
rotund. Let u : E −→ IR be uniformly continuous and assume that x0 ∈ ∆ satisfies

u(x0) = inf{u(x) ; x ∈ ∆}. Then for every ε > 0, there exists z ∈ E and p ∈ D−u(z)
such that:

(1) ‖z − x0‖ < ε
(2) |u(z)− u(x0)| < ε
(3) ‖R∆(p)‖ < ε where R∆ : E∗ −→ ∆∗ is the restriction mapping.

Let us observe that if u(x) = −d(x,∆), where d(x,∆) = inf{‖x − y‖ ; y ∈ ∆}, and if
∆ 6= E, then u is not differentiable at any point of ∆. Since u is concave and continuous,
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D+u(x) 6= ∅ for all x ∈ ∆. It follows from Fact 1.1 that D−u(x) = ∅ for all x ∈ ∆. So,
in general, the point z has to be chosen outside ∆.
We now deduce from Theorem 2.4 the following particular case of Theorem 2.1.

Proposition 2.5. Let X be a Banach space such that X has an equivalent norm whose
dual norm is locally uniformly rotund. Let u1, u2 be two real valued uniformly continuous

functions defined on X. Suppose that x0 ∈ X and p ∈ D−(u1 + u2)(x0) are given. Then,

for each ε > 0, there exists x1, x2 ∈ X, p1 ∈ D−u1(x1) and p2 ∈ D−u2(x2) such that:

(1) ‖x1 − x0‖ < ε and ‖x2 − x0‖ < ε
(2) |u1(x1)− u1(x0)| < ε and |u2(x2)− u2(x0)| < ε
(3) ‖p1 + p2 − p‖ < ε

Let us set E = X × X. If ‖ . ‖X is a norm on X such that the dual norm is locally

uniformly rotund, then ‖(x, y)‖2E = ‖x‖2X + ‖y‖2X defines an equivalent norm on E such

that the dual norm is locally uniformly rotund. The set ∆ := {(x, x) ; x ∈ X} is a closed

linear subspace of E. Since p ∈ D−(u1 + u2)(x0), there exists a C1 function ϕ : X −→ IR

such that u1 + u2 − ϕ has a local minimum at x0 and ϕ′(x0) = p.

Claim. We can assume that ϕ is globally Lipschitz and u1+u2−ϕ has a global minimum
at x0.

Proof of the claim: Since v := u1 +u2 is uniformly continuous on X, there exists K1 > 0
such that for all x ∈ X:

v(x) ≥ v(x0)− 1−K1‖x− x0‖
where ‖ . ‖ is an equivalent Fréchet differentiable norm on X. On the other hand, since

ϕ is C1, there exists ε > 0 such that ϕ is Lipschitz continuous of constant K2 on the ball
B(x0, ε) centered at x0 of radius ε. Taking if necessary a smaller ε, we can assume without
loss of generality that the restriction of u1 + u2 − ϕ to B(x0, ε) has a global minimum at

x0. Let b be a C1 Lipschitz bump function on X such that b(0) > 0. Let η : IR −→ IR be a

C1 Lipschitz increasing function on IR such that η(t) = 0 if t ≤ 0 and η(t) = 1 if t ≥ b(o)
2 .

The function a : X −→ IR defined by a(x) = η ◦ b(K3(x− x0)) is a C1 Lipschitz bump on
X such that 0 ≤ a(x) ≤ 1 for all x ∈ X, a(x) = 1 for all x in some neighbourhood of x0

and a(x) = 0 whenever ‖x − x0‖ ≥ ε if the constant K3 has been chosen large enough.
The function:

ψ(x) = a(x)(ϕ(x)− ϕ(x0)) + (1− a(x))(−1−K1‖x− x0‖)

is a C1 globally Lipschitz function on X and v − ψ has a global minimum at x0. Indeed:

(v − ψ)(x) = a(x)(v(x)− ϕ(x) + ϕ(x0)) + (1− a(x))(v(x) + 1 +K1‖x− x0‖)
≥ a(x)v(x0) + (1− a(x))v(x0) = v(x0) = (v − ψ)(x0)

