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Conditions are given ensuring the stability of the classical duality scheme of Ekeland-Temam-Rockafellar
with respect to the slice topology (a generalization of the Mosco topology to the non reflexive setting).
Both primal and dual aspect are tackled allowing convergence of primal solutions along with the Lagrange
multipliers. An example of application is given to optimal control of distributed parameter systems.

1. Introduction and notations

There has been recently a renewed interest in convex duality, mainly due to its connections
with fully nonlinear optimal control problems, revealed by R. Vinter in [34]. On the other
hand several notions of variational convergence for convex functions have been introduced
and thoroughly studied by many authors ([1], [2], [3], [5], [6], [7], [9], [11], [12], [16], [17],
[18], [19], [25], [26], [27], [31], [32], [33]). These variational notions of convergence lead to
convergence of exact and approximate solutions of the associated minimization problems.
It is quite natural to investigate the behaviour of the primal and dual functionals attached
to a convex perturbation function when this perturbation function moves along some
topology. This was firstly done in [13] in the finite dimensional setting. The natural
topologies to be considered in this problems are those making continuous the conjugacy
operation. In this work we deal with general normed spaces and we focus our attention
on the slice topology introduced in [11], [12], [31], [32], [33] (see also [16], [17], [7], which
specializes to the Mosco topology ([25], [26]) in the nonreflexive setting. In section 2,
we study the primal stability of the duality scheme. To this end we prove a result on
the slice convergence of the sum of two convex functions which might be useful in other
fields of convex analysis. In section 3 we treat the case of the stability both of the primal
and the dual functionals. Our approach differs from [10] where primal- dual stability
was obtained by means of conditions bearing on the convex-concave Lagrangians. In
our framework the stability is studied in terms of perturbations of the convex function
which generates the Lagrangian. The assumptions used to prove our primal-dual stability
result, namely, the equi-continuity at 0 of the value functions and the equi-coerciveness
of primal functionals, are quite natural. Our result differs also from the one given in
[15] and also from [30] which rely, in the finite dimensional setting, on a stronger notion
of convergence for convex functions. An application is given in section 4 to a singular
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perturbation problem in optimal control of distributed parameter systems.

Let us give some definitions. Let (X, ‖.‖) be a normed vector space and let f : X −→ IR
be a function. We denote by

epi f = {(x, t) ∈ X × IR : f(x) ≤ t}

its epigraph and by

epi′ f = {(x, t) ∈ X × IR : f(x) < t}
its strict epigraph. We also denote by

dom(f) = {x ∈ X : f(x) < +∞}

its effective domain and by

[f ≤ c] = {x ∈ X : f(x) ≤ c}

its sublevel sets. We say that f is proper whenever dom f 6= ∅ and −∞ 6∈ f(X). We

denote by f the lower semi continuous regularization of f characterised by

epi f = epi f

where epi f stands for the closure of epi f . We denote by Conv(X) the set of proper
convex functions defined on X with values in IR ∪ {+∞} and by Γ0(X) the set of those
f ∈ Conv(X) which are lower semicontinuous on X. Given f ∈ Conv(X) (resp. g ∈
Conv(X∗)), its conjugate is defined on X∗ (resp. on X) by

f∗(y) = sup{〈x, y〉 − f(x) : x ∈ X} for all y ∈ X∗,

and
g∗(x) = sup{〈x, y〉 − g(y) : y ∈ X∗} for all x ∈ X.

The indicator function of a subset A ⊂ X is the function iA defined by iA(x) = 0 if x ∈ A
and iA(x) = +∞ if x 6∈A. We denote by σC = i∗C the support function of a convex subset

C of X, and by C◦ ⊂ X∗ its polar set defined by

C◦ = {y ∈ X∗ : σC(y) ≤ 1}.

The gauge function of a subset C ⊂ X is the function j : X −→ IR+ ∪ {+∞} defined for
all x ∈ X by

j(x) = inf{t > 0 : x ∈ tC}
with the convention inf ∅ = +∞. It is known (see [24], p. 34) that

σC = jC◦ . (1)

whenever C ⊂ X is convex and contains 0.

Let us now review the definitions we shall need about topologies on hyperspaces. We
denote by F(X) the set of nonempty closed subsets of X and by C(X) the set of nonempty
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closed convex subsets of X. The lower Vietoris topology τ−V is the topology on F(X) whose

a subbase is constituted by the sets

V − = {C ∈ F(X) : C ∩ V 6= ∅}

where V ranges over the family of norm open subsets of X. A sequence (Cn) ⊂ F(X)

converges to C ∈ F(X) with respect to τ−V if and only if

C ⊂ lim inf
n→∞

Cn

where, given a sequence (Cn)n∈IN of subsets of X, one denotes by lim infn→∞Cn the set
of x ∈ X such that there exists a sequence (xn) which converges to x with xn ∈ Cn
eventually.

