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1. Introduction

In this paper we will treat the multidimensional vectorial variational problem

minimize Φ(u) =

∫

Ω
ϕ(x, u(x),∇u(x)) dx for u ∈ W 1,p(Ω; IRm) , (P)

where Ω ⊂ IRn is a bounded Lipschitz domain, ϕ : Ω × (IRm × IRmn) → IR : (x, u, A) 7→
ϕ(x, u, A) a Carathéodory function, min(m,n) < p < +∞ , with m,n ≥ 1, and

W 1,p(Ω; IRm) the Sobolev space of functions u : Ω→ IRm with the norm ‖u‖W 1,p(Ω;IRm) =

‖u‖Lp(Ω;IRm) + ‖∇u‖Lp(Ω;IRmn). Throughout the paper, we will use the standard notation

concerning function spaces C, C0, C0,α, and Lp, standing respectively for continuous,
continuous bounded, α-Hölder continuous, and p-integrable functions on the domains in-
dicated. Moreover, W α,p will denote the Sobolev (if α is an integer) or Sobolev-Slobodecki
(if α is an non-integer) space.
We are especially interested in the case when ϕ(x, u, ·) : IRmn → IR is not quasiconvex (in
the sense of Morrey [19]) so that the minimum in (P) is generally not achieved. In other

words, (P) may have no solution in W 1,p(Ω; IRm) and a need of its relaxation immediately
follows. Here we will consider the relaxation not by weakly l.s.c. (=lower semicontinuous)
envelope of Φ (which requires quasiconvexification of ϕ) but the relaxation by continuity,
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using Young measures; cf. [2, 3, 9]. This relaxation has the advantages that it can avoid
the generally difficult quasiconvexification and keeps a certain “limit information” about
oscillations of the minimizing sequences for (P). Here we will use rather so-called general-
ized Young functionals, which are more appropriate especially in the case min(m,n) ≥ 2,
and make the relaxation according to [25]. This is done in Sect. 2.
The aim of this paper is to propose a direct numerical approximation of the relaxed
problem and to compare it with the usual approximation which uses standard finite-
element discretization of the original problem (P) converging eventually to a solution
of the relaxed problem, cf. [6, 7, 8, 11, 12, 13, 14, 17, 21]. The formulation of the
approximate problem as well as the convergence analysis are performed in Sect. 3, while
a more detailed analysis supporting the actual implementation is made in Sect. 4. Finally,
some error estimates are obtained in Sect. 5 and a comparison is discussed in Sect. 6.
Another approximation involving element-wise homogeneous Young measures has been
recently proposed by Nicolaides and Walkington [20] but without any analysis. In view of
some results by Dacorogna [15], the scheme from [20] is relevant if the quasiconvexification
of ϕ(x, u, ·) coincides with rank-1 convexification, while our scheme will basically apply
if the quasiconvexification of ϕ(x, u, ·) is polyconvex. In particular, for scalar (m =
1) or one-dimensional (n = 1) problems, the approximation theory presented here is
fairly complete. The requirement of the polyconvex quasiconvexification is certainly very
artificial and thus, in the case min(m,n) > 1, our approximation theory is rather only
a first step towards a very complicated problem; nevertheless, sometimes it is possible
to verify experimentally that the polyconvex and the quasiconvex envelope do not differ
much from each other, cf. [16].

2. Generalized Young functionals and relaxation of (P)

Let us introduce briefly some notation and some results from [25]. Following the original
idea by L.C. Young [28], the generalized Young measures (or, more precisely, function-
als) will be considered as certain linear continuous functionals on a suitable space H of
Carathéodory integrands Ω× IRmn → IR, cf. also [26, 27]. Though there is quite a large
freedom in the choice of H, we will take one particular and enough large space, namely

H =
{
h0 +

min(m,n)∑

s=0

gs ⊗ adjs; h0 ∈ G⊗ V, gs ∈ Lp/(p−s)(Ω; IRσ(s))
}
, (2.1)

where G ⊃ C0(Ω̄) is a separable subspace of L∞(Ω) closed under point-wise multiplication,

and adjs : IRmn → IRσ(s) assigns each matrix A ∈ IRmn its cofactors of order s (i.e. the
determinants of all s× s-submatrices) with the convention σ(0) = 1 and adj0 = 1; clearly

σ(s) = (ms )(ns ) = m!
s!(m−s)!

n!
s!(n−s)! . Of course, gs ⊗ adjs abbreviates

∑σ(s)
l=1 [gs]l ⊗ [adjs]l

with “⊗” denoting the usual tensorial product of functions, i.e. [g⊗ v](x,A) = g(x)v(A).
Obviously, adj1

∼= id : IRmn → IRmn is the identity on IRmn.

Furthermore, V in (2.1) is supposed to satisfy

V a linear subspace of C(IRmn), (2.2a)
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∀v ∈ V : sup
A∈IRmn

|v(A)|/(1 + |A|p) < +∞, (2.2b)

∀ 1 ≤ s ≤ min(m,n) : adjs ∈ V σ(s), (2.2c)

{A 7→ v(A)/(1 + |A|p); v ∈ V } is separable, (2.2d)

∀v ∈ V : v# 6= −∞ ⇒ v# is polyconvex, (2.2e)

where v#(A) = inf
u∈W 1,∞

0 (Ω,IRn)

∫
Ω v(A + ∇u(x)) dx is the quasiconvex envelope of v.

Recall still that v is called polyconvex [1] if it can be expressed as a convex function of

(adjsA)
min(m,n)
s=1 . For examples of V satisfying (2.2) we refer to [24]. Note that the only

nontrivial condition (2.2e) is void if min(m,n) = 1.
We can introduce a (possibly only semi-) norm on H from (2.1) by

‖h‖H = inf
h0+
∑

s
gs⊗adjs=h


ess sup

x∈Ω
sup

A∈IRmn

|h0(x,A)|
1 + |A|p +

min(m,n)∑

s=0

‖gs‖Lp/(p−s)(Ω;IRσ(s))


 .

(2.3)

This norm makes H separable because of (2.2d) and of the separability of G. Therefore
the weak* topology of the dual space H∗ is metrizable when restricted to bounded subsets.
Furthermore, let us suppose that H contains a coercive integrand in the sense

∃hc ∈ H ∀(x,A) ∈ Ω× IRmn : hc(x,A) ≥ |A|p, (2.4)

and imbed Lp(Ω; IRmn) (strong,weak*)-continuously into H∗ via the imbedding iH :

Lp(Ω; IRmn)→ H∗ defined by 〈iH(y), h〉 =
∫

Ω h(x, y(x)) dx with h ∈ H. The elements of

the set
Y pH(Ω; IRmn) = w∗-clH∗iH(Lp(Ω; IRmn)) (2.5)

will be addressed as generalized Young functionals; it referes to the fact that for H =

L1(0, T ;C0(IRmn)) the elements of Y p
H(Ω; IRmn) attainable by bounded sequences can be

identified with the classical Young measures. It was proved in [26, 27] that Y p
H(Ω; IRmn)

is a convex, closed, weakly* σ-compact, locally compact, and also locally sequentially
compact subset of H∗.
Let us also denote the set of all so-called gradient generalized Young functionals by

GpH(Ω; IRmn) =
{
η ∈ Y pH(Ω; IRmn); (2.6)

∃ a sequence {uk}k∈IN ⊂ W 1,p(Ω; IRm) : w∗ - lim
k→∞

iH(∇uk) = η
}
.