We now conclude the proof of Proposition 2.5. The function u defined by u(x, y) =
u1(x) + u2(y)− ϕ(x) is uniformly continuous on E and

u(x0, x0) = u1(x0) + u2(x0)− ϕ(x0) = inf{u1(x) + u2(x)− ϕ(x) ; x ∈ X}
= inf{u(x, x) ; (x, x) ∈ ∆}
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Fix ε > 0. By continuity we may choose ε0 < ε such that ‖ϕ′(x) − ϕ′(x0)‖ < ε
2 ,

|u1(x) − u1(x0)| < ε and |u2(x) − u2(x0)| < ε whenever ‖x − x0‖ < ε/2. Applying

Theorem 2.4, there exist z = (x1, x2) ∈ E and q = (q1, q2) ∈ D−u(z) ⊂ X∗ × X∗ such
that:
(1) ‖(x1, x2)− (x0, x0)‖E < ε0

(2) ‖R∆(q)‖ < ε0

Condition (1) implies that ‖x1− x0‖X < ε and ‖x2− x0‖X < ε. Since q ∈ D−u(z), there

exists a C1 function w : X × X −→ IR, such that u− w attains its minimum at (x1, x2)

and w′(x1, x2) = (q1, q2). If we fix x = x1, we see that the function y ∈ X −→ u1(x1) +

u2(y)− ϕ(x1) − w(x1, y) attains its minimum at x2, so p2 := q2 ∈ D−u2(x2). Similarly,
if we fix y = x2, we see that the function x ∈ X −→ u1(x) + u2(x2) − ϕ(x) − w(x, x2)

attains its minimum at x1, so p1 := ϕ′(x1) + q1 ∈ D−u1(x1). Observe that for x ∈ X,
(q1, q2)(x, x) = (q1 + q2)(x), so the condition ‖R∆(p)‖ < ε0 means ‖q1 + q2‖ < ε0.
Consequently, using the fact that ‖x1 − x0‖ < ε0 one obtains:

‖p1 + p2 − p‖ = ‖q1 + q2 + ϕ′(x1)− ϕ′(x0)‖
≤ ‖q1 + q2‖+ ‖ϕ′(x1)− ϕ′(x0)‖
< ε0 +

ε

2
≤ ε

This completes the proof of Proposition 2.5.

Proof of Theorem 2.4. Fix an equivalent norm ‖ . ‖ on E such that the dual norm of ‖ . ‖
is locally uniformly rotund. For x ∈ E, define

d(x,∆) = inf { ‖x− y‖ ; y ∈ ∆ }
d(x,∆) is the quotient norm of the coset of x in E/∆. Its dual norm is the restriction of the

dual norm of ‖ . ‖ to ∆⊥, so it is locally uniformly rotund. Consequently, using Smulyan

test and the chain rule, the map ϕ : x ∈ E −→ (d2(x,∆) + 1)1/2 is Fréchet-differentiable.
Moreover, if h ∈ ∆ and t ∈ IR, then ϕ(x + th) = ϕ(x). Therefore:

〈ϕ′(x), h〉 = lim
t→0

ϕ(x+ th)− ϕ(x)

t
= 0

for h ∈ ∆, so the restriction of ϕ′(x) to ∆ is equal to zero. Let us fix ε > 0 and let c > 0 be

given by Theorem 1.3. By uniform continuity, choose α > 0 such that |u(x)−u(y)| ≤ cε2

whenever ‖x − y‖ < α. Consequently, if d(x,∆) < α, there exists y ∈ ∆ such that
‖x− y‖ < α and

u(x) ≥ u(y)− cε2 ≥ u(x0)− cε2 (2.1)

Using again the uniform continuity of u, there exists K > 0 such that for all x, y ∈ E
|u(x)− u(y)| ≤ 1 +K‖x− y‖

For x ∈ E, there exists y ∈ ∆ such that ‖x− y‖ ≤ 2d(x,∆). Consequently

u(x) ≥ u(y)− 1− 2Kd(x,∆) ≥ u(x0)− 1− 2Kd(x,∆) (2.2)
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We now choose λ > 1 such that (λ − 2K)α ≥ 2 and define w(x) = u(x) + λϕ(x). The
function w is the sum of two uniformly continuous functions and we claim that w is
bounded below. Indeed, if d(x,∆) < α, we deduce from (2.1):

w(x) ≥ u(x0)− cε2 + λϕ(x) ≥ u(x0)− cε2 + 1

and if d(x,∆) ≥ α, we deduce from (2.2) and from the choice of λ:

w(x) ≥ u(x0)− 1− 2Kd(x,∆) + λd(x,∆)

≥ u(x0)− 1 + (λ− 2K)α ≥ u(x0) + 1

Therefore
w(x0) = u(x0) + 1 ≤ inf

X
w + cε2

By the smooth variational principle, we can find a C1 Lipschitz bounded function g :
E −→ IR such that:

(a) ‖g‖∞ < ε and ‖g′‖ < ε,
(b) w + g attains its minimum at some point z ∈ E such that ‖z − x0‖ < ε.