Let (fn)n∈IN be a sequence of functions in IR
X

, we introduce its epigraphical upper limit
f = e- lim supn→∞ fn (see [1]) defined by

epi f = lim inf
n→∞

(epi fn). (2)

In [16] and [17] (see also [6], [9], [11]) was introduced the Joly topology τJ in Γ0(X) as the
weakest topology making continuous the mappings

E : Γ0(X) −→ (C(X × IR), τ−V )

and
E∗ : Γ0(X) −→ (C∗(X∗ × IR), τ−V ),

where C∗(X∗ × IR) is the set of w∗-closed convex subsets of X∗ × IR, defined for all
f ∈ Γ0(X) by

E(f) = epi f and E∗(f) = (E ◦ L)(f) = epi f ∗.

Analogously, the dual Joly topology τ ∗J is defined on Γ0(X∗) by exchanging the roles

played by X and X∗ in the definition of τJ . From the very definitions of these topologies,
it follows that the conjugacy operation is continuous from (Γ0(X), τJ ) into (Γ0(X∗), τ∗J )

and from (Γ0(X∗), τ∗J) into (Γ0(X), τJ).

A sequence (fn)n∈IN converges to f with respect to τJ in Γ0(X) if and only if

epi f ⊂ lim inf
n→∞

(epi fn) and epi f∗ ⊂ lim inf
n→∞

(epi f∗n), (3)

which is equivalent using (2) to

e- lim sup
n→∞

fn ≤ f and e- lim sup
n→∞

f∗n ≤ f∗.

If the case when X is a general normed space, this topology has been characterized only

recently (see [11], [31]). Following G. Beer in [11] one defines the topology τ+
S on C(X)

as the topology whose a subbase is constituted by the family of sets

(Bc)++ = {C ∈ C(X) : D(B,C) > 0}



312 D. Azé, A. Rahmouni / On primal-dual stability in convex optimization

where B ranges over the family of closed bounded convex sets of X and

D(B,C) = inf{‖b− c‖ : (b, c) ∈ B × C}.

The slice topology τS is defined by

τS = τ−S ∨ τ+
S (4)

where τ−S = τ−V with a similar definition for τ ∗S where B is w∗-compact convex. A net

(Ci)i∈I converges in (C(X), τS) if and only if for all B ⊂ X closed bounded convex we
have

D(B,C) ≤ lim inf
I

D(B,Ci) and lim sup
I

D(B,Ci) ≤ D(B,C). (5)

In [11] it has been proved that

τJ = τS and τ∗J = τ∗S. (6)

The convergence with respect to the slice topology generalizes to non reflexive spaces the
convergence in the sense of Mosco (see [25], [26], [1]). The Mosco-Beer topology τM is the
topology defined on C(X) by

τM = τ−V ∨ τ+
M

where τ+
M is the topology on C(X) whose a basis is constituted by the sets

Kc+ = {C ∈ C(X) : K ∩ C = ∅}

with K weakly compact. The dual Mosco-Beer topology τ ∗M is defined on the set C∗(X∗)
of w∗-closed convex subsets of X∗ by

τ∗M = τ−V ∨ τ∗+M

where τ∗+M is the topology on C∗(X∗) whose a basis is constituted by the sets

Kc+ = {C ∈ C∗(X∗) : K ∩ C = ∅}

with K w∗-compact.

For the convenience of the reader we give the following well known lemma.

Lemma 1.1. Let X be a normed vector space and let (fn)n∈IN, f ∈ IR
X

. Then
e- lim supn→∞ fn ≤ f if and only if

for all x ∈ X there exists (xn) −→ x such that f(x) ≥ lim sup
n→∞

fn(xn).

Proof. Suppose that f ≥ e- lim supn→∞ fn and let x ∈ X. We can suppose that
f(x) < +∞. Then given λ ∈ IR with λ > f(x), there exists a sequence (xn, λn) ∈ epi fn
such that (xn, λn) converges to (x, λ). Thus we have

lim sup
n→∞

fn(xn) ≤ lim sup
n→∞

λn = λ.
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Letting λ decrease to f(x) and using a diagonalization procedure, one gets a sequence
(xn)n∈IN which converges to x and which satisfies f(x) ≥ lim supn→∞ fn(xn). Conversely,
let (x, λ) ∈ epi f and let (xn) be a sequence converging to x such that

t := lim sup
n→∞

fn(xn) ≤ f(x).

If t = −∞ then fn(xn) < λ eventually, thus (xn, λ) ∈ epi fn eventually and the sequence
((xn, λ)) converges to (x, λ). If t 6= −∞, let us set

λn = λ− t+ max(t, fn(xn)),

we get (xn, λn) ∈ epi fn and the sequence ((xn, λn)) converges to (x, λ), hence the result.

We shall use the following characterization of the convergence of sequence in Γ0(X) with
respect to the slice topology (see [3]).

Proposition 1.2. Let X be a normed vector space and let (fn)n∈IN, f ∈ Γ0(X). Then
f = τS − limn→∞ fn if and only if





for all x ∈ X, there exists (xn) −→ x : f(x) ≥ lim sup
n→∞

fn(xn)

for all y ∈ X∗, there exists (yn) −→ y : f∗(y) ≥ lim sup
n→∞

f∗n(yn).

Proof. This is immediate from Lemma 1.1, from (3) and from the fact that τJ = τS.