Let us remark that GpH(Ω; IRmn) is not convex when min(m,n) ≥ 2. Indeed, this fol-

lows from [25, Corollary 2.1] when one realizes that, e.g., for h = 1 ⊗ v ∈ H with

v quasiaffine but nonconvex, the functional Φ(u) =
∫

Ω h(x,∇u(x)) dx is weakly l.s.c.



332 T. Roub́ıček / Numerical approximation of relaxed variational problems

on W 1,p(Ω; IRm) but nonconvex, which can be seen if one makes a convex combina-

tion of u1, u2 ∈ W 1,p(Ω; IRm) in the form ui(x) = Aix with suitable Ai such that
Rank(A1 − A2) ≥ 2.

For k ∈ IN we define the bilinear mapping (h, η) 7→ h •η : Hk×H∗ → [G∗]k by 〈h •η, g〉 =

〈η, g ·h〉 for any g ∈ Gk. We can understand h •η as a substitution of η into an IRk-valued

integrand h. It can be shown [26, 27] that η 7→ h •η is an affine continuous extension of

the Nemytskii mapping y 7→ h ◦ y.

The important property of a particular η ∈ Y p
H(Ω; IRmn) is its possible “non-concen-

tration”: we say that η ∈ Y p
H(Ω; IRmn) is p-nonconcentrating if there is a sequence {yk}k∈IN

such that η =w*-limk→∞iH(yk) and that the set {|yk|p; k ∈ IN} is relatively weakly

compact in L1(Ω). Every such η admits a representation in terms of the classical Young
measures, that means there is a (generally not uniquely determined) weakly* measurable
mapping ν : x 7→ νx, called a Young measure, from Ω to regular probability measures on
IRmn such that

∀h ∈ H : h •η = 〈ν, h〉 in the sense of L1(Ω) , (2.7)

where 〈ν, h〉 abbreviates, as usual, the function x 7→ 〈νx, h(x, ·)〉 =
∫

IRmn h(x,A)νx(dA);

cf. [25, Remark 4.2].

We will denote the extended potential by Φ̄ : W 1,p(Ω; IRm) × GpH(Ω; IRmn) → IR and

always suppose that

∀(u, η) ∈ w∗-cl i(W 1,p(Ω; IRm)) : Φ̄(u, η) = lim inf
i(u)→(u,η) weakly*

Φ(u) , (2.8)

where i : W 1,p(Ω; IRm) → W 1,p(Ω; IRm)×H∗ is defined by i(u) = (u, iH(∇u)). Then we
can define the relaxed variational problem:

minimize Φ̄(u, η)

subject to u ∈ W 1,p(Ω; IRm), η ∈ GpH(Ω; IRmn) ,

∇u = (1⊗ id) •η .





(RP)

For all our considerations we will also need the coercivity of (P), this means

∃a ∈ L1(Ω) ∃b, c > 0 : ϕ(x, u, A) ≥ a(x) + b|u|p + c|A|p . (2.9)

Proposition 2.1. Under the conditions (2.1), (2.2a-d), (2.3), (2.4), (2.8) and (2.9),
(RP) is a proper relaxation of (P) in the sense that

a) (RP) has always a solution,
b) min(RP) = inf(P),
c) every cluster point of every minimizing sequence of (P) solves (RP), and
d) every solution of (RP) can be attained by a sequence minimizing (P).

Proof. See [25, Proposition 2.2 with Example 4.1] and realize that H is here supposed

separable, which allows us to work in terms of sequences in Y p
H(Ω; IRmn).
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3. Approximation of (RP)

We want to approximate (RP) directly. For this reason, we make a discretization of the

admissible subset of W 1,p(Ω; IRm) × GpH(Ω; IRmn) on which (RP) is defined and change

the structure of the constraints to make them readily implementable.
We will use the finite-element technique, supposing, for simplicity, that Ω is polyhedral.
For any d > 0, let Td be a triangulation of Ω consisting of elements (=simplexes) of the

diameter not exceeding d. For d ≥ d′ > 0, we suppose that Td ⊂ Td′ , this means Td′ is
a refinement of Td. Furthermore, we suppose that the family {Td}d>0 is regular in the
sense of [10], i.e. there is ε > 0 such that each element of each Td contains a ball of

radius εd. Our aim is to approximate W 1,p(Ω; IRm) by element-wise affine functions and

Y pH(Ω; IRmn) by element-wise constant (=homogeneous) generalized Young functionals.

As for the former discretization, we put simply

Ud =
{
u ∈ W 1,p(Ω; IRm); ∀E ∈ Td : u|E affine

}
. (3.1)

The latter discretization is performed by the projection operator Pd : H → H defined by

[Pdh](x, y) =
1

meas(E)

∫

E
h(x̃, y) dx̃ if x ∈ E ∈ Td . (3.2)

Note that this projector is continuous with respect to the norm (2.3), and so is the adjoint
projector P ∗d : H∗ → H∗. We put

Yd = P ∗dY
p
H(Ω; IRmn) . (3.3)

Proposition 3.1. Yd is convex, weakly* σ-compact, weakly* locally compact subset of

Y pH(Ω; IRmn). If V is also finite-dimensional, then Yd is strongly locally compact. More-

over, for all d ≥ d′ > 0, we have Yd ⊂ Yd′.

Proof. The (quite nontrivial) inclusion Yd ⊂ Y pH(Ω; IRmn) was proved in [24, Lemma 3.2

with Sect. 4.1].
For the convexity and σ-compactness of Yd we refer to [26, Section 3.5].
For the local compactness we refer to [27, proof of Theorem 2.1], if one realizes that∫

Ω hc(x, y(x)) dx → +∞ for ‖y‖Lp(Ω;IRmn) → +∞ for hc from (2.4). Also note that PdH

with H from (2.1) and Pd from (3.2) is finite-dimensional provided V is so.
The monotonicity of the sequence {Yd} follows, as in [26, Section 3.5], from Pd = Pd ◦Pd′
which holds whenever d ≥ d′ > 0 as a consequence of Td ⊂ Td′ .
Supposing, for simplicity, that the extended potential Φ̄(u, η) can be evaluated exactly
for every u and η which are element-wise affine and constant, respectively, we can define
our approximate problem:

minimize Φ̄(u, η)

subject to u ∈ Ud, η ∈ Yd,
adjs∇u = (1⊗ adjs) •η for all 1 ≤ s ≤ min(m,n).





(RPd)
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For the convergence analysis, we must inevitably strenghten (2.8). The realistic (cf.
Remark 3.3 below) though a bit restrictive assumption seems to be the following:

∀r ∈ IR+ : Φ̄ : Br ×GpH(Ω; IRmn)→ IR is weakly×weakly* continuous , (3.4)

where Br = {u ∈ W 1,p(Ω; IRm); ‖u‖W 1,p(Ω;IRm) ≤ r}. Note that (3.4) with (2.8) and

(2.9) make Φ̄ the extension of Φ in the sense that Φ̄(u, iH(∇u)) = Φ(u) for every u ∈
W 1,p(Ω; IRm).

Proposition 3.2. Under the conditions (2.1)–(2.4), (2.8), and (2.9), (RPd) has a solu-
tion (ud, ηd). Moreover, there is a subsequence of {(ud, ηd)}d>0 converging weakly* with
d→0 and, if (3.4) is also valid, the limit of each such subsequence solves (RP).