We have p := −g′(z)− λϕ′(z) ∈ D−u(z) and for all h ∈ ∆,

|〈p, h〉| ≤ |〈g′(z), h〉|+ λ|〈ϕ′(z), h〉|
≤ ‖g′(z)‖ ‖h‖ ≤ ‖g′‖∞‖h‖

This shows that ‖R∆(p)‖ ≤ ‖g′‖∞ < ε. So we have checked conditions (1), (2) and (3)
of Theorem 2.4.

Proof of Theorem 2.1. Let X be a Banach space such that there exists a C1 Lipschitz
bump function on X. Let u1, u2 be two real valued functions defined on X such that
u1 is lower semicontinuous and u2 is locally uniformly continuous. Finally, fix ε > 0 and

p ∈ D−(u1 + u2)(x0).

Let ϕ : X −→ IR be a C1 function such that u1 + u2 − ϕ has a local minimum at x0 and
ϕ′(x0) = p. There exists r0 > 0 such that the restriction of u1+u2−ϕ to the ball B(x0, r0)
has a global minimum at x0. According to the smooth variational principle applied to

f = 0, there exists a C1 function g on X such that g attains its strong minimum on X.
By translation, we can assume that g attains its minimum at x0. Replacing ϕ by ϕ− g,
we can assume without loss of generality that the restriction of u1 + u2 − ϕ to B(x0, r0)

attains its strong minimum at x0 (ϕ′(x0) has not been changed).
Choose 0 < r < inf{ε, r0} such that u1 − ϕ is bounded below on the closed ball B(x0, r)
centered at x0 and of radius r, u2 is uniformly continuous on B(x0, r) and

|ϕ(y)− ϕ(x0)| < ε/3 ‖ϕ′(y)− ϕ′(x0)‖ < ε/3

u1(y)− u1(x0) > −ε and |u2(y)− u2(x0)| < ε

whenever ‖y − x0‖ < r

(2.3)

Since the restriction of u1 + u2 − ϕ to B(x0, r) has a strong minimum at x0 there exists
0 < r1 < r such that:

‖y−x0‖ < r/2 whenever (u1 +u2−ϕ)(y) ≤ (u1 +u2−ϕ)(x0)+r1 and ‖y−x0‖ ≤ r (2.4)
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Finally, using the fact that u2 is uniformly continuous on B(x0, r), there exists 0 < r2 <
r/2 such that:

|u2(y)− u2(z)| < r1/3 whenever y, z ∈ B(x0, r) and ‖y − z‖ < r2 (2.5)

By a construction of Leduc (see for instance [4] Proposition II-5-1), there exists a function
d : X −→ IR satisfying:

(a) d is Lipschitz continuous and C1 on X\{0}
(b) d(x) ≥ ‖x‖
For each n ≥ 1 we set:

wn(x, y) =

{
u1(x)− ϕ(x) + u2(y) + nd2(x− y) if ‖x− x0‖ ≤ r and ‖y − x0‖ ≤ r

+∞ otherwise

If b : X −→ IR is a C1 Lipschitz continuous bump on X, then b is bounded and B(x, y) =

b(x)b(y) defines a C1 Lipschitz continuous bump on X × X. The function wn is lower
semicontinuous and bounded below on X × X. According to the smooth variational

principle, there exists a C1 function g : X × X −→ IR such that ‖g‖∞ < r1/3, ‖g′‖∞ <
ε/3 and wn + g attains its minimum at some point (x1,n, x2,n) ∈ B(x0, r) × B(x0, r).