2. Primal stability

Let us begin by a quick review on the main features in convex duality (see [14], [20] and
[29]). Let X, U be normed vector spaces whose topological dual spaces are denoted by
V = X∗ and Y = U∗. Given F ∈ Γ0(X × U), the primal problem associated to the
perturbation function F consists in

inf
x∈X

F (x, 0) = inf
x∈X

f(x).

We shall always assume that the function f(x) = F (x, 0) is proper. We set for all
u ∈ U , ϕ(u) = infx∈X F (x, u). The value function ϕ is convex but not necessarily lower
semicontinuous. Observe that ϕ∗(y) = F ∗(0, y). The associated dual problem consists in

inf
y∈Y

F ∗(0, y).

It is also useful to introduce for all v ∈ V the value function ψ(v) = infy∈Y F ∗(v, y). One

has for all x ∈ X, ψ∗(x) = F (x, 0). The convex-concave Lagrangian associated to the

perturbation function is the function L : X × Y −→ IR defined for all (x, y) ∈ X × Y by

L(x, y) = inf
w∈U

(F (x, w)− 〈w, y〉).
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It is important to observe that

F ∗(0, y) = sup
x∈X

(−L(x, y)). (7)

A pair (x̄, ȳ) ∈ X × Y solves

F (x̄, 0) = inf
x∈X

F (x, 0) and F ∗(0, ȳ) = inf
y∈Y

F ∗(0, y) with F (x̄, 0, ) = −F ∗(0, ȳ)

if and only if (x̄, ȳ) is a saddle-point of the Lagrangian that is

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) for all (x, y) ∈ X × Y.

Moreover, assuming that L(x̄, ȳ) is finite, this is equivalent to

L′x((x̄, ȳ); x− x̄) ≥ 0 and L′y((x̄, ȳ); y − ȳ) ≤ 0 (8)

for all (x, y) ∈ X × Y where L(x̄, y) and L(x, ȳ) are finite with

L′x((x̄, ȳ); x− x̄) = lim
t↓0

L(x̄ + t(x− x̄), ȳ)− L(x̄, ȳ)

t

and

L′y((x̄, ȳ); y − ȳ) = lim
t↓0

L(x̄, ȳ + t(y − ȳ))− L(x̄, ȳ)

t
.

We shall use the following well-known result.

Lemma 2.1. Let X, U be normed vector spaces, let Fn : X ×U −→ IR∪ {+∞} and let
F : X × U −→ IR ∪ {+∞} be such that epiF ⊂ lim infn→∞(epiFn). Then

epiϕ ⊂ lim inf
n→∞

(epiϕn).

Proof. One has epi′ ϕ = projU×IR( epi′ F ). Let (u, λ) ∈ epi′ ϕ, there exists x ∈ X such

that (x, u, λ) ∈ epi′ F . Thus there exists a sequence (xn, un, λn) such that (xn, un, λn) ∈
epi,Fn and ((xn, un, λn)) converges to (x, u, λ). As (unλn) ∈ epiϕn and ((un, λn)) con-

verges to (u, λ) we derive that epi′ ϕ ⊂ lim infn→∞ ( epiϕn), thus

epiϕ ⊂ epi′ ϕ ⊂ lim inf
n→∞

(epiϕn).

The following lemma in the spirit of [5] plays a prominent role in the sequel.

Lemma 2.2. Let X be a normed vector space and (fn)n∈IN, (gn)n∈IN ∈ Conv(X).
Assume that for some real numbers s > 0, r ≥ 0, c ∈ IR

sBX ⊂
⋂

n∈IN

(
[fn ≤ c] ∩ rBX − [gn ≤ c] ∩ rBX

)
. (9)
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Then if f , g ∈ Conv(X) are such that e- lim supn→∞ fn ≤ f and e- lim supn→∞ gn ≤ g,
one has

e- lim sup
n→∞

(fn + gn) ≤ f + g.

Proof. Let x ∈ dom(f + g). There exist sequences (x1n) and (x2n) converging to x such
that lim supn→∞ fn(x1n) ≤ f(x) and lim supn→∞ gn(x2n) ≤ g(x). Let us set tn = ‖x1n −
x‖+‖x2n−x‖. From (9) there exist sequences (z1n) and (z2n) with z1n ∈ [fn ≤ c]∩ rBX ,
z2n ∈ [gn ≤ c] ∩ rBX and

s(x2n − x1n) = tn(z1n − z2n).

Let us set xn = (tn + s)−1(tnz1n + sx1n) = (tn + s)−1(tnz2n + sx2n). One has

‖xn − x‖ ≤ (tn + s)−1(tn‖z1n − x‖+ s‖x1n − x‖)

≤ s−1tn(r + ‖x‖) + ‖x1n − x‖,

thus (xn) converges to x. Using the fact that

fn(xn) ≤ (tn + s)−1tnfn(z1n) + (tn + s)−1sfn(x1n)

≤ s−1tnc+ fn(x1n)

and
gn(xn) ≤ (tn + s)−1tngn(z2n) + (tn + s)−1sgn(x2n)

≤ s−1tnc+ gn(x2n),

we get

lim supn→∞(fn + gn)(xn) ≤ lim supn→∞ fn(x1n) + lim supn→∞ gn(x2n)

≤ (f + g)(x)

which ends the proof of the lemma.

Applying the preceding lemma to the indicator functions of Cn and C, we get the following
corollary.