Proof. First, let us demonstrate that every (u, η) ∈ Ud × Yd satisfying adjs∇u = (1 ⊗
adjs) •η for all s = 1, ...,min(m,n) is admissible for (RP). Indeed, it suffices to show

η ∈ GpH(Ω; IRmn), which, however, follows from [24, Corollary 4.], using the fact that

η ∈ Yd is p-nonconcentrating thanks to the coercivity (2.9), cf. [25]. Therefore, we have
proved inf(RPd) ≥ min(RP).

The coercivity (2.9) of ϕ implies that the set Md(c) = {(u, η) ∈ Ud × Yd; Φ̄(u, η) ≤ c
& adjs∇u = (1 ⊗ adjs) •η, s = 1, ...,min(m,n)} is contained in w*-cl i(Br) with Br a

sufficiently large ball in W 1,p(Ω; IRm). Then Md(c) is weakly* compact because w*-cl

i(Br) is weakly* compact, Ud × Yd is closed in w*-cl i(Br), Φ̄ is weakly* l.s.c., and the

mapping (u, η) 7→ adjs∇u− (1⊗ adjs) •η : W 1,p(Ω; IRm)×Y p
H(Ω; IRmn)→ Lp/s(Ω; IRσ(s))

is weakly* continuous; cf. [1, 22]. Also, Md(c) is surely non-empty for c sufficiently large,

e.g. for c ≥ Φ(0) because (0, iH(0)) is certainly admissible for (RPd). As Φ̄ is weakly*
l.s.c., the existence of a solution to (RPd) as well as the existence of a weakly* converging
subsequence of these solutions follow by the standard compactness arguments.

Now we want to prove that every (u, η) ∈ W 1,p(Ω; IRm) × GpH(Ω; IRmn) satisfying ∇u =

(1⊗ id) •η can be approximated by suitable admissible pairs for (RPd) when d→ 0. First,

there is a bounded sequence {uk} ⊂ W 1,p(Ω; IRm) such that iH(∇uk)→ η weakly* in H∗.
Also, {uk} converges weakly (possibly as a subsequence only) to some ũ ∈ W 1,p(Ω; IRm).
Then i(uk − ũ + u) → (u, η). By mollifying (if necessary) each uk, we can even as-

sume {uk} ∈ C∞(Ω̄). Let Πduk ∈ Ud be the linear interpolant of uk on the trian-

gulation Td. For k fixed and d → 0, we have Πduk → uk strongly in W 1,p(Ω; IRm)
because of the regularity of uk. Therefore iH(∇Πduk) → iH(∇uk) weakly* in H∗

because
∫

Ω [h(x,∇Πduk(x))− h(x,∇uk(x))] dx → 0 for any h ∈ H as a consequence

of the continuity of the Nemytskii mapping y 7→ h ◦ y : Lp(Ω; IRmn) → L1(Ω). At
the same time, the pair i(Πduk) = (Πduk, iH(∇Πduk)) is admissible for (RPd) because
(1⊗adjs) • iH(y) = adjs y for any y ∈ Lp(Ω; IRmn) and, in particular, also for y = ∇Πduk,

and because Πduk ∈ Ud hence iH(∇Πduk) ∈ Yd. Without any loss of generality, the

sequence {uk} can be considered bounded in W 1,p(Ω; IRm). Then also {Πduk} ⊂ Br for
r large enough and {iH(∇Πduk)} is bounded in H∗. Realizing the metrizability of the
weak* topology on i(Br) (recall that H is separable), we can select a subsequence such

that Πduk → u weakly in W 1,p(Ω; IRm) and iH(∇Πduk) → η weakly* in H∗. Let us
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suppose that (u, η) is a solution to (RP). We have Φ̄(Πduk, iH(∇Πduk)) ≥ min(RPd) ≥
min(RP). As Φ̄ : Br × GpH(Ω; IRmn) → IR is weakly×weakly* continuous, we obtain

Φ̄(Πduk, iH(∇Πduk)) → Φ̄(u, η) = min(RP), which shows min(RPd) → min(RP) for
d→ 0.

The rest of the assertion follows immediately by the standard compactness arguments,
taking into account the coercivity of the problem.

An example for Φ̄ satisfying (3.4) is

Φ̄(u, η) = 〈η, ϕ ◦ u〉 , (3.5)

where [ϕ ◦ u](x,A) = ϕ(x, u(x), A), provided

∀u ∈ W 1,p(Ω; IRm) : ϕ ◦ u ∈ H &

∀r ∈ IR+ : u 7→ ϕ ◦ u : (Br,weak)→ (H, norm) is continuous .
(3.6)

Remark 3.3. Sometimes it may happen that for {Πduk}, constructed in the proof
of Proposition 3.2, iH(∇Πduk) converges to η not only weakly* in H∗ but even in the
standard dual norm ‖ · ‖H∗. Then Proposition 3.2 remains valid if (3.4) is weakened,

so that Φ is to be continuous only from (Br,weak) × (GpH(Ω; IRmn),norm) → IR. This

appears in a trivial but important case V = {0} and min(m,n) = 1. Then Y p
H(Ω; IRmn) ∼=

Lp(Ω; IRmn) and our theory basically coincides with the standard finite-element approx-

imation of a convexified problem: minimize Φ∗∗(u) =
∫

Ω ϕ
∗∗(x, u(x),∇u(x)) dx with

ϕ∗∗(x, u, ·) being a convex envelope of ϕ(x, u, ·). Typically ϕ∗∗ ◦ u 6∈ H and Φ̄(u, y) =∫
Ω ϕ
∗∗(x, u(x), y(x)) dx is not weakly continuous but only norm continuous. More gen-

erally, the same effect is for H = Lp/(p−1)(Ω; IRmn) ⊗ {id} with min(m,n) arbitrary.

Then Φ̄(u, y) =
∫

Ω ϕ
#(x, u(x), y(x)) dx. However, e.g. for the classical Lp-Young mea-

sures (i.e. for H = L1(Ω;C0(IRmn))) it is easy to see that the remainder Y p
H(Ω; IRmn) \

iH (Lp(Ω; IRmn)) cannot be reached from Lp(Ω; IRmn) with respect to the norm topology
of H∗ and therefore (3.4) cannot be weakened in general.

4. Implementation of a solution to (RPd).

In principle, V can be finite-dimensional and then P ∗d (H∗) is also finite-dimensional and

therefore (RPd), being defined on a subset of the finite-dimensional linear space Ud ×
P ∗d (H∗), can be implemented directly on digital computers. In the opposite case when V

is infinite-dimensional, we must (and may) use special properties of the solutions of (RPd)
because our task is not to implement every admissible pair (u, η) for (RPd) but only a
subset of admissible pairs which contains (some of) the solutions to (RPd). The basic
tool here consists in enough selective and informative optimality conditions for (RPd).
Such conditions, of the Euler-Weierstrass type, were generalized for relaxed vectorial
variational problems in [25]. Here we will adapt them for our (semi)discretized problem
(RPd). Throughout this section d > 0 will be fixed.
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Let us introduce the “discrete” Hamiltonian Hdu,λ ∈ Hd ≡ Pd(H) defined, for λ =

(λ1, ..., λmin(m,n)) with λs ∈ L∞(Ω; IRσ(s)) element-wise constant, by

[
Hdu,λ

]
(x, y) = −Pd(ϕ ◦ u) +

min(m,n)∑

s=1

λs ⊗ adjs . (4.1)

Moreover, we will assume that

∀u ∈ W 1,p(Ω; IRm) :

{[
∂ϕ

∂u
◦ u
]
· ũ; ũ ∈ B1

}
⊂ H bounded , (4.2a)

u 7→
[
∂ϕ

∂u
◦ u
]
· ũ : (W 1,p(Ω; IRm),weak)→ (H, norm) equi-continuous (4.2b)

with respect to ũ from the unit ball B1 of W 1,p(Ω; IRm).

