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1. Introduction

Let E be an l.c.s.. (Hausdorff locally convex space), E ′ its dual and X ⊂ E a proper
convex cone, not necessarily closed. Recall that an open ray δ of X is said to be extreme
if (x ∈ δ and x = y + z with y, z ∈ X \ 0) implies (y, z ∈ δ); we denote by Eg(X) the
union of all the extreme open rays of X. One of the problems of the theory of integral
representation is to give conditions on X in order that for each x ∈ X , there is at least
one positive Radon measure m on Eg(X), such that:

1. Each ` ∈ E ′ is m-integrable.
2. One has m(`) = `(x), for each ` ∈ E ′.
Then we say that x is the resultant of m and we write x = r(m).

Definition 1.1. When the cone X has the preceding properties, we say that X has the
property of integral representation, denoted by I.R..

Recently E. Thomas ([8]) proved a theorem of integral representation for a class of convex
cones, called conuclear. The aim of this work is to give a quite different presentation of
his results, with the help of other tools, one of which is new (the pseudo-caps, introduced
in 3.1), allowing to avoid some of his hypotheses.

The plan is as follows:
In part 2 we recall some results showing the progression of the theory of integral repre-
sentation and how the present work fits with this theory.
In part 3 we prove the main results of this work and we introduce the pseudo-caps.
In part 4 we establish the link with the conuclear cones of E. Thomas.
In part 5 we discuss some examples.
The main results are Theorems 3.11 and 4.8.
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2. The theory of Integral Representation

When the cone X has a weakly compact metrizable base then X has I.R.: This is the
classical theorem of integral representation for convex compact metrizable sets, proved by
G. Choquet. ([7], page 19)
The notion of cap of a convex cone, introduced by G. Choquet, permits to cope with more
general cones:

Definition 2.1. ([7], page 87)
A subset K of X is called a cap of X, when it is non-empty, convex, weakly compact and
such that X \K is also convex.
If X is the union of its caps then X is said to be well-capped.

For what follows, it is useful to recall the following characterization of caps of G. Choquet:

Lemma 2.2. ([7], page 89)
Let K be a convex subset of X, containing 0; the two following properties are equivalent:

1. K is a cap of X.
2. The gauge j of K is a lower semi-continuous function, defined on X, which is additive

and positive-homogeneous, with values in [0,+∞] such that K = j−1([0, 1]) is weakly
compact.

The following result of G. Choquet is fundamental:

Theorem 2.3. ([7], page 90)
For each x ∈ X, contained in a metrizable cap of X, there is a Radon measure m ≥ 0 on
Eg(X) such that m(`) = `(x), for each ` ∈ E ′, or in other words x = r(m).

For example, the cone l1+(N) does not admit a compact base for the duality with co(N),

but it is generated by a cap, namely K = (x : x = (xn) ∈ l1+(N) and
∑∞

0 xn ≤ 1), which

is metrizable. By Theorem 2.3 this cone has property I.R..

Now here is a theorem concerning a class of cones, studied in [6] and in [3], which are not
necessarily well-capped.

Theorem 2.4. Let X be a convex cone, generated by a compact metrizable set K ⊂ X,
containing 0, for which there exists an affine function φ, defined on X, such that for some
positive constant M:
jK(x) ≤ φ(x) ≤M.jK(x), for each x ∈ X, where jK is the gauge of K.
Then the cone X has property I.R..

In fact, this work can be seen as an extension of the preceding theorem.
The results that we have recalled yield positive Radon measures; but they can be formu-
lated in an apparently more abstract way which will lead us to a very useful tool.

Definition 2.5. (Weakly complete cones and conical measures) ([4], par.30)
Let S be the class of weakly complete convex proper cones contained in an l.c.s. E. And
let X ∈ S. We denote by h(X) the Riesz vector space of functions on X generated by

E′ |X and by s(X) the subcone of h(X) consisting of all finite suprema of elements of

E′ |X . The space h(X) is ordered by the set of its positive elements.
A positive linear form on h(X) is called a positive conical measure on X. We denote by

M+(X) their set.
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Each µ ∈M+(X) has a resultant r(µ) ∈ X such that:

µ(`) = `(r(µ)) for each ` ∈ E ′.
The cone M+(X) is ordered by:
(λ ≺ µ) iff ( λ(f) ≤ µ(f) for each f ∈ s(X)).