Corollary 2.3. Let X be a normed vector space, let (Cn)n∈IN, C, (Dn)n∈IN, D be convex
subsets such that

C ⊂ lim inf
n→∞

Cn and D ⊂ lim inf
n→∞

Dn.

Assume that there exists s > 0, r ≥ 0, c ∈ IR such that

sBX ⊂
⋂

n∈IN

(
Cn ∩ rBX −Dn ∩ rBX

)
. (10)

Then
C ∩D ⊂ lim inf

n→∞
(Cn ∩Dn).
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We shall also need the following results of [4].

Theorem 2.4. Let (X, ‖.‖) be a normed vector space and let f , g ∈ Conv(X). Assume
that for some real numbers s > 0, r ≥ 0 , c ∈ IR

sBX ⊂ [f ≤ c] ∩ rBX − [g ≤ c] ∩ rBX .

Then for all y ∈ X∗ one has

(f + g)∗(y) = min
y′∈X∗

f∗(y′) + g∗(y − y′).

Lemma 2.5. Let X, U be normed vector spaces, let (Fn)n∈IN, F ∈ Γ0(X × U) be such
that F = τS- limn→∞ Fn. Assume that there exist s > 0, r ≥ 0, c ∈ IR such that

sBX×U ⊂
⋂

n∈IN

(
X × {0} ∩ rBX×U − [Fn ≤ c] ∩ rBX×U

)
. (11)

Then
F (., 0) = τS- lim

n→∞
Fn(., 0).

Proof. From assumption (11) and Lemma 2.1, we get

epi (F + iX×{0}) ⊂ lim inf
n→∞

epi (Fn + iX×{0})

which readily turns to

epi (F (., 0)) ⊂ lim inf
n→∞

(
epi (Fn(., 0))

)
. (12)

On the other hand, we derive from Theorem 2.4 that, for all v ∈ V

(Fn + iX×{0})
∗(v, 0) = min

(v′,y′)∈V×Y
F ∗n(v − v′,−y′) + i{0}×Y (v′, y′) = ψn(v).

It follows that ψn ∈ Γ0(V ). As ψ∗n = fn = Fn(., 0), we get (Fn(., 0))∗ = ψn. Relying on
the slice convergence of the sequence (Fn) to F and using Lemma 2.1, we derive that

epi (F (., 0))∗ ⊂ lim inf
n→∞

epi((Fn(., 0))∗ (13)

which combined with (12) yields the announced result.

One can apply Lemma 2.5 to the particular case of Fenchel duality. Let us consider a
primal problem of the type

inf
x∈X

(
f(x) + g(A(x))

)

where f and g belong respectively to Γ0(X) and Γ0(U) and where A : X −→ U is a linear
continuous operator. The associated perturbation function is

F (x, u) = f(x) + g(A(x) + u).
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Its conjugate is given by

F ∗(v, y) = f ∗(−A∗(v) + y) + g∗(v).

Theorem 2.6. Let X, U be normed vector spaces, let A ∈ L(X,U) and let (fn)n∈IN,
f ∈ Γ0(X), (gn)n∈IN, g ∈ Γ0(U) be such that

τS- lim
n→∞

fn = f and τS- lim
n→∞

gn = g.

Assume there exist s > 0, r ≥ 0, c ∈ IR such that

sBU ⊂
⋂

n∈IN

(
[gn ≤ c] ∩ rBU − A([fn ≤ c] ∩ rBX)

)
. (14)

Then
τS- lim

n→∞
(fn + (gn ◦ A)) = f + (g ◦ A).

Proof. Let us set

F (x, u) = f(x) + g(A(x) + u) and Fn(x, u) = fn(x) + gn(A(x) + u).

We claim that
τS- lim

n→∞
Fn = F.

Indeed, let (x, u) ∈ X × U . From the slice convergence of (fn) and (gn) to f and g there
exist sequences (xn) and (yn) converging respectively to x and A(x) + u such that

lim sup
n→∞

fn(xn) ≤ f(x) and lim sup
n→∞

gn(yn) ≤ g(A(x) + u).

Setting un = yn − Axn, we observe that un converges to u and we get

lim supn→∞ Fn(xn, un) ≤ lim supn→∞ fn(xn) + lim supn→∞ gn(A(xn) + un)

≤ f(x) + g(Ax+ u)

= F (x, u).

It follows that e- lim supn→∞ Fn ≤ F . On the other hand as

F ∗(v, y) = f ∗(−A∗(y) + v) + g∗(y) and F ∗n(v, y) = f ∗n(−A∗(y) + v) + g∗n(y).

we obtain by the same reasoning as above that

e- lim sup
n→∞

F ∗n ≤ F ∗.

Now let u ∈ sBU and ξ ∈ sBX . For all n ∈ IN, there exist un ∈ [gn ≤ c] ∩ rBU and
xn ∈ [fn ≤ c]∩ rBX with u = un−A(xn). Thus we get (ξ, u) = (xn, u)− (xn− ξ, 0) with

(xn, u) ∈ [Fn ≤ 2c] ∩ (r + s)BX×U and (xn − ξ, 0) ∈ (X × {0}) ∩ (r + s)BX×U
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yielding

sBX×U ⊂
⋂

n∈IN

(
[Fn ≤ 2c] ∩ (r + s)BX×U − (X × {0}) ∩ (r + s)BX×U

)
.