Proposition 4.1. Let p > min(m,n), (2.9), (3.6) and (4.2) be valid, and (u, η) be

a solution to (RPd). Then there exists λ = (λ1, ..., λmin(m,n)) with λs ∈ L∞(Ω; IRσ(s))

element-wise constant such that the following integral identity is valid:

∫

Ω




min(m,n)∑

s=1

λs(x) · ∂ adjs
∂A

(∇u(x)) · ∇ũ(x) −
[
(
∂ϕ

∂u
◦ u) •η

]
(x) ũ(x)


 dx = 0 (4.3)

for all ũ ∈ Ud and the following “Weierstrass-type” maximum principle holds:

[
Hdu,λ •η

]
(x) = max

A∈IRmn
Hdu,λ(x,A) for a.a. x ∈ Ω . (4.4)

Sketch of the proof. First, let us notice that (RPd) has the form

minimize Φ̄(u, η)

subject to u ∈ Ud, η ∈ Yd ⊂ P ∗dH
∗,

N(u) = Lη,





(RP′d)

with Ud and P ∗dH
∗ Banach spaces, Yd closed convex, N : Ud →

∏min(m,n)
s=1 Ld(Ω; IRσ(s)) :

u 7→ (adjs∇u)
min(m,n)
s=1 smooth and (for min(m,n) ≥ 2) nonlinear with Ld(Ω; IRσ(s)) ⊂

L∞(Ω; IRσ(s)) denoting the space of element-wise constant functions Ω → IRσ(s), and L :

P ∗d (H∗) → ∏min(m,n)
s=1 Ld(Ω; IRσ(s)) : η 7→

(
(1⊗ adjs) •η

)min(m,n)

s=1
linear and continuous.

Also, (4.2) make Φ̄ continuously Fréchet differentiable with Φ̄′(u, η) =
(

(∂ϕ∂u ◦ u) •η, ϕ ◦ u
)

∈ U∗d × H. Moreover, as in [25, Lemma 3.3], we can prove that L is surjective on

Yd. Identifying Ld(Ω; IRσ(s)) with its own dual, we can use the theorem by Zowe and
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Kurczyusz [29], which gives the following necessary optimality conditions for (RP′d): there

is λ = (λ1, ..., λmin(m,n)) with λs ∈ Ld(Ω; IRσ(s)) such that

[N ′(u)]∗λ+ Φ̄′u(u, η) = 0 ∈ U∗d , (4.5)

∀η̃ ∈ Yd :
〈
L∗λ− Φ̄′η(u, η), η − η̃

〉
≥ 0 . (4.6)

After routine calculations, (4.5) gives (4.3). As for (4.6), notice that L∗λ − Φ̄′η(u, η) =
∑min(m,n)

s=1 λs ⊗ adjs−ϕ ◦ u and η = P ∗d η and η̃ = P ∗d η̃. Then
〈
L∗λ− Φ̄′η(u, η), η − η̃

〉
=〈

η − η̃, Pd(
∑min(m,n)

s=1 λs ⊗ adjs−ϕ ◦ u)
〉

=
〈
η − η̃,Hdu,λ

〉
. In other words, (4.6) means

just
〈
η,Hdu,λ

〉
= maxη̃∈Yd

〈
η̃,Hdu,λ

〉
. The Weierstrass-type maximum principle (4.4) fol-

lows from this “integral” maximum principle by a usual localization technique, using also
the assumption p > min(m,n); cf. [25, Theorem 3.2].

So far we have the linear combination
∑K

k=1 θkηk defined for ηk ∈ H∗ and θk ∈ IR only.

However, we can generalize it naturally for θk ∈ G ⊂ L∞(Ω) by means of the identity:

∀h ∈ H :

〈
K∑

k=1

θkηk , h

〉
=

K∑

k=1

〈h •ηk, θk〉 . (4.7)

Of course, the left-hand-side duality is between H∗ and H while the right-hand-side one is
between G∗ and G. Note that this extended definition has the previous meaning provided
θk are constant on Ω.

Corollary 4.2. Let the assumptions of Proposition 4.1 be satisfied and, for every x ∈ Ω,

λ = (λ1, ...λmin(m,n)) and u ∈ Ud, let
[
Hdu,λ

]
(x, ·) : IRmn → IR attain the maximum at

no more than K points in IRmn, and let (u, η) solve (RPd). Then η can be written in the
form

η =

K∑

k=1

θkiH(yk) , θk ≥ 0 ,

K∑

k=1

θk = 1 , (4.8)

with θk ∈ L∞(Ω) and yk ∈ L∞(Ω; IRmn) element-wise constant. In other words, η admits
a Young measure representation (2.7) with ν element-wise constant and νx being a convex
combination of at most K Dirac measures.

Proof. Let (u, η) be a solution to (RPd). By the coercivity of the problem, η is p-noncon-
centrating (cf. [25]), and thus it admits a Young-measure representation η ∼= ν = {νx}x∈Ω,
cf. (2.7), such that x 7→ νx is element-wise constant. From the maximum principle

(4.4) we can see that
∫

IRmnHdu,λ(x,A)νx( dA) = maxA∈IRmnHdu,λ(x,A). In particular,

the probability measure νx must be supported at the set on which Hdu,λ(x, ·) attains it

maximum over IRmn which is supposed to consist from no more than K points, let us
denote them by yk(x) ∈ IRmn, k = 1, ..., K. Moreover, these points are independent of

x ∈ E for each particular element E ∈ Td because Hdu,λ(·, A) is element-wise constant.



338 T. Roub́ıček / Numerical approximation of relaxed variational problems

In other words, νx =
∑K

k=1 θk(x)δyk(x) and both θk and yk can be assumed element-

wise constant, where δA denotes the Dirac measure supported at A ∈ IRmn. As νx is a

probability measure, θk ≥ 0 and
∑K

k=1 θk = 1. Then (4.8) follows easily from the formulas

(2.7) and (4.7) via the identity: h •η = 〈ν, h〉 =
∑K

k=1 θkh(yk) =
∑K

k=1 θk(h • iH(yk)) =

h •
(∑K

k=1 θkiH(yk)
)

, which holds for any h ∈ H.

Under the assumptions of Corollary 4.2 it is clear that every solution to (RPd) can be
implemented on digital computers because the number of elements in Td as well as the
maximal number of Dirac measures needed on each of them are finite. For an example of
the implementation in the scalar case we refer to [23, Sect. 3].
However, it should be remarked that, especially in the case min(m,n) ≥ 2, the condition
in Corollary 4.2 is not easy to be verified. On the other hand, mostly it is quite satisfactory
to implement at least one of the solutions to (RPd) because, even if we are actually able
to implement all solutions, the nonlinear-programming algorithms we have eventually to
use can normally find only one of them. From this standpoint, the following assertion
makes a satisfactory basis for implementation of the problem (RPd).