The following theorem is fundamental:

Theorem 2.6. ([4], 30.13)

For each x ∈ X there is a µ ∈ M+(X), which is maximal for the order ≺, and we have
r(µ) = x.

The following characterization of maximal conical measures will be very useful:

Theorem 2.7. ([4], 30.pb1)

If µ ∈M+(X) the three following properties are equivalent:

1. µ is maximal for the order ≺ .
2. For each f ∈ h(X) then: µ(f) = inf(µ(g) : g ∈ −s(X) and g ≥ f on X ).
3. Same condition as in 2. but only for each f ∈ s(X).

Finally we recall a theorem of H. Fakhoury ([5]) which will be useful for us:

Theorem 2.8. Let Z ⊂ E be a proper convex cone, covered by an increasing sequence
of weakly compact convex sets (Zn), which are hereditary for the order of Z.
Then Z ∈ S for the duality with the space of all affine and homogeneous functions on Z,
whose restriction to each Zn is continuous.

3. Pseudo-caps and main results

We introduce now the notion of pseudo-cap of a cone, which will show that this work is
in some sense parallel to the theory of caps.

Definition 3.1. (The pseudo-caps)
Let X be a proper convex cone, contained in a vector space V , not necessarily equipped
with a topology. We call pseudo-cap of X any non-empty convex set K ⊂ X, such that
X \K is also convex and that each ray of X intersects K along a compact interval.

We shall give in 5.2 an example of a pseudo-cap K of a cone contained in an l.c.s., such

that K is compact, but is not a cap.
Here is an analytical characterization of pseudo-caps, analoguous to that of caps:

Proposition 3.2. Let K be a pseudo-cap of a convex cone X; the gauge of K is additive
and homogeneous on X, with values in [0,∞], and it is > 0 on X \ 0.
Reciprocally, for each function f , defined on X, with values in [0,∞], which is additive

and homogeneous, and which is > 0 on X \ 0, the set K = f−1([0, 1]) is a pseudo-cap of
X and f is the gauge of K.

Proof. In order to show that the gauge j of K is additive on X, it is sufficient to consider
the two dimensional sub-cones of X: Let Y be such a sub-cone, generated by x, y ∈ X;

it is sufficient to prove that: K ∩ Y = conv((K ∩ R+.x) ∪ (K ∩ R+.y)), which is easy to

prove since each ray of X intersects K along a segment [0, a] and hence K ∩ (R+.x) and

K ∩ (R+.y) are compact intervals.



352 R. Becker / A new tool in the theory of integral representation

One has j(x) > 0 for each x 6= 0, since each ray of X intersects K along a segment [0, a].
The remainder of the proposition is easy.

Remark 3.3. Here is an example proving that, in the preceding proposition, the
condition that the intersection of K with each ray of X is a compact interval cannot be
removed:
In R2, let X be the cone ((x, y) : x, y ≥ 0).
If K = ((x, y):(x, y) ∈ X and y ≥ x− 1) obviously K is convex, contains 0 and X \K is
also convex. But the gauge j of K is not additive:
Indeed, one has j((1, 0)) = 1 and j((0, 1)) = 0, but j((1, 1)) = 0.

Recall that a face of a proper convex cone X is a convex sub-cone of X which is hereditary
for the order of X.

Proposition 3.4. For each pseudo-cap K of X the cone XK generated by K is a face
admitting (x : jK(x) = 1) as a base.

Proof. One has XK = (x : x ∈ X and jK(x) <∞) and jK is additive on X.

The two following theorems are fundamental; in particular the following theorem is ana-
logous to Theorem 2.3.