Hence we can apply Lemma 2.5 which ends the proof of the theorem.

Corollary 2.7. Let X be a normed vector space, let (fn)n∈IN, f and let (gn)n∈IN,
g ∈ Γ0(X) be such that

τS- lim
n→∞

fn = f and τS- lim
n→∞

gn = g. (15)

Assume that for some real numbers s > 0, r ≥ 0, c ∈ IR

sBX ⊂
⋂

n∈IN

(
[fn ≤ c] ∩ rBX − [gn ≤ c] ∩ rBX

)
. (16)

Then
τS- lim

n→∞
(fn + gn) = f + g.

Proof. Apply Theorem 2.6 with U = X and A = IX .

One readily deduces from the above theorem a result on the continuity of the intersection
of convex sets with respect to the slice topology.

Corollary 2.8. Let X be a normed vector space, let (Cn)n∈IN, (Dn)n∈IN, C, D ∈ C(X)
such that

τS- lim
n→∞

Cn = C and τS- lim
n→∞

Dn = D.

Assume that for some real numbers s > 0, c ∈ IR

sBX ⊂
⋂

n∈IN

(
Cn ∩ rBX −Dn ∩ rBX

)
. (17)

Then
τS- lim

n→∞
(Cn ∩Dn) = C ∩D.

Remark 2.9. Corollary 2.7 strictly extends Theorem 3.3 of [18] in which the continuity
of the sum was obtained under the following assumption:

there exists s > 0, λ ∈ IR, x0 ∈ dom g such that sup
(n,x)∈IN×B(x0,s)

fn(x) ≤ λ. (18)

Assume that this assumption is satisfied. From g = τS- limn→∞ gn and Proposition 1.2 it
follows the existence of (un)→ 0 such that

g(x0) ≥ lim sup
n→∞

gn(x0 + un).
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Thus there exists a constant µ ∈ IR such that for all n sufficiently large

gn(x0 + un) ≤ µ and un ∈
s

2
BX .

Let u ∈ s
2BX . Let us set vn = u+ un. One has vn ∈ sBX , u = (x0 + vn)− (x0 + un) and

fn(x0n + vn) ≤ λ, gn(x0n + un) ≤ µ. Thus there exists r ≥ 0 and c ∈ IR such that

sBX ⊂
⋂

n∈IN

(
[fn ≤ c] ∩ rBX − [gn ≤ c] ∩ rBX

)

which is assumption (16) of Corollary 2.7. On the other hand, given a closed hyperplane
H ⊂ X and a vector u 6∈ H and setting fn ≡ iH , gn ≡ iIRu, we observe that (16) is in
force but (18) fails to be satisfied.

Remark 2.10. Theorem 2.6 and Corollary 2.7 also extend to the infinite dimensional
setting Theorem 5 and 8 of [23]. Indeed, taking into account the existence of a basis

of neighborhhods of the origin in IRd constituted by polyhedral sets, one easily checks
as in [5], Theorem 1.1’ that assumption (16) holds whenever (15) is in force and 0 ∈
int ( dom f − dom g).

Example 2.11. Let X be a reflexive Banach space and let (fn) and (gn) be two
sequences in Γ0(X) converging respectively to f and g in the sense of Mosco. Then the

sequence (fn + gn) converges to f + g for τ+
M without any condition. This result fails

if we replace the Mosco topology by the slice topology. This is shown by the following
slight modification, brought to our attention by G. Beer in a private communication, of
an example given in [11]. Let X be a non reflexive space and let y ∈ X∗ which is not norm
achieving on the unit ball of X. Pick up x0 ∈ X satisfying 〈x0, y〉 = 1 and ‖x0‖ ≥ 1,

and let H = y−1(1). Let g ∈ Γ0(X) defined by g(x) = d(x,H) + iB(x0,1)(x) and let

f ∈ Γ0(X) defined by epi f =
⋃
t≥0 t ( epi g) ∪ ({0} × IR) (observe that this set is closed

from the assuptions made). Setting α = infx∈X f(x) = 0 and C = [f ≤ α] one has C 6= ∅
and the family of closed convex Cε = [f ≤ α + ε] is such that C 6= τ+

S - limε↓0 Cε. Let

us set A = epi f and Dε = X × {α + ε}. One has τS- limε↓0 Dε = X × {α}. Moreover

A∩Dε = [f ≤ α+ε]×{α+ε} does not converge for τ+
S . One observes that in this example

the assumption (17) is not satisfied since Dε−A ⊂ X × [−ε,+∞] thus sBX×IR ⊂ Dε−A
imply s ≤ ε. It follows that Dε − A cannot contain a fixed ball sBX for all ε > 0.

3. Primal-dual stability

The following result is a quantitative version of [24], Proposition 8.d.