Corollary 4.3. Let the assumptions of Proposition 4.1 be satisfied. Then there always
exists at least one solution (u, η) to (RPd) such that η is in the form (4.8) with θk ∈ L∞(Ω)
and yk ∈ L∞(Ω; IRmn) element-wise constant and

K = 1 +

min(m,n)∑

s=1

σ(s) . (4.9)

Sketch of the proof. Take (u0, η0) to be a solution to (RPd) and λ = (λ1, ..., λmin(m,n))

the corresponding Lagrange multipliers. Every pair (u0, η) ∈ Ud × Yd satisfying (1 ⊗
adjs) •η = adjs∇u0 for s = 1, ...,min(m,n) and the maximum principle (4.4) with u = u0

solves (RPd). Indeed, such (u0, η) is obviously an admissible pair for (RPd) and also

Φ̄(u0, η) = min(RPd) because

〈η, ϕ ◦ u0〉 = 〈P ∗d η, ϕ ◦ u0〉 = 〈η, Pd(ϕ ◦ u0)〉

= 〈η,
min(m,n)∑

s=1

λs ⊗ adjs−Hdu0,λ
〉 = 〈η0,

min(m,n)∑

s=1

λs ⊗ adjs−Hdu0,λ
〉

= 〈η0, Pd(ϕ ◦ u0)〉 = 〈P ∗d η0, ϕ ◦ u0〉 = 〈η0, ϕ ◦ u0〉 .

For this identity, we also used that

〈η, λs⊗ adjs〉 = 〈(1⊗ adjs) •η, λs〉 = 〈adjs∇u0, λs〉 = 〈(1⊗ adjs) •η0, λs〉 = 〈η0, λs⊗ adjs〉

and

〈η,Hdu0,λ
〉 =

∫

Ω
Hdu0,λ

•η dx =

∫

Ω
max

A∈IRmn
Hdu0,λ

(x,A) dx =

∫

Ω
Hdu0,λ

•η0 dx

= 〈η0,Hdu0,λ
〉.
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As a result, η should only satisfy
∑min(m,n)

s=1 σ(s) conditions on the momenta (1⊗adjs) •η,

and also one additional momentum Hdu0,λ
•η which is located however at the maximum of

Hdu0,λ
, so that actually the investigated momenta range a (

∑min(m,n)
s=1 σ(s))-dimensional

manifold. Then the assertion follows by the Carathéodory theorem applied to a Young-
measure representation of η; see [26, Proposition 4.3.9] for details.

Let us remark that the estimate (4.9) cannot be improved in general; in other words, there

exist relaxed problems that have no solutions of the form (4.8) with K ≤∑min(m,n)
s=1 σ(s).

E.g., for m = n = 1, one has obviously
∑min(m,n)

s=1 σ(s) = 1 but a one-dimensional scalar

problem with a double well potential investigated in [11, 12, 18], having a unique two-
atomic solution, has apparently no one-atomic solution.

5. Some error estimates.

The error estimates we are able to establish here differ from the usual results for elliptic
equations mainly because the problem (RP) is not uniformly convex even if min(m,n) = 1;
for min(m,n) ≥ 2 it is in general nonconvex. This fact implies that we are able to establish
only error estimates concerning |min(RP)−min(RPd)|, which can be considered however
as a significant indicator of the efficiency of the particular method.
In the literature one can occasionally find error estimates also for the solutions (in ap-
propriate dual norms on H∗ weaker than ‖ · ‖H∗) but it is always for special scalar (i.e.
m = 1) problems possessing a unique solution; cf. [11, 12, 17] for n = 1 or [7] for n ≥ 1.
Besides, except [20, 23], the discretization described in the literature concerns the original
problem (P), hence the discrete problem looks as

minimize Φ(u) =

∫

Ω
ϕ(x, u(x),∇u(x)) dx for u ∈ Ud . (Pd)

The first comparison of the standard discretization (Pd) with our discretization (RPd)
can be based on the simple observation that

inf (P) = min(RP) ≤ min(RPd) ≤ min(Pd) , (5.1)

which follows from the fact that every i(u) = (u, iH(∇u)) with u ∈ Ud is admissible for
(RPd). Therefore our method cannot be worse than the standard discretization as far
as the rate of convergence of the minimum of the discrete problem towards the mini-
mum of the original problem concerns. Both methods lead to nonconvex mathematical-
programming problems, our method having slightly greater dimensionality but of the
same order O(d−n) as the standard method provided Corollary 4.2 or 4.3 can be applied.
The theoretical effort behind its implementation and slightly greater dimensionality are
compensated by the fact that sometimes our method can give much faster convergence
than the standard method; cf. Sect. 6 below.
Our aim is to get the convergence min(RPd) → min(RP) of the order O(dα) with some

α > 0. We will consider a subspace H̃ ⊂ H equiped with a norm stronger than the norm

of H, so that the imbedding H̃ → H is continuous. Thus H̃∗ ⊃ H∗ and we can estimate
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the generalized Young functionals from Y p
H(Ω; IRmn) in the standard dual norm of H̃∗.

Our error analysis will rely on the following general pattern:

Proposition 5.1. Let (2.9) be valid, let the mapping u 7→ ϕ ◦ u map every ball Br in

W 1,p(Ω; IRm) into a bounded subset of H̃, i.e.

∀r ∈ IR+ ∃Kr ∈ IR+ ∀u ∈ Br : ‖ϕ ◦ u‖H̃ ≤ Kr , (5.2)

and let it be (W 1−α,p(Ω; IRm), H)-Lipschitz continuous on each Br, i.e.

∀r ∈ IR+ ∃Lr ∈ IR+ ∀u, ũ ∈ Br : ‖ϕ ◦ u− ϕ ◦ ũ‖H ≤ Lr‖u− ũ‖W 1−α,p(Ω;IRm) . (5.3)

Also, let us assume that, for every (u, η) ∈ W 1,p(Ω; IRm)× Y pH(Ω; IRmn) and every d > 0,

there exists an admissible pair (ud, ηd) for (RPd) such that the sequence {ud}d>0 is bounded

in W 1,p(Ω; IRm) and the sequence {(ud, ηd)}d>0 has the following approximation property

‖u− ud‖W 1−α,p(Ω;IRm) ≤ C1d
α‖u‖W 1,p(Ω;IRm) , (5.4a)

‖η − ηd‖H̃∗ ≤ C2d
α‖η‖H∗ . (5.4b)

Then |min(RP)−min(RPd)| = O(dα).

Proof. First, let us note that, thanks to (5.3), Φ̄(u, η) = 〈η, ϕ ◦ u〉 actually defines the

extension of Φ which is weakly* continuous on Br × Y p
H(Ω; IRmn) for any r ∈ IR+.

As always min(RPd) ≥ min(RP), we have only to estimate min(RPd) − min(RP) from
above.
First we will show that Φ̄ from (3.5) is (W 1−α,p(Ω; IRm) × H̃∗, IR)-Lipschitz continuous
on each Br ×H∗ at any (u, η) ∈ Br ×H∗ in the sense

|Φ̄(u, η)− Φ̄(ũ, η̃)| ≤ Lr,η

(
‖u− ũ‖W 1−α,p(Ω;IRm) + ‖η − η̃‖H̃∗

)
(5.5)

for any (ũ, η̃) ∈ Br×H∗ and some Lr,η ∈ IR+ depending possibly on r and η. Indeed, for

u, ũ ∈ Br and η, η̃ ∈ H∗ we can estimate

|Φ̄(u, η)− Φ̄(ũ, η̃)| = |〈η, ϕ ◦ u〉 − 〈η̃, ϕ ◦ ũ〉| ≤ |〈η, ϕ ◦ u− ϕ ◦ ũ〉|
+ |〈η − η̃, ϕ ◦ ũ〉| ≤ ‖η‖H∗‖ϕ ◦ u− ϕ ◦ ũ‖H + ‖η − η̃‖H̃∗‖ϕ ◦ ũ‖H̃
≤ Lr‖η‖H∗‖u− ũ‖W 1−α,p(Ω;IRm) + Kr‖η − η̃‖H̃∗ ,

which gives (5.5) with Lr,η = max(Lr‖η‖H∗, Kr).

