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We present a complete answer to Simons’ question about strong maximal monotonicity of subdifferentials
of convex functions.
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1. Introduction

Rockafellar’s maximal monotonicity theorem [5], [4] is one of the fundamental results of
convex analysis. It says that if f is a proper convex lower semicontinuous function on a real
Banach space X with topological dual X ′, then subdifferential of f is maximal monotone,
that is if (y, y∗) ∈ X ×X ′ and for every x ∈ X, x∗ ∈ ∂f(x) one has 〈y∗ − x∗, y − x〉 ≥ 0,
then y∗ ∈ ∂f(y).
By our knowledge there exist at least five different proofs of this fact in the literature, the
original one of Rockafellar [5] and the others by Taylor [8], Borwein [1], Simons [6], Luc
[2]. The proof given in the latter paper via Zagrodny’s approximate mean value theorem
[9] seems to be the simplest.

In [6], [7] Simons generalized maximal monotonicity by replacing y or y∗ above by appro-
priate convex sets. Specifically, he proved the following important results which subsume
maximal monotonicity:

(i) Let B be a nonempty weakly compact convex subset of X and b∗ ∈ X ′ \∂f(B). Then
there exist y ∈ X and y∗ ∈ ∂f(y) such that 〈y∗ − b∗, b− y〉 > 0, for all b ∈ B;

(ii) Let B∗ be a nonempty weakly∗ compact convex subset of X ′ and b ∈ X with ∂f(b)∩
B∗ = ∅. Then there exist y ∈ X and y∗ ∈ ∂f(y) such that 〈y∗− b∗, b− y〉 > 0, for all
b∗ ∈ B∗;

Simple proofs of these results were given in [3] by using a “region type” generalization of
Zagrodny’s mean value theorem.

The following question was asked by Simons in his lecture delivered at the CIRM Confer-
ence held from 22 to 26 June 1992 at Marseille, France (see [7]). If B is a nonempty weakly
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compact convex subset of X and B∗ is a nonempty weakly∗ compact convex subset of X ′

with ∂f(B)∩B∗ = ∅, does there exist y ∈ X and y∗ ∈ ∂f(y) such that 〈y∗−b∗, b−y〉 ≥ 0,
for all b ∈ B, b∗ ∈ B∗.
The aim of the present note is to give a complete answer to this question. Namely, we
show that the answer is yes in the case where X is one-dimensional and the answer is no
in higher dimensions. We thank an anonymous referee for useful suggestions which lead
to a shortened proof of Theorem 2.2.

2. The one-dimensional case

In this section we suppose that f is a proper convex lower semicontinuous function on IR
with values in the extended real line IR∪{+∞}. We shall need the following result, which
is a one-dimensional version of Lemma 2.1 of [2].

Lemma 2.1. Assume that g is a weakly lower semicontinuous function on IR with values
in IR ∪ {+∞}, x0 < a and g(x0) < g(a). Then there exist y < a and z∗ ∈ ∂g(y) such that
z∗ > 0.

In the above lemma the subdifferential can be any one which satisfies certain natural
requirements (see [3]). It is sufficient to note that when g is convex, the subdifferential

is understood in the sense of convex analysis, that is ∂g(x) = {x∗ ∈ X ′ : 〈x∗, v〉 ≤
g(x+ v)− g(x) for all v ∈ X}.
Now we present the main result of this section.

Theorem 2.2. Let f be a proper convex lower semicontinuous function on IR with
values in the extended real line. Let [a, b] and [c, d] be two segments in IR such that
∂f(x) ∩ [c, d] = ∅ for all x ∈ [a, b]. Then there exist y ∈ IR \ [a, b] and y∗ ∈ ∂f(y) such
that (y∗ − x∗)(x− y) > 0 for all x ∈ [a, b], x∗ ∈ [c, d].