Theorem 3.5. Let X be a convex proper cone, not necessary closed, contained in an
l.c.s. E, equipped with its weak topology. Let K be a pseudo-cap of X, contained in a
compact convex set S of X, which is metrizable and hereditary for the order associated to
X.
Then, for each x ∈ XK , there is a positive Radon measure m on E g(X), integrating all

the elements of E ′, such that r(m) = x.

Proof. There are three steps. We suppose that x 6= 0.
1. Let Y be the cone generated by S. Using Theorem 2.8, if we denote by F the space
Y − Y , there is F ′ ⊂ F ∗, containing E ′ |F , such that Y ∈ S for the duality with F ′.
Moreover, S is compact and metrizable for this topology by Theorem 2.8. Since S is
hereditary in X, the cone Y is a face of X and hence Eg(Y ) ⊂ Eg(X). Hence we can use
the cone Y to prove the theorem.

2. Since Y ∈ S, there exists, by Theorem 2.6, a conical measure µ ∈ M+(Y ), for the

duality with F ′, which is maximal and such that x = r(m).
Since Y ∈ S, there exists an ultrafilter U on the set of all conical measures ν on Y such
that:
ν =

∑n
1 εxi, with

∑n
1 xi = x, and xi 6= 0, for each i, and this ultrafilter converges to µ for

the duality with h(F ). This follows from ([4], 30.9).
Let j be the gauge of K; since one has j > 0 on X \ 0 and since j(x) <∞, one can write:∑n

1 εxi =
∑n

1 j(xi).εyi , with yi = xi/j(xi).

The Radon measure
∑n

1 j(xi).εyi, on S, converges, with respect to U , to a Radon measure

m on S, since
∑n

1 j(xi) = j(x), so that one has µ = m on h(F ).

3. Let us show that m is carried by Eg(X):

For each f ∈ h(Y ), let f̂ be the function on Y defined by:

f̂(y) = inf(g(y) : g ∈ −s(Y ) and g ≥ f on Y ), for each y ∈ Y .
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Since µ is maximal on Y , one has m(f̂) = m(f) for each f ∈ h(F ), by Theorem 2.7.

Since S is metrizable for the duality with F ′, it is easy to find a sequence (fn) of h(F ),

such that (X \ 0) ∩ (f̂n = fn) = Eg(Y ).

Since Y is a face of X, one has Eg(Y ) ⊂ Eg(X), hence the result.

Theorem 3.6. (With the hypotheses and notations of the preceding theorem)
Suppose that for each x ∈ XK all the positive Radon measures on Eg(X) having x as
resultant, induce the same conical measure on X.
Then XK is a Riesz cone for its own order.

Proof. By the hypotheses, for each x ∈ XK , there is only one maximal conical measure
µ ∈M+(Y ) having x as resultant.

Since XK is a face of Y , for each λ ∈M+(Y ), such that λ ≤ µ , one has r(λ) ∈ XK .

Hence XK is isomorphic to a face of M+(Y ) and so XK is a Riesz cone.

Remark 3.7. The converse of the preceding theorem is false, even for a well-capped
closed cone. We shall give an example in 5.1.

The following elementary lemma will permit us to use Theorem 3.5:

Lemma 3.8.
Let X be a convex proper cone, not necessarily closed, contained in an l.c.s. E, equipped
with its weak topology.

Let K1 and K2 be two pseudo-caps of X such that K1 and K2 are two compact subsets of

X, satisfying K1 ⊂ K2.

Then, the hereditary envelope of K1 in X, denoted by s(K1), is a convex compact subset

of X, contained in K2.

Proof. Suppose x ∈ s(K1); there are y ∈ K1 and z ∈ X such that x + z = y; one has

also y ∈ K2 since K1 ⊂ K2, hence x, z ∈ K2, since K2 is a pseudo-cap.

Hence the lemma, since K1 and K2 are compact convex subsets of X:

Using an ultrafilter U on s(K1), it is immediate that y converges to an element of K1 and

x, z to elements of K2.