Lemma 3.1. Let X be a normed vector space and let f ∈ Γ0(X) be such that there exist
λ > infx∈X f(x), ρ ≥ 0 satisfying

[f ≤ λ] ⊂ ρBX . (19)

Then for all λ0 ∈] infx∈X f(x), λ[ and for all v ∈ λ−λ0
2ρ BX∗ one has

f∗(v) ≤ f∗(0) +
3

2
(λ− λ0).
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As f ∈ Γ0(X), it is bounded from below on the bounded subset [f ≤ λ] and then bounded
from below on the whole X. Let us set β = infx∈X f = −f∗(0) ∈ IR. Let λ0 ∈ IR be such
that infx∈X f(x) < λ0 < λ. Define h = f ∗ − 〈x0, .〉 + λ0 where x0 ∈ [f < λ0]. Observe
that h = g∗ with g(x) = f(x+ x0)− λ0. One has

inf
x∈X

g = β − λ0 < 0.

The set C = [g ≤ λ− λ0] is a closed convex subset containing 0 and

C ⊂ [f ≤ λ]− x0 ⊂ 2ρBX .

Let us introduce the gauge function of C

j(x) = inf{t > 0 : x ∈ tC},

and let ∆ = IR+z be a half-line through the origin. Assuming that j(z) = +∞ we get
g ≡ +∞ on ∆ \ {0}. Indeed if x ∈ ∆ \ {0} satisfies g(x) < +∞ then tx ∈ C for all

t > 0 small enough since g(tx) ≤ tg(x) for all t ∈ [0, 1] yielding z ∈ IR∗+C, a contradiction

with the fact that j(z) = +∞. Assuming that j is finite on ∆, we obtain that the
function g − (λ − λ0)j is convex on ∆ thus g ≤ (λ − λ0)j on C ∩ ∆. Observing that
g ≥ (λ− λ0)j on (X \ C) ∩∆, we obtain in both cases that g ≤ (λ− λ0)j on C ∩∆ and
g ≥ (λ− λ0)j on (X \ C) ∩∆. It follows that

(λ− λ0)j + β − λ ≤ g on ∆.

Indeed assuming that x ∈ (X \ C) ∩ ∆ we get g(x) ≥ (λ − λ0)j(x) and β − λ < 0, and
assuming x ∈ C ∩∆ one has

(λ− λ0)j(x) + β − λ ≤ λ− λ0 + β − λ ≤ β − λ0 ≤ g(x).

Setting W = (λ − λ0)C◦, we get σW = (λ − λ0)σC◦ = (λ − λ0)j. Taking the conjugate

we get h ≤ iW + λ− β and 1
2ρB ⊂ C◦. It follows that

f∗ ≤ λ− λ0 + f∗(0) + 〈x0, .〉 on
λ− λ0

2ρ
B

which ends the proof of the lemma taking into account the fact that x0 ∈ ρBX .

In the sequel, given a function F ∈ Conv(X × U) we shall use the following assumptions

sBX×U ⊂ X × {0} ∩ rBX×U − [F ≤ c] ∩ rBX×U (20)

for some s > 0, r ≥ 0, c ∈ IR and

s∗BV×Y ⊂ {0} × Y ∩ r∗BV×Y − [F ∗ ≤ c∗] ∩ r∗BV×Y (21)

for some s∗ > 0, r∗ ≥ 0, c∗ ∈ IR. It is easy to check that (20) is equivalent to the existence

of s′ > 0, r′ ≥ 0, c′ ∈ IR such that

for all u ∈ s′BU , there exists x ∈ r′BX such that F (x, u) ≤ c′, (22)
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and (21) is equivalent to the existence of s∗′ > 0, r∗′ ≥ 0, c∗′ ∈ IR such that

for all v ∈ s∗′BV , there exists y ∈ r∗′BY such that F ∗(v, y) ≤ c∗′. (23)

Here stands our main result.

Theorem 3.2. Let X, U be normed vector spaces, let (Fn)n∈IN, F ∈ Γ0(X×U) be such
that F = τS- limn→∞ Fn. Assume that there exist s > 0, r ≥ 0, c ∈ IR with

sBX×U ⊂
⋂

n∈IN

(
X × {0} ∩ rBX×U − [Fn ≤ c] ∩ rBX×U

)
. (24)

Assume also that there exist λ > lim supn→∞ ( infx∈X fn(x)) and ρ ≥ 0 such that

⋃

n∈IN

[fn ≤ λ] ⊂ ρBX (25)

where fn = Fn(., 0). Then

F (., 0) = τS- lim
n→∞

Fn(., 0), (26)

F ∗(0, .) = τ∗S- lim
n→∞

F ∗n(0, .), (27)

ϕ̄ = τS- lim
n→∞

ϕ̄n. (28)

Proof. It is clear that (26) follows from Lemma 2.5. From Assumption (24), we can
apply Theorem 2.4 yielding

(Fn + iX×{0})
∗(v, 0) = min

(v′,y′)∈V×Y
F ∗n(v − v′,−y′) + i{0}×Y (v′, y′) = ψn(v).