Consequently, for all z ∈ X (wn + g)(z, z) ≥ (wn + g)(x1,n, x2,n).
In particular, when z = x0:

n‖x1,n − x2,n‖2 ≤ nd2(x1,n − x2,n)

≤ u1(x0) + u2(x0)− ϕ(x0)− u1(x1,n)− u2(x2,n) + ϕ(x1,n) + 2r1/3

(2.6)
The right hand side of the above inequality is bounded above for (x1,n, x2,n) ∈ B(x0, r)×
B(x0, r), so if we choose n large enough, we have

‖x1,n − x2,n‖ < r2 (2.7)

So, by (2.5), |u2(x1,n)− u2(x2,n)| < r1/3 and, using again (2.6):

u1(x1,n) + u2(x1,n)− ϕ(x1,n) ≤ u1(x0) + u2(x0)− ϕ(x0) + r1

By (2.4), ‖x1,n−x0‖ < r/2, and using (2.7), ‖x2,n−x0‖ < r. Let us denote g′(x1,n, x2,n) :=

(q1, q2). By hypothesis, ‖q1‖ < ε and ‖q2‖ < ε. If we fix x = x1,n, we see that the function

y ∈ X −→ u1(x1,n)+u2(y)−ϕ(x1,n)+nd2(x1,n−y)+g(x1,n, y) has a local minimum at x2,n,

so p2 := 2nd(x1,n−x2,n)d′(x1,n−x2,n)−q2 ∈ D−u2(x2,n). Similarly, if we fix y = x2,n, we

see that the function x ∈ X −→ u1(x) +u2(x2,n)−ϕ(x) +nd2(x−x2,n) + g(x, x2,n) has a

local minimum at x1,n, so p1 := ϕ′(x1,n)−2nd(x1,n−x2,n)d′(x1,n−x2,n)−q1 ∈ D−u1(x1,n).
Consequently,

‖p1 + p2 − p‖ = ‖ − q1 − q2 + ϕ′(x1,n)− ϕ′(x0)‖
≤ ‖q1‖+ ‖q2‖+ ‖ϕ′(x1,n)− ϕ′(x0)‖ ≤ ε

Since r < ε, it follows from the above discussion that ‖x1,n−x0‖ < ε and ‖x2,n−x0‖ < ε.

Using (2.3), we also have |u2(x2,n)− u2(x0)| < ε and u1(x1,n)− u1(x0) > −ε. Finally, it
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follows from (2.6) that u1(x1,n)−u1(x0) ≤ u2(x0)−u2(x2,n)+ϕ(x1,n)−ϕ(x0)+2r1/3 ≤ 2ε,
and this completes the proof.

Remark 2.6. It is possible to prove a formula for the subdifferential of the sum for
weaker forms of differentiability. If β is a bornology on X and ϕ is a real valued function
on X, we say that ϕ is β-differentiable at x0 ∈ X with β-derivative ϕ′(x0) = p ∈ X∗ if

lim
t−→0

t−1
(
f(x0 + th)− f(x0)− 〈p, th〉

)
= 0

uniformly for h in the elements of β. We denote by τβ the topology on X∗ of uniform

convergence on the elements of β. When β is the class of all bounded subsets (resp. all
singletons) of X, the β-differentiability coincides with the usual Fréchet-differentiability
(resp. Gâteaux differentiability), and τβ coincides with the norm (resp. weak∗) topology

on X∗. Finally, if f is a real valued function on X, the β-subdifferential of f at some
point x0 ∈ X is the set:

D−β f(x0) = {ϕ′(x0);ϕ : X −→ IR is β-differentiable, f − ϕ has a local minimum at x0

and ϕ′ is norm to τβ continuous}
The following result is a straightforward adaptation of Theorem 2.1 and we omit the
proof.

Proposition 2.7. Let X be a Banach space such that there exists a Lipschitz continuous
and β-differentiable bump function b on X such that b′ is norm to τβ continuous. Let u1,

u2 be two real valued functions defined on X such that u1 is lower semicontinuous and u2

is uniformly continuous. Suppose that x0 ∈ X and p ∈ D−β (u1 + u2)(x0) are given. Then,

for each ε > 0 and each τβ neighbourhood V of p, there exist x1, x2 ∈ X, p1 ∈ D−β u1(x1)

and p2 ∈ D−β u2(x2) such that:

(1) ‖x1 − x0‖ < ε and ‖x2 − x0‖ < ε
(2) |u1(x1)− u1(x0)| < ε and |u2(x2)− u2(x0)| < ε
(3) p1 + p2 ∈ V

3. Application to Hamilton-Jacobi equations in infinite dimensions

Let X be a Banach space and H : X×X∗ −→ IR be uniformly continuous. In this section,
we are interested in the uniqueness of a bounded uniformly continuous viscosity solution
u : X −→ IR of the equation:

u+H(x,Du) = 0 (3.1)

Let us first recall some definitions:

Definition 3.1. A function u : X −→ IR is a viscosity subsolution of (3.1) if u is upper

semicontinuous and, for every x ∈ X and every p ∈ D+u(x):

u(x) +H(x, p) ≤ 0

The function u is a viscosity supersolution of (3.1) if u is lower semicontinuous and, for
every x ∈ X and every p ∈ D−u(x):

u(x) +H(x, p) ≥ 0



R. Deville, E. El Haddad / The viscosity subdifferential of the sum of two functions 305

Finally, u is a viscosity solution of (3.1) if u is both a viscosity subsolution and a viscosity
supersolution of (3.1).

Note that a viscosity solution of (3.1) is a continuous function on X. The notion of
viscosity solution of (3.1) has been introduced by M. G. Crandall and P.-L. Lions in [15]
(see also the recent paper of F. H. Clarke and Y. S. Ledyaev [16] for equivalent définitions).
Uniqueness of viscosity solutions of Hamilton-Jacobi equations was first proved in finite
dimensions in [15]. The theory of viscosity solutions of Hamilton-Jacobi equations in
infinite dimensions has been developed by M. G. Crandall and P.-L. Lions in a series of
papers [17]. Our purpose here is to show that the results of the former section yield a
very simple proof of the uniqueness of a bounded uniformly continuous viscosity solution
of (3.1).

Proposition 3.2. Let u, v be two real valued bounded uniformly continuous functions
defined on X. Assume that X admits a C1 Lipschitz bump function. If u is a viscosity
subsolution of (3.1) and if v is a viscosity supersolution of (3.1), then u ≤ v.

Actually, let us prove the following stronger result:

Proposition 3.3. Assume that X admits a C1 Lipschitz bump function. Let u, v be
two real valued bounded uniformly continuous functions defined on X, H1 and H2 be two
uniformly continuous functions from X × X∗ into IR. If u is a viscosity subsolution of
u+H1(x,Du) = 0 and v is a viscosity supersolution of u+H2(x,Du) = 0, then

inf
X

(v − u) ≥ inf
X×X∗

(H1 −H2)

Proof. Let us fix ε > 0. The function v−u is uniformly continuous and bounded below.
According to the smooth variational principle, there exists x0 ∈ X and p ∈ D−(v−u)(x0)

such that ‖p‖ < ε and (v − u)(x0) <inf
X

(v − u) + ε. Applying Theorem 2.1 with u1 = v

and u2 = −u, there exists x1, x2 ∈ X, p1 ∈ D+u(x1) and p2 ∈ D−v(x2) satisfying:

(1) ‖x1 − x0‖ < ε and ‖x2 − x0‖ < ε
(2) |u(x1)− u(x0)| < ε and |v(x2)− v(x0)| < ε
(3) ‖p2 − p1 − p‖ < ε

Since u and v are viscosity subsolution and supersolution of u + H1(x,Du) = 0 and
v+H2(x,Dv) = 0 respectively one has u(x1)+H1(x1, p1) ≤ 0 and v(x2)+H2(x2, p2) ≥ 0.
Consequently

inf
X

(v − u) > (v − u)(x0)− ε

> v(x2)− u(x1)− 3ε

≥ H1(x1, p1)−H2(x2, p2)− 3ε

Moreover, ‖x1−x2‖ ≤ ‖x1−x0‖+‖x0−x2‖ < 2ε and ‖p1−p2‖ ≤ ‖p2−p1−p‖+‖p‖ < 2ε.
Using the uniform continuity of H1 and H2 and sending ε to zero, we get:

inf
X

(v − u) ≥ inf
X×X∗

(H1 −H2)
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Remark 3.4. (a) A formula for the viscosity subdifferential of the sum of two ar-
bitrary lower semicontinuous functions on X is available only in finite dimensions. In
this setting, it is even possible to obtain a formula for the second order subdifferential
of the sum of two lower semicontinuous functions (This formula can be derived from the
results presented in [18]. We shall discuss it with applications in part II, see also [19]).
However, as noted by H. Ishii [20], it is possible to obtain comparison results between
lower semicontinuous viscosity supersolutions of (3.1) and upper semicontinuous viscosity
subsolutions of Hamilton-Jacobi equations in infinite dimensions.