Eventually, let us take (u, η) a solution to (RP) and (ud, ηd) as assumed. Putting r =
supd>0 ‖ud‖W 1,p(Ω;IRm) and using (5.4) and (5.5), we can estimate:

min(RPd)−min(RP) ≤ Φ̄(ud, ηd)− Φ̄(u, η) ≤ Lr,η‖u− ud‖W 1−α,p(Ω;IRm)

+ Lr,η‖η − ηd‖H̃∗ ≤ Lr,ηC1d
α‖u‖W 1,p(Ω;IRm) + Lr,ηC2d

α‖η‖H∗ = O(dα) .
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Thus we have reduced the error-estimation problem to the verification of (5.2)–(5.4); in
fact, it suffices to verify (5.4) only for some solution to (RP).
Let us first treat the one-dimensional case, which is especially simple. Recall that through-
out this paper we suppose p > 1, hence we have now W 1,p(Ω; IRm) ⊂ C0(Ω; IRm)

for Ω ⊂ IR1 and we can speak about an element-wise affine interpolation of a given
u ∈ W 1,p(Ω; IRm), denoted by Πdu as usual. In this one-dimensional case, it suffices to
control the spatial smoothness only, using the parameter 0 < α ≤ 1. Thus we define
naturaly the subspace Hα ⊂ H by

Hα =



h0 +

min(m,n)∑

s=0

gs ⊗ adjs ∈ H; h0 ∈ C0,α(Ω)⊗ V, gs ∈ Wα,p/(p−s)(Ω; IRσ(s))



 ,

(5.6)
and endow it with the norm

‖h‖Hα = inf
h0+
∑

s
gs⊗adjs=h


‖Rph0‖Cα,0(Ω;C0(IRmn)) +

min(m,n)∑

s=0

‖gs‖Wα,p/(p−s)(Ω;IRσ(s))


 ,

(5.7)
where Rp : H → L∞(Ω× IRmn) is defined by [Rph](x,A) = h(x,A)/(1 + |A|p).
Lemma 5.2. Let n = 1 and let (u, η) ∈ W 1,p(Ω; IRm)×H∗ be such that (1⊗id) •η = ∇u.

Putting ud = Πdu and ηd = P ∗d η, we have ‖ud‖W 1,p(Ω;IRm) ≤ ‖u‖W 1,p(Ω;IRm) and (5.4)

fulfilled for H̃ = Hα. Moreover, (1⊗ id) •ηd = ∇ud, hence each pair (ud, ηd) is admissible

for (RPd).

Proof. The identity (1⊗ id) •ηd = ∇ud follows from (1⊗ id) •P ∗d η = Ad((1⊗ id) •η) and

∇ud = Ad∇u, where Ad denotes the operator Lp(Ω; IRm)→ L∞(Ω; IRm) which takes the
mean over each element (here an interval, since n = 1). The estimate ‖ud‖W 1,p(Ω;IRm) ≤
‖u‖W 1,p(Ω;IRm) follows by easy calculations, while (5.4a) can be obtained by interpolation

from standard results from the finite-element method; cf. [10]. The estimate (5.4b) follows
from

‖h− Pdh‖H ≤ C2d
α‖h‖Hα (5.8)

by transposition as in [26, Section 3.5]. In view of (2.3) and (5.7), the estimate (5.8) follows
from ‖g − Adg‖C0(Ω) ≤ Cdα‖g‖C0,α(Ω) and from the estimates ‖g − Adg‖Lp/(p−s)(Ω) ≤
Cdα‖g‖Wα,p/(p−s)(Ω) for s = 0, 1. The last estimate can be obtained by interpolation from

the four estimates created by α = 0 or 1 and p/(p− s) = 1 or ∞, which are obvious.

Lemma 5.3. Let n = 1, ϕ have the form ϕ(x, u, A) = ϕ0(x, u) +ϕ1(x,A) with ϕ1 ∈ Hα

for some 0 < α ≤ 1 and with ϕ0(x, ·) : IRm → IR Lipschitz continuous on bounded subsets
of IRm in the sense

∀c ∈ IR+ ∃Lc ∈ Lp/(p−1)(Ω) ∀x ∈ Ω ∀u, ũ ∈ IRm :

|u| ≤ c, |ũ| ≤ c ⇒ |ϕ0(x, u)− ϕ0(x, ũ)| ≤ Lc(x)|u− ũ|
(5.9)

and ϕ0(·, 0) ∈ L1(Ω). Then (5.2) with H̃ = Hα and (5.3) are satisfied.



342 T. Roub́ıček / Numerical approximation of relaxed variational problems

Proof. For a given r ∈ IR+ there is c = c(r) ∈ IR+ such that any u ∈ Br = {u ∈
W 1,p(Ω; IRm); ‖u‖W 1,p(Ω;IRm) ≤ r} take values bounded (in absolute values) by c(r),

hence ϕ0 can be supposed Lipschitz with a Lipschitz constant Lc(r), cf. (5.9).

As for (5.2), it follows from the estimates ‖ϕ ◦ u‖Hα ≤ ‖ϕ0 ◦ u‖Wα,1(Ω) + ‖ϕ1‖Hα and

‖ϕ0 ◦ u‖Wα,1(Ω) ≤ ‖ϕ0 ◦ u‖W 1,1(Ω) =

∫

Ω

(
|ϕ0(x, u(x))|+

∣∣∣∣
d

dx
ϕ0(x, u(x))

∣∣∣∣
)

dx

≤
∫

Ω

(
|ϕ0(x, 0)|+ Lc(r)(x)|u(x)|+

∣∣∣∣
∂

∂u
ϕ0(x, u(x))

d

dx
u(x)

∣∣∣∣
)

dx

≤ ‖ϕ0(x, 0)‖L1(Ω) + ‖Lc(r)‖Lp/(p−1)(Ω)‖u‖W 1,p(Ω) .

Furthermore, we can estimate

‖ϕ ◦ u− ϕ ◦ ũ‖H ≤ ‖ϕ0 ◦ u− ϕ0 ◦ ũ‖L1(Ω) ≤ ‖Lc(r)‖Lp/(p−1)(Ω)‖u− ũ‖Lp(Ω) ,

which already implies (5.3) thanks to the continuous imbedding W 1−α,p(Ω) ⊂ Lp(Ω).