Here is a first consequence of Theorem 3.5 and of the preceding lemma:

Theorem 3.9. Let X be a proper convex cone, not necessarily closed, contained in an
l.c.s. E, equipped with its weak topology.

Let K1 and K2 be two pseudo-caps of X, such that K1 and K2 are compact metrizable

subsets of X, satisfying K1 ⊂ K2.
Then, for each x ∈ XK1, there is a Radon measure m ≥ 0 on Eg(X), integrating all the

elements of E ′, and such that r(m) = x.

Proof. We apply Theorem 3.5, with K = K1 and S = s(K1), which is a metrizable
compact convex subset of X, by Lemma 3.8.

The preceding theorem suggests the following definition, which can be compared with
Definition 2.1 of well-capped cones.



354 R. Becker / A new tool in the theory of integral representation

Definition 3.10. (Pseudo-well-capped cones)
Let X be a proper convex cone, not necessarily closed, contained in an l.c.s. E, equipped
with its weak topology.
We say that X is pseudo-well-capped by K, if there is a family K of pseudo-caps of X such
that:

1. ∪K = X, where K ∈ K.

2. For each K ∈ K, then K is a compact subset of X.

3. For each K1 ∈ K there is K2 ∈ K, such that K1 ⊂ K2.

Of course this definition remains meaningfull if E is an l.c.s. not necessarily equipped with
its weak topology. In what follows we shall never use such an extension of the definition.

Now we are able to prove the following theorem of integral representation which is the
main result of this work.

Theorem 3.11. (With the notations of Definition 3.10)
Suppose E is an l.c.s. equipped with its weak topology.
Let X ⊂ E be a cone which is pseudo-well-capped by K, and such that each K ∈ K is
metrizable. Then the cone X has I.R.

Proof. Apply Theorem 3.9.

Remark 3.12. We shall give in 5.2 an example, due to A. Goullet de Rugy, of a

pseudo-cap K of a cone X, such that K is a compact subset of X, but not a cap of X.

The following proposition concerns the stability of the class of pseudo-well-capped cones
under some operations:

Proposition 3.13.

1. Any (relatively) closed convex subcone of a pseudo-well-capped cone is itself pseudo-
well-capped.

2. Any denumerable product of pseudo-well-capped cones is also pseudo-well-capped.

Proof.
1. Obvious.
2. Let Xn ⊂ En be a sequence of pseudo-well-capped cones and let Kn be a family of
pseudo-caps satisfying the three conditions of Definition 3.10. Let E =

∏
En and let

X =
∏
Xn. Let K be the family of all pseudo-caps K of X such that, for each x = (xn),

one has:
jK(x) =

∑∞
1 an.jn(xn), where jn is the gauge of Kn ∈ Kn and each an is > 0.

It is immediate that K is a pseudo-cap of X; let us prove that the family K satisfies the
three conditions of Definition 3.10:
1. ∪K = X, where K ∈ K : It is immediate.

2. If K ∈ K, then K ⊂ ∏Kn/an, hence K is a compact subset of X, since Kn is a
compact subset of Xn.

3. If jK(x) =
∑∞

1 an.jn(xn), using the preceding notations, for each integer n, choose

K ′n ∈ Kn, such that Kn ⊂ K ′n; we denote by j ′n the gauge of K ′n.
For each x = (xn) we set:

j′(x) =
∑∞

1 2−n.an.j′n(xn); it is immediate that j ′ is the gauge of some K ′ ∈ K; then we
have:
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K ⊂∏Kn/an ⊂
∏
K ′n/an ⊂ K ′.

The proof is now complete.

Recall the following definition which is useful for Theorem 3.15.

Definition 3.14. (Localizable conical measures)

Let X ∈ S; a conical measure µ ∈ M+(X) is said to be representable or localizable on
X \ 0 if there is a positive Radon measure on X \ 0 which is equal to µ on h(X).