Proof. Let h be a convex function on IR defined by h(x) := d(a−x) if x ≤ a and h(x) :=
c(a − x) if x > a. Consider the function g(x) := f(x) + h(x). This function is proper
convex, lower semicontinuous. Moreover, ∂g(x) ⊆ ∂f(x) + ∂h(x) ⊆ ∂f(x) + [−d,−c]. It
follows from the condition of the theorem that 0 /∈ ∂g([a, b]). Consequently, the segment
[a, b] does not contain any minimum of g, that is there exists a point x0 ∈ IR such that
g(x0) < infx∈[a,b] g(x). We assume x0 < a. The case x0 > b is similar. Then g(x0) < g(a).

By Lemma 2.1, there exist y < a and z∗ ∈ ∂g(y) such that z∗ > 0. For x < a, one
has ∂h(x) = {−d}, therefore one can find y∗ ∈ ∂f(y) such that z∗ = y∗ − d. Hence
y∗ > d. Now, for x ∈ [a, b] and x∗ ∈ [c, d] we have x > y and y∗ > x∗. Consequently,
(y∗ − x∗)(x− y) > 0 as requested.

It is worthwhile noticing that Corollary 2.2 of [3] which is a generalization of Lemma 2.1
to the case where g is defined on a general Banach space and a is replaced by a weakly
compact convex set can also be used to prove Theorem 2.2 above.

3. A counterexample

We are going to construct a differentiable convex function f on IR2 and two convex

compact sets B,B∗ in IR2 for which the answer to Simons’ question is “no”. First we
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define a function h on IR by

h(x) =





−1 if x < −2,

(x + 2)2 − 1 if x ∈ [−2,−1],

2(x+ 1) if x ∈ [−1, 1],

x2 + 3 if x > 1.

It is obvious that h is a differentiable convex function on IR. Now define f on IR2 by

f(x, y) = h(x) + y/2. Furthermore, let B∗ be the unit ball in IR2 (equiped with the
Euclidean norm) and B the rectangle [−1, 1]×[−20, 20]. Since for (x, y) ∈ B the derivative
of f is a constant vector equal to (2, 1/2) 6∈ B∗, the hypothesis of Simons’ question is

satisfied. We wish to show that there exists no point (a, b) ∈ IR2 such that

〈f ′(a, b)− (u, v), (x, y)− (a, b)〉 > 0 (3.1)

for all (x, y) ∈ B, (u, v) ∈ B∗.
In fact, let us rewrite the above inequality in the following form

〈f ′(a, b), (x, y)− (a, b)〉 > ‖(x, y)− (a, b)‖ (3.2)

for every (x, y) ∈ B. Direct calculation shows that

〈f ′(a, b), (x, y)− (a, b)〉 =





(y − b)/2 if a < −2,

2(a+ 2)(x− a) + (y − b)/2 if a ∈ [−2,−1],

2(x− a) + (y − b)/2 if a ∈ [−1, 1],

2a(x− a) + (y − b)/2 if a > 1.

By taking x = −1 and y = 0 in the above formula we see that for a > 1,

〈f ′(a, b), (x, y)− (a, b)〉 = −2a(1 + a)− b/2 < −b/2,

while

||(x, y)− (a, b)|| =
√

(1 + a)2 + b2 >
√

4 + b2,

which shows that (3.2) does not hold. In the other cases we have the following estimate

〈f ′(a, b), (x, y)− (a, b)〉 < 5 + (y − b)/2

for every (x, y) ∈ B because

max
a∈[−2,−1],x∈[−1,1]

2(a+ 2)(x− a) ≤ max
a∈[−2,−1]

2(a+ 2)(1− a)

≤ max
a∈IR

2(a + 2)(1− a) = 4.5,
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max
a∈[−2,−1],x∈[−1,1]

2(x− a) = 4.

This and (3.2) imply that

5 + (y − b)/2 >
√

1 + (y − b)2

for every y ∈ [−20, 20]. Consequently, y − b ∈ [(10−
√

388)/3, (10 +
√

388)/3] ⊆ [−4, 10]
for all y ∈ [−20, 20]. Such a number b does not exist, hence neither does (a, b) satisfying
(3.1) exist.
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