Therefore, for n = 1, Proposition 5.1 together with Lemmas 5.2 and 5.3 yields the desired
estimate |min(RP) − min(RPd)| = O(dα). In the general case, this result is likely not
to be much improvable because the data qualifications in Lemma 5.3 are actually very
weak; e.g. we admit ϕ(x, u, A) = g(x)v(A) with v ∈ V only continuous and coercive.
On the other hand, in special cases this guaranteed rate of error can be still pessimistic;
sometimes even the convergence of the order O(d∞) can be achieved, cf. Section 6.
In the multidimensional case (i.e. n ≥ 2) the construction ηd = P ∗d η unfortunately does

not work because (1 ⊗ id) •P ∗d η ∈ Lp(Ω, IRmn) need not be the gradient of any function

from W 1,p(Ω; IRm) and, if also m ≥ 2, P ∗d η need not be any gradient Young measure even

locally on each element E ∈ Td, this means Pdη|E 6∈ GpH(E; IRmn) in general. Nevertheless,

in the scalar case (i.e. m = 1) a suitable ηd can be constructed by a more sophisticated
way, using a shift operator Ty : H → H defined by [Tyh](x,A) = h(x,A + y(x)) with

y ∈ Lp(Ω; IRmn). Obviously, Ty makes a “vertical shift” of the integrands from H and,

for y ∈ L∞(Ω; IRmn), it is a linear continuous operator with the continuous inverse T−1
y =

T−y; in particular, in view of (2.3) it is easy to verify

∀r ∈ IR+ ∃Nr ∈ IR+ ∀h ∈ H ∀y ∈ L∞(Ω; IRmn) :

‖y‖L∞(Ω;IRmn) ≤ r ⇒ ‖Tyh‖H ≤ Nr‖h‖H .
(5.10)

The adjoint operator T ∗y : H∗ → H∗ maps Y pH(Ω; IRmn) onto Y pH(Ω; IRmn), making a “ver-

tical shift” of the corresponding Young functionals. The philosophy of our construction of
ηd is the following: first shift η in such a way that the first momentum of the shifted Young

measure vanishes, then apply the operator P ∗d without falling out of the class GpH(Ω; IRmn),

and eventually shift the resulted Young measure “almost” back; cf. (5.11) below. To re-

alize this “almost”, we will have to suppose a W 1+α,∞-regularity of a solution and a
stronger data qualification, requiring a certain weight-Lipschitz continuity of ϕ(x, u, ·)
weaker than the usual Lipschitz continuity, which would not be a realistic requirement.
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The corresponding subspace of H may be chosen as HLip = {h ∈ H; ‖h‖HLip
< +∞}

with the norm

‖h‖HLip
= ess sup

x∈Ω
sup

A,Ã∈IRmn

|h(x,A)− h(x, Ã)|
|A− Ã|(1 + |A|p + |Ã|p)

.

We will use Proposition 5.1 with H̃ = Hα ∩ HLip equiped with the norm ‖h‖Hα∩HLip
=

‖h‖Hα + ‖h‖HLip
.

Lemma 5.4. Let m = 1, 0 < α ≤ 1, and let (u, η) ∈ W 1+α,∞(Ω)× Y p
H(Ω; IRn) be such

that (1⊗ id) •η = ∇u. Putting

ud = Πdu and ηd = T ∗∇udP
∗
dT
∗
−∇uη , (5.11)

we have got ‖ud‖W 1,p(Ω) ≤ ‖u‖W 1,p(Ω) and (5.4) with H̃ = Hα ∩HLip fulfilled. Moreover,

ηd ∈ Yd and (1⊗ id) •ηd = ∇ud, hence each pair (ud, ηd) is admissible for (RPd).

Proof. First, (1⊗id) •ηd = (1⊗id) •T ∗∇ud
(
P ∗dT

∗
−∇uη

)
=∇ud + (1⊗id) •P ∗dT

∗
−∇uη =∇ud

because (1⊗id) •T ∗−∇uη = −∇u+(1⊗id) •η = 0, and therefore also (1⊗id) •P ∗dT
∗
−∇uη = 0.

Secondly, let us notice that Ty and Pd commute with each other provided y is element-
wise constant on Td. In particular, T∇udPd = PdT∇ud and we can write alternatively ηd
= P ∗dT

∗
∇udT

∗
−∇uη = P ∗dT

∗
∇(ud−u)η. It shows that ηd ∈ Yd.

The estimate ‖ud‖W 1,p(Ω) ≤ ‖u‖W 1,p(Ω) is obvious. The estimate (5.4a) follows by inter-

polation from the standard estimates ‖u−ud‖W 1,p(Ω) ≤ 2‖u‖W 1,p(Ω) and ‖u−ud‖Lp(Ω) ≤
Cd‖u‖W 1,p(Ω), cf. [10, Theorem 16.1]. As for (5.4b), we will estimate it as

‖η − ηd‖[Hα∩HLip]∗ ≤ ‖η − T ∗∇(ud−u)η‖[Hα∩HLip]∗

+ ‖T ∗∇(ud−u)η − P ∗dT ∗∇(ud−u)η‖[Hα∩HLip]∗ ≡ I1 + I2.

Let us estimate I1. For any r ∈ IR+ there is Cr such that

|h(x,A)− h(x,A+ Ã)| ≤ |Ã|(1 + |A|p + |A+ Ã|p)‖h‖HLip
≤ Cr|Ã|(1 + |A|p)‖h‖HLip

for any h ∈ HLip and A, Ã ∈ IRn provided |Ã| ≤ r. This gives the estimate

‖h− Tyh‖H ≤ sup
x∈Ω

sup
A∈IRn

|h(x,A)− h(x,A+ y(x))|
1 + |A|p ≤ Cr‖y‖L∞(Ω;IRn)‖h‖HLip

for any h ∈ HLip and y ∈ L∞(Ω; IRn) with ‖y‖L∞(Ω;IRn) ≤ r. From this, for y = ∇(ud−u),

we get by transposition I1 ≤ ‖η−T ∗∇(ud−u)η‖H∗Lip
≤ Cr‖∇(ud−u)‖L∞(Ω;IRn)‖h‖H∗ provided

∇(ud− u) is small enough, namely ‖∇(ud− u)‖L∞(Ω;IRn) ≤ r. Afterwards we can use the

estimate ‖∇(ud − u)‖L∞(Ω;IRn) ≤ Cdα‖u‖W 1+α,∞(Ω), which follows by interpolation from

[10, Theorem 16.1]. This shows I1 = O(dα).
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By transposition of (5.10), we get ‖T ∗y η‖H∗ ≤ Nr‖η‖H∗. Using (5.8), we can eventually

estimate the term I2 as follows:

I2 ≤ ‖T ∗∇(ud−u)η − P ∗dT ∗∇(ud−u)η‖H∗α ≤ C2d
α‖T ∗∇(ud−u)η‖H∗ ≤ C2Nrd

α‖η‖H∗

provided ‖∇(ud − u)‖L∞(Ω) ≤ r. It gives I2 = O(dα) whenever u ∈ W 1,∞(Ω); recall that

even u ∈ W 1+α,∞(Ω) had to be supposed.