Theorem 3.15. (With the notations of Definition 3.10)
Suppose E is an l.c.s. equipped with its weak topology.
Let X ⊂ E be a pseudo-well-capped cone. Let (Kn) be a sequence of elements of K such

that Kn ⊂ Kn+1 for each n. Then the cone Z, generated by the union of the sets Kn, has
the three following Properties:

1. Z is a face of X.
2. Z ∈ S, for the duality with the space A0 consisting of all affine homogeneous functions

on Z, whose restrictions to each Zn are continuous.
3. Each positive conical measure on Z, for the duality with A0, is localizable on Z \ 0.

Proof.
1. Obvious by Proposition 3.4.
2. Obvious by Theorem 2.8 and Lemma 3.8.
3. The proof of part 2 of Theorem 3.5 works also for a conical measure which is not
maximal:
Indeed, if r(µ) ∈ Kn, then µ is localizable on Kn.

4. Pseudo-well-capped cones and conuclear cones

In this part, we will compare the class of pseudo-well-capped cones and that of conuclear
cones of E. Thomas ([8]). Indeed, in Theorem 4.8 we shall prove that these two classes of
cones are identical when the space is equipped with its weak topology.
First we need the following definition:

Definition 4.1. Let X be a proper convex cone, contained in a vector space V , not
necessarily equipped with a topology. Let A and B be two convex subsets of X, containing
0; we say that A is capped by B, and we note A ≺ B, if, for each finite sequence (x1, . . . , xn)

of X, such that
∑n

1 xi ∈ A, one has:
∑n

1 jB(xi) ≤ 1.
It is immediate that any pseudo-cap of X is capped by itself.

The following elementary lemma enables us to consider only hereditary subsets.

Lemma 4.2. (With the notations of the preceding definition)

If A ≺ B then Â ≺ B̂, if we denote by Â and by B̂ the hereditary envelopes of A and B,
for the order of X.

Proof. It is sufficient to prove that Â ≺ B, since jB̂ ≤ jB.

If
∑n

1 xi ∈ Â, there is x0 ∈ X such that (x0 +
∑n

1 xi) ∈ A .
The lemma follows immediately.
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We will give an interpretation of the relation A ≺ B in terms of pseudo-caps. For this
purpose we shall use a technique of L. Asimow ([1], prop.2.3. and [2], prop.5.).

Lemma 4.3. Let X be a proper convex cone, not necessarily closed, contained in an
l.c.s. E, equipped with its weak topology. Let A and B be two compact convex subsets of
X, containing 0. We suppose that A is hereditary for the order of X.
Then the two following properties are equivalent :

(1) One has A ≺ B.
(2) For each ε > 0, there is an algebraic hyperplane of the vector subspace EA generated

by A, which separates A and EA ∩ j−1
B (1 + ε).

Proof.
(1) ⇒ (2) (The heredity of A will not be used here).
Let q be the norm on EA such that the associated unit ball is (A−A). Let us show that
the two following sets are disjoint:

Bε = conv(EA ∩ j−1
B (1 + ε)) and Aε = A+ ε/2.(A− A).

It is sufficient to prove that the following equality is impossible:∑n
1 αi.xi = a0 + ε/2.(a1−a2), where each xi is an element of X, jB(xi) = 1 + ε, and each

αi is ≥ 0, with sum 1 and a0, a1, a2 ∈ A:

Indeed, suppose that: ε/2.a2 +
∑n

1 αi.xi = a0 + ε/2.a1. Since A ≺ B we have (1 + ε) ≤
1 + ε/2, which is a contradiction.
Now it is sufficient to apply the separation theorem of Hahn-Banach to Bε and Aε.
(2) ⇒ (1)
Let lε be a linear form on EA such that (lε = 1) is the hyperplane mentioned in (2).

If
∑n

1 xi ∈ A, where each xi is an element of X, then xi ∈ EA for each i, since A is

hereditary, hence
∑n

1 lε(xi) ≤ 1.

Consequently one has (
∑n

1 jB(xi)/(1 + ε) ≤∑n
1 lε(xi) ≤ 1.