It follows that ψn ∈ Γ0(V ) which implies that ψn = f∗n. From assumption (25) we can
apply Lemma 3.1. Hence for all λ > λ0 > lim supn→∞ ( infx∈X fn(x)) we get

ψn(v) ≤ ψn(0) +
3

2
(λ− λ0) (29)

for all v ∈ s∗BV with s∗ = λ−λ0
2ρ . Let f = F (., 0) and let v ∈ dom f ∗. Using Lemma

2.5 and Proposition 1.2, there exists a sequence (vn) in V converging to v such that
f∗(v) ≥ lim supn→∞ f

∗
n(vn). For all x ∈ X, one gets fn(x) ≥ 〈x, vn〉−f∗n(vn) which shows

the existence of m ∈ IR such that for all n large enough one has − infx∈X fn(x) < m.
Returning to (29) we have, for all n large enough and for all v ∈ s∗BV

inf
y∈Y

F ∗n(v, y) = ψn(v) < λ∗

where λ∗ = m + 3
2(λ − λ0). We claim that there exists r∗ ≥ 0 such that for all n

large enough, for all v ∈ s∗BV there exists y ∈ r∗BY with F ∗n(v, y) < λ∗. Indeed given

v ∈ s∗BV , let us introduce for all n ∈ IN the function φ̃n defined for all u ∈ U by

φ̃n(u) = inf
x∈X

(Fn(x, u)− 〈x, v〉).
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For all y ∈ Y we have φ̃∗n(y) = F ∗n(v, y). From (24) there exists for all u ∈ sBU an element

x ∈ rBU such that Fn(x, u) ≤ λ which entails φ̃n(u) ≤ λ + rs∗ on sBX . Thus we get

φ̃n ≤ λ+ rs∗ + isBU , which by duality implies F ∗n(v, y) ≥ s‖y‖ − λ− rs∗. Let v ∈ s∗BV ,

there exists y ∈ Y with F ∗n(v, y) < λ∗ hence ‖y‖ ≤ r∗ with r∗ = λ+λ∗+rs∗
s . Thus for all n

large enough

s∗BV×Y ⊂ {0} × Y ∩ (r∗ + s∗)BV×Y − [F ∗n ≤ λ∗] ∩ (r∗ + s∗)BV×Y .

From Lemma 2.2 we derive

epi (F ∗ + i{0}×Y ) ⊂ lim inf
n→∞

(
epi (F ∗n + i{0}×Y )

)
,

which easily leads to
epiF ∗(0, .) ⊂ lim inf

n→∞
( epiF ∗n(0, .)).

On the other hand Lemma 1.1 ensures that epi ϕ̄ ⊂ lim infn→∞ epi ϕ̄n. Hence we get

F ∗(0, .) = τS- lim
n→∞

F ∗n(0, .) and ϕ̄ = τS- lim
n→∞

ϕ̄n

and the proof of the theorem is complete.

In the particular case of the Fenchel duality, we get the following corollary.

Corollary 3.3. Let X, U be normed vector spaces, let A ∈ L(X,U) and let (fn)n∈IN,
f ∈ Γ0(X), (gn)n∈IN, g ∈ Γ0(U) be such that

τS- lim
n→∞

fn = f and τS- lim
n→∞

gn = g.

Assume that there exist s > 0, r ≥ 0, c ∈ IR such that

sBU ⊂
⋂

n∈IN

(
[gn ≤ c] ∩ rBU − A([fn ≤ c] ∩ rBX)

)
. (30)

Assume also that there exist λ > lim supn→∞
(

infx∈X(fn(x)+gn(A(x)))
)

and ρ ≥ 0 such

that ⋃

n∈IN

(
[fn + (gn ◦ A) ≤ λ]

)
⊂ ρBX .

Then
τS- lim

n→∞
(fn + (gn ◦ A)) = f + (g ◦ A)

and
τ∗S- lim

n→∞
(f∗n ◦ (−A∗) + g∗n) = f∗ ◦ (−A∗) + g∗.

Proof. Setting F (x, u) = f(x) + g(A(x) + u) and Fn(x, u) = fn(x) + gn(A(x) + u), we
have (see the proof of Theorem 2.6)

τS- lim
n→∞

Fn = F.
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Moreover one has

F ∗(v, y) = f ∗(−A∗(y) + v) + g∗(y) and F ∗n(v, y) = f ∗n(−A∗(y) + v) + g∗n(y),

thus the corollary follows from Theorem 3.2.

4. Example of application

In this section, we apply the results of the preceding one to the convergence of the adjoint
space in some singularly perturbed optimal control problem described in [1], p. 336. Let

Ω ⊂ IRd be a bounded open subset with a smooth boundary Γ such that Ω is locally on

the same side of Γ. Let us set Z = L2(Γ), V = H1(Ω), H = L2(Ω), let ε > 0 and let
aε(., .) be the continuous and elliptic bilinear form on V defined by

aε(y1, y2) = ε

∫

Ω
Dy1.Dy2 dx+

∫

Ω
y1y2 dx.