As for (5.2) and (5.3), we can use readily Lemma 5.3 also for n > 1 with Hα replaced

by Hα ∩HLip if p > n, which ensures W 1,p(Ω) ⊂ L∞(Ω). Then, for m = 1, Proposition

5.1 together with Lemma 5.3 (modified as outlined) and Lemma 5.4 enables us to get
|min(RP) − min(RPd)| = O(dα) if (RP) possesses at least one solution (u, η) with u ∈
W 1+α,∞(Ω) and if ϕ fulfils the data qualification from Lemma 5.3 with Hα replaced by

Hα ∩HLip. If p ≤ n, then (5.2) with H̃ = Hα ∩HLip and (5.3) must be verified for each

particular case. E.g., if ϕ(x, u, A) = ϕ1(x,A), then they reduce to the only requirement
ϕ1 ∈ Hα ∩HLip. Let us also remark that, supposing additionally (3.6), requirement (5.3)

can be weakened to ‖ϕ◦u−ϕ◦ ũ‖H ≤ Lr‖u− ũ‖W 1,p(Ω;IRm) because, due to the regularity

assumption u ∈ W 1+α,∞(Ω), we can use ‖u− ud‖W 1,p(Ω) ≤ C1d
α‖u‖W 1+α,p(Ω) instead of

(5.4a).
The error estimates for the case min(m,n) ≥ 2 remains open because no effective formula
to construct an admissible pair (ud, ηd) sufficiently near to (u, η) is known; however, in
very special cases some error estimates for (Pd) have been obtained by Chipot, Collins
and Kinderlehrer [8], which yields via (5.1) certain (probably rather pessimistic) error
estimates for (RPd), too.

6. A comparison and concluding remarks.

Let us compare our approximation scheme (RPd) with the standard scheme (Pd). As
already mentioned, we have always |min(RP)−min(RPd)| ≤ |min(RP)−min(Pd)|, hence
our method cannot be worse than (Pd) even in case min(m,n) ≥ 2. Sometimes, it might be
even considerably better. The only analysis of (Pd) in multidimensional scalar case under
data qualification similarly weak as in Section 5 was performed by Chipot and Collins,
see [6, 7]. For m = 1, Dirichlet boundary conditions, and ϕ(x, u, A) = ϕ1(A)+ϕ0(u) with
either ϕ0 ≡ 0 in [6] or some special ϕ0 having the growth at most O(|u|q) in [7], the error

|min(RP)− min(Pd)| is of the order either O(d1/2) if q ≥ 1 or O(dq/(q+1)) if 0 < q < 1.

A similar result, namely the rate O(d1/2) for ϕ0 ≡ 0, was obtained also by Brighi and
Chipot [5] in a bit different context. Let us remind that, in contrast to [5, 6, 7], we
admitted ϕ to be spatially dependent and our guaranteed rate was O(dα) with 0 < α ≤ 1

depending on the spatial smoothness of ϕ and, if n ≥ 2, also on W 1+α,∞-regularity of at
least one solution to (RP).
Moreover, there are several results concerning the one-dimensional scalar case n = m = 1,
see [4, 11, 12, 13, 17, 21]. For ϕ(x, u, A) = ϕ1(A) + ϕ0(x, u) with a special ϕ0 and
with ϕ1 having two wells (=local minima) of the same value and a quadratic growth in

neighbourhoods of these wells, the rate of |min(RP)−min(Pd)| was shown to be O(d2). It
is better than our guaranteed general rate, but (5.1) ensures in this special case the order
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also at least O(d2). Moreover, the problems in [11, 12, 13, 17] are so special that even
min(RPd) = min(RP) because (RP) possesses in these special cases the solution (u, η)
with u affine and η homogeneous, which is apparently admissible also for our approximate
problems (RPd) for any d > 0; therefore, in fact, even the rate O(d∞) was achieved.
A similar effect can happen even for multidimensional vectorial problems, where no rate-
of-error analysis is disposable for (RPd), neither for (Pd). We can demonstrate it on the
potential proposed by Ericksen and James and used by Collins, Luskin and Riordan [13,
14] for numerical experiments in the case n = m = 2:

ϕ(x, u, A) = ϕ1(A) = k1(b11 + b22 − 2)2 + k2b
2
12 + k3

((
b11 − b22

2

)2

− ε2

)2

, (6.1)

where B = ATA = [bij ] and k1, k2, k3, ε are positive, ε ≤ 1. It is known, cf. [13, 14],
that the relaxed problem completed by suitable Dirichlet boundary conditions possesses

the solution u(x) = (1
2A1 + 1

2A2)x and η homogeneous having a classical-Young-measure

representation as a two-atomic Young measure 1
2δA1 + 1

2δA2 with δA denoting the Dirac

distribution at A ∈ IR2×2 and

A1 =

(√
1− ε 0

0
√

1 + ε

)
, A2 =

(
(1 + ε)

√
1− ε ε

√
1− ε

−ε
√

1 + ε (1− ε)
√

1 + ε

)

Obviously, Rank(A1 − A2) = 1 and (1 ⊗ id) •η = ∇u. It implies that (u, η) is actually

admissible for (RP) and obviously also for (RPd) with any d > 0, as well. Therefore we
have got again min(RP) = min(RPd) = 0, hence the rate O(d∞) was achieved.
One important remark should be however made to (RPd) with ϕ from (6.1) because it is
not known whether ϕ1 from (6.1) has a polyconvex quasiconvexification, thus ϕ◦u = 1⊗ϕ1

need not be contained in any H from (2.1) with V satisfying (2.2). Taking V satisfying
only (2.2a-d) and containing ϕ1, the extension by (3.5) is made possible but (RPd) in
general does not approximate (RP) but only the following auxiliary problem

minimize Φ̄(u, η)

subject to u ∈ W 1,p(Ω; IRm), η ∈ Y pH(Ω; IRmn),

adjs∇u = (1⊗ adjs) •η for all 1 ≤ s ≤ min(m,n).





(AP)

It may happen that min(AP) < min(RP) because not every η admissible for (AP) belongs

to GpH(Ω; IRmn) if (2.2e) is not satisfied. However, by the results from [15] it can be shown

that, if (AP) possesses a solution (u, η) such that the poly- and the quasi-convex envelopes
of ϕ1 from (6.1) coincides with each other at every point A = ∇u(x) with x ∈ Ω, then
min(AP) = min(RP). This actually applies here because both the poly- and the quasi-

convex envelopes of ϕ1 from (6.1) are zero at A = 1
2A1 + 1

2A2 = ∇u.

Additionally, the exponents in (6.1) should be better modified a bit because the present

form of ϕ1 ensures the coercivity in L4(Ω; IR2×2) via the first term while the third term
can take values +∞ on this space.
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T. Roub́ıček / Numerical approximation of relaxed variational problems 347

[17] M. Luskin: Numerical analysis of microstructure for crystals with a nonconvex energy den-

sity. In: The Metz Days Surveys 1989-90 (M.Chipot, J. Saint Jean Paulin, eds.), Pitman

Res. Notes in Math., Longman, Harlow (1991) 156–165.

[18] S. Müller: Minimizing sequences for nonconvex functionals, phase transitions and singular

perturbations. In: Lecture Notes in Physics 359 (K. Kirchgäsner, ed.), Springer, Berlin

(1988) 31–44.

[19] C.B. Morrey, Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific

J. Math. 2 (1952) 25–53.

[20] R.A. Nicolaides, N.J. Walkington: Computation of microstructure utilizing Young measure
representations. In: Recent Advances in Adaptive and Sensory Materials and their Appli-
cations (C.A.Rogers, R.A.Roegers, eds.), Technomic Publ. (1992) 131–141.

[21] R.A. Nicolaides, N.J. Walkington: Strong convergence of numerical solutions to degenerate
variational problems, Res. Report 92-NA-027, Center for Nonlinear Analysis, Carnegie
Mellon University, 1992.

[22] Y.G. Reshetnyak: On the stability of conformal mappings in multidimensional spaces.

Siberian Math. J. 8 (1967) 69–85.
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