Hence the result when ε→ 0.

The following lemma is a translation, in terms of pseudo-caps, of the preceding lemma:

Lemma 4.4. (With the hypotheses of the preceding lemma)
The two following properties are equivalent:

(1) One has A ≺ B.
(2) For each ε ≥ 0 there is a pseudo-cap Kε of X, such that A ⊂ Kε ⊂ (1 + ε).B.

Proof.
(1) ⇒ (2)
Since A is hereditary in X, the set EA ∩X is a face of X; consequently the set (x : x ∈
EA ∩X and lε(x) ≤ 1) is a pseudo-cap of X, denoted by Kε, with property (2).
(2) ⇒ (1)
This follows from (2) ⇒ (1) of the preceding lemma, using the gauge of the pseudo-cap
Kε.

We are now able to give the definition of the conuclear cones of E. Thomas ([8]):

Definition 4.5. (Conuclear cones)
Let X be a proper convex cone, not necessarily closed, contained in an l.c.s. E, not
necessarily equipped with its weak topology. The cone X is called conuclear if there is a
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family Θ of compact convex subsets of X, containing 0, whose union is X, and such that
for each A ∈ Θ, there is B ∈ Θ such that A ≺ B.
Of course X remains conuclear if E is equipped with its weak topology. Indeed E. Thomas
uses this definition even when E is not equipped with its weak topology. We shall see
why in Remarks 4.10.

The following elementary lemma is useful, for the use of hereditary subsets:

Lemma 4.6. For each A ∈ Θ, its hereditary envelope, denoted by Â, is a compact
convex subset of X.

Proof. Let x ∈ Â; there are y ∈ A and z ∈ X such that y = x + z. Choose B ∈ Θ such
that A ≺ B; one has x, z ∈ B, hence the result, since B is compact.

Lemma 4.7. If X is conuclear for the family Θ, it is also conuclear for the following

family: Θ̂ = {Â : A ∈ Θ}.

Proof. Obvious by Lemmas 4.2 and 4.6.

Here now is the identification we were looking for:

Theorem 4.8. Let X be a proper convex cone, not necessarily closed, contained in an
l.c.s. E equipped with its weak topology. The two following properties are equivalent:

1. X is pseudo-well-capped.
2. X is conuclear.

Proof.
(1) ⇒ (2)
Let K be a family of pseudo-caps of X, satisfying the conditions of Definition 3.10:

Let Θ = (K : K ∈ K); it is immediate that K1 ≺ K2 if K1 ⊂ K2. Hence X is conuclear
for the family Θ.
(2) ⇒ (1)
Let Θ be a family of convex compact subsets of X, satisfying the conditions of defi-
nition 4.5:
By Lemma 4.7, we may assume that the menbers of Θ are hereditary and that Θ is stable
by positive scalar multiplications. Let K be the family of all pseudo-caps K of X such
that there is A,B ∈ Θ satisfying A ⊂ K ⊂ B.
Then, it is immediate that X is pseudo-well-capped, by Lemma 4.4.

As a consequence of the preceding theorem, Theorem 3.11 can be given the following
formulation:

Theorem 4.9. (With the notations of Definition 4.5)
Suppose E is an l.c.s. not necessarily equipped with its weak topology.
Let X ⊂ E be a conuclear cone for a family Θ such that each A ∈ Θ is metrizable. Then
X has I.R.

Proof. Obvious, since X is also conuclear when E is equipped with its weak topology.
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Remark 4.10. E. Thomas ([8]) proved the preceding theorem using two other hypothe-
ses on X:
1. X is closed.
2. Condition 〈〈Convex Envelope〉〉, or (C.E.): Each compact subset of X is contained

in a convex compact subset of X.
Note that X can satisfy condition (2) for the topology of E but not for its weak topology
and compare with Definition 4.5.

The two hypotheses of the preceding remark were used by E. Thomas ([8]) to prove the
following lemma, not proved here, which can be compared with part 2 of the proof of
Theorem 3.5:

Lemma 4.11. Let X be a closed convex cone, having (C.E), contained in an l.c.s. E.