Let us denote by Aε ∈ L(V, V ∗) the linear isomorphism defined for all y ∈ V by aε(y, .) =
Aε(y). Given g ∈ H and y ∈ V , one has Aε(y) = g if and only if





−ε∆y + y = g on Ω

∂y

∂ν
= 0 on Γ

(31)

where ν is the outward normal vector to Γ at x. The optimal control problem we are
dealing with is

min
1

2
‖γ0y − zd‖2Z +

N

2
‖v‖2H (32)

over v ∈ H, y ∈ V related by (31) where γ0y ∈ H
1
2 (Γ) denotes the trace of y on Γ and

zd ∈ Z is given. In order to dualize our problem, we use the general method for duality
in optimal control introduced in [8]. Let us introduce the function Fε ∈ Γ0(Z ×H ×H)
defined by

Fε(z, v, f) =





1
2‖z − zd‖2Z + N

2 ‖v‖2H + iCε(y, v, f) if z = γ0y

+∞ otherwise

where
Cε = {(y, v, f) ∈ V ×H ×H : Aε(y) = v + f}.

Problem (32) is equivalent to

min
(z,v)∈Z×H

Fε((z, v), 0).

Let us recall that given p ∈ H such that ∆p ∈ H the trace γ0p = p | Γ and γ1p = ∂p
∂ν | Γ are

defined respectively in H−
3
2 (Γ) and H−

1
2 (Γ) (see [22], Vol. 1, Théorème 6.5, p. 187-189)

and that, for all y ∈ H2(Ω) one has

−
∫

Ω
p∆y dx = −

∫

Ω
y∆p dx+ 〈γ1p, γ0y〉

H−
3
2 (Γ),H

3
2 (Γ)
− 〈γ0p, γ1y〉

H−
1
2 (Γ),H

1
2 (Γ)

.
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From the preceding Green’s formula the Lagrangian associated with Fε is easily shown to
be defined on Z ×H ×H by

Lε(z, v, p) =





1
2‖z − zd‖2Z + 〈p, v〉+ N

2 ‖v‖2H − 〈εγ1p, z〉
H−

3
2 (Γ),H

3
2 (Γ)
− iDε(p) if z ∈ γ0(A−1(H))

+∞ otherwise

where

Dε = {p ∈ H : −ε∆p + p = 0}.
It follows that a pair ((z̄ε, v̄ε), p̄ε) ∈ Z×H×H is a saddle-point for Lε if and only if there
exists ȳε ∈ V such that 




−ε∆ȳε + ȳε = v̄ε on Ω

∂ȳε
∂ν

= 0 on Γ,

z̄ε = γ0ȳε

p̄ε + N v̄ε = 0,
(33)

{−ε∆p̄ε + p̄ε = 0 on Ω

εγ1p̄ = z̄ε − zd on Γ.

A slight adaptation of the proof given in [1], p. 338-340, shows that the sequence (Fε)
congerges in the Mosco sense as ε goes to 0 on Z×H to the function F ∈ Γ0(Z×H×H)
defined by

F ((z, v), f) =
1

2
‖z − zd‖2Z +

N

2
‖v + f‖2H .

The Lagrangian associated to F is defined for all ((z, v), p) ∈ Z ×H ×H by

L((z, v), p) = 〈p, v〉+
1

2
‖z − zd‖2Z −

1

2N
‖p‖2H .

The unique saddle-point of L is clearly ((zd, 0), 0). The sequence of functions (Fε(., 0)) is
clearly equicoercive thus assumption (25) of Theorem 3.2 is in force. Moreover assumption

(24) is also satisfied since Fε(0,−f, f) ≤ 1
2‖zd‖2Z + N

2 ‖f‖2H yielding

sup
ε>0

ϕε(f) ≤ 1

2
‖zd‖2Z +

N

2
‖f‖2H

where ϕε(f) = inf(z,v)∈Z×H Fε(z, v, f) is the value function associated to Fε; which im-

plies (25), (see (22)). From Theorem 3.2 and from the variational properties of Mosco
convergence (see [1]) we obtain that the sequence of adjoint states (p̄ε) converges to 0

in w- L2(Ω). In fact one can prove, using our duality method, that the sequence (p̄ε)
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converges to 0 in s-L2(Ω). Indeed some straightforward computations based on the gen-
eralized Green’s formula quoted above show that the dual functional is defined on H
by

F ∗ε ((0, 0), p) =
1

2
‖εγ1p‖2Z + 〈εγ1p, zd〉Z +

1

2N
‖p‖2H + iD̃ε(p)

where
D̃ε = {p ∈ H : −ε∆p + p = 0, γ1p ∈ Z}.

As the duality gap is equal to 0, we get taking into account (33)

1
2‖z̄ε − zd‖2Z + N

2 ‖v̄ε‖2H = −1
2‖εγ1p̄ε‖2Z − 〈εγ1p̄ε, zd〉Z − 1

2N ‖p̄ε‖2H
= −1

2‖z̄ε‖2Z + 1
2‖zd‖2Z − 1

2N ‖p̄ε‖2H

thus (p̄ε) converges to 0 in s-L2(Ω) relying on the fact (see [1], p. 340) that

lim
ε→0

1

2
‖z̄ε − zd‖2Z +

N

2
‖v̄ε‖2H = 0.
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[17] J.-L. Joly: Une famille de topologies sur l’ensemble des fonctions convexes pour lesquelles
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[25] U. Mosco: Convergence of convex sets and of solutions of variational inequalities, Adv.

Math. 3 (1969) 510–585.

[26] U. Mosco: On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 45

(1974) 533–555.

[27] H. Riahi: Quelques résultats de stabilité en analyse épigraphique: approche topologique et
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