(b) Our formula does not yield a proof of uniqueness in all cases. For instance, it is known
that the equation u + H(Du) = f , where H is uniformly continuous on bounded sets of
X∗ and f is bounded uniformly continuous on X, has a unique bounded viscosity solution
(see the book of Barles [21]), but this cannot be obtained by our formula.

We conclude this section by studying the problem of singlevaluedness of the Hamilton-
Jacobi operator. Let X be a Banach space and H : X∗ −→ IR be a uniformly continuous
function. We denote by UC(X) the space of uniformly continuous functions defined on
X. Consider the operator AH : UC(X) −→ UC(X) defined by:

AHu = { f ∈ UC(X) ; f = H(Du) in the viscosity sense}

The problem of the singlevaluedness of AH in finite dimensions has been studied by Evans

[22] and Frankowska [23]. We prove here:

Theorem 3.5. Let X be a Banach space which admits a C1 Lipschitz bump function.
Then, for every uniformly continuous function H defined on X∗, the associated Hamilton-
Jacobi operator AH is singlevalued.
On the other hand, if X is not an Asplund space, then for every uniformly continuous
function H on X∗, the associated Hamilton-Jacobi operator AH is not singlevalued.

Proof. Let us assume that X admits a C1 Lipschitz bump function, that H is uniformly
continuous on X∗ and that H(Du) = f and H(Du) = g in the viscosity sense, where f
and g are two continuous real vaued functions defined on X. We want to prove that f = g.
Let x ∈ X and ε > 0 be fixed. According to corollary II-2, there exists p− ∈ D−u(x1)

and p+ ∈ D+u(x2) such that:

(1) ‖x1 − x‖ < ε and ‖x2 − x‖ < ε

(2) ‖p− − p+‖ < ε

Since u is a viscosity subsolution of H(Du) = f , we have H(p+) ≤ f(x2) and since

u is a viscosity supersolution of H(Du) = g, we have H(p−) ≥ g(x1). Consequently,

g(x1) − f(x2) ≤ H(p−) −H(p+). Using (1), (2), the continuity of f and g at x and the
uniform continuity of H, we obtain, as ε goes to 0:

g(x)− f(x) ≤ 0

Similarly, g(x)− f(x) ≥ 0. This is true for all x ∈ X, so f = g.
Conversely, let us assume thatX is not an Asplund space. According to [7], Theorem I-5-3,
there exists an equivalent nowhere differentiable norm u : X −→ IR such that u(x) ≤ ‖x‖.
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The function u is Lipschitz continuous on X and D+u(x) = ∅ for all x ∈ X. Let us denote
by M = inf{|H(p)| ; ‖p‖ ≤ 1}. For every continuous function f on X such that f ≤ M ,
we have H(Du) = f in the viscosity sense: indeed, we trivially have H(p) ≤ f(x) for all

x ∈ X and all p ∈ D+u(x) (since there is nothing to prove!). Moreover, for all x ∈ X

and all p ∈ D−u(x) one has ‖p‖ ≤ 1, so H(p) ≥ M ≥ f(x). This proves that AH is not
singlevalued.

Remark 3.6. H. Frankowska has proved that AH is singlevalued when dimX = 1
and H is only assumed continuous, and Evans has proved that AH is singlevalued when
dimX is finite and H is uniformly continuous. We recall that the problem of the single-
valuedness of AH when dimX is finite and H is only supposed continuous is open. H.
Frankowska has observed that the problem of finding a continuous Hamiltonian H such
that the associated operator AH is not singlevalued is equivalent to the problem of finding

a uniformly continuous function on X such that the norm closures of
⋃{D−u(x) ; x ∈ X}

and of
⋃{D+u(x) ; x ∈ X} do not intersect. (So AH is singlevalued when dimX = 1 and

H is only assumed continuous follows from Remark 2.3 (1)).
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