For each positive Radon measure m on X \0, integrating all the elements of E ′, such that
r(m) ∈ X, the conical measure µm induced by m, is the limit, for the duality with h(X),
of a net of conical measures of the following form:∑n

1 εxi, with xi ∈ X for each i, and
∑n

1 xi = r(m).

E. Thomas ([8]) proved also the following theorem not proved here and which can be
compared with Theorem 3.6:

Theorem 4.12. (With the hypotheses of Theorem 4.9)
Suppose that X is closed and has (C.E). If X is a Riesz cone then, for each x ∈ X, all the
positive Radon measures on Eg(X) having x as resultant, induce the same conical measure
on X.

Remark 4.13. We shall give in 5.1 an example of a cone X, showing that, in the
preceding theorem, the condition (C.E.) cannot be dropped.

5. Examples

Here are a few examples, interesting for various reasons:

Example 5.1. (Showing that condition (C.E.) cannot be dropped in Theorem 4.12)
Let T = [0, 1]. Let E be the vector space generated by all the Dirac measures εx, where

x ∈ T , and by the Lebesgue measure λ. We equip E with the weak* topology: Hence E ′

is not the dual of E for the norm topology.
Let X be the convex subcone of E generated by all the Dirac measures εx and by λ:
It is immediate that X is a Riesz cone, but λ is the resultant of two different conical
measures, localizable on Eg(X):

λ is the resultant of ελ and of
∫
T εx.λ(dx).

The cone X does not enjoy condition (C.E.), although it is the union of its finite dimen-
sional caps and it is closed in E.

Example 5.2. (A. Goullet de Rugy [6])
Let M be the Banach space of all Radon measures on [0, 1], equipped with the duality
with the space C = C ([0, 1]); we denote by M1 the unit ball of M.
Choose a ∈ [0, 1] and let X be the cone generated by the following compact convex set
A = {λ− εa : λ ∈ M1}. We set X1 = X ∩M1.
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We will recall the main properties of X, giving only sketchy proofs. Here is an easy key
lemma without proof:

Lemma 5.3. One has:

X =
⋃

k≥0

k((λ− εa) : ‖λ‖ ≤ 1;λ({a}) = 0)

Theorem 5.4.
1. Let φ be the linear form on M defined by φ(ν) = −2.ν({a}); then:
‖x‖ ≤ φ(x) ≤ 2.‖x‖, for each x ∈ X.

2. One has X ∈ S, for the duality with C.
3. The element -εa does not belong to any cap of X.

Proof.
1. It is an immediate consequence of the preceding lemma.
2. It is a consequence of Theorem 2.4, since X1 contains a ball of M.
3. Let j be the gauge of a cap containing -εa; since X contains a ball of center -εa it is
immediate that j is finite and continuous, hence X would have a compact base for the
duality with C. One can prove that this is impossible, since a is not an isolated point of
T .

As an immediate consequence of the preceding theorem we have:

Theorem 5.5. The cone X is pseudo-well-capped and has I.R.

Proof.
X is pseudo-well-capped by the family of all the sets: k.{x : x ∈ X and φ(x) ≤ 1} where
k is a positive scalar.
X has I.R. by Theorem 3.11, since X1 is compact and metrizable for the duality with C.

Remark 5.6. The construction of example 5.2 can be carried out starting from any
compact set T and any non isolated point a of T :
Theorem 5.4 remains true for the cone constructed in this way; Theorem 5.5 also, if T is
metrizable.

5.7. Other examples
Proposition 3.13 shows the existence of a lot of pseudo-well-capped cones:

For example, if X1, X2, . . . denotes a sequence of cones built as in 5.2 and 5.6, starting
from T1, T2, . . . and from a1, a2, . . ., where for each n, an ∈ Tn and is not isolated, one
has:
Any closed convex subcone of the product

∏
Xn is pseudo-well-capped and it has I.R., if

the spaces Tn are metrizable.
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