Bounds for Anti-Distance*

T. Ando
Hokusei Gakuen University, Faculty of Economics, Atsubetsu-ku, Sapporo 004, Japan.
e-mail: ando@hokusei.ac.jp

Received January 30, 1995
Revised manuscript received July 26, 1995

Given two matrices A, B, we give an upper and a lower bound for the anti-distance $\sup _{U}\left\|A-U^{*} B U\right\|_{\infty}$ where U runs over the set of unitary matrices.

Let \mathbb{M}_{n} be the space of $n \times n$ complex matrices, and \mathbb{U}_{n} the group of unitary matrices. For each $B \in \mathbb{M}_{n}$, the set $\left\{U^{*} B U: U \in \mathbb{U}_{n}\right\}$ is the unitary similarity orbit through B. Thus $\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty}$ is considered as the anti-distance from A to the orbit with respect to the spectral norm $\|\cdot\|_{\infty}$. In this note we give an upper and a lower bound for the anti-distance. Recall that

$$
\|A\|_{\infty} \equiv \sup _{\|x\|=1}\|A x\|=\sup _{\|x\|=\|y\|=1}\left|y^{*} A x\right|
$$

where y^{*} is the conjugate transposed (row) vector of y.

Theorem 1.

$$
\begin{equation*}
\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty} \leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \tag{1}
\end{equation*}
$$

Proof. Since for any $U \in \mathbb{U}_{n}$

$$
\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty}=\left\|A \otimes I-I \otimes\left(U^{*} B U\right)^{T}\right\|_{\infty}
$$

it suffices to prove

$$
\begin{equation*}
\|A-B\|_{\infty} \leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \tag{2}
\end{equation*}
$$

or equivalently for any (column) vectors x, y

$$
\begin{equation*}
\left|y^{*}(A-B) x\right| \leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \cdot\|x\| \cdot\|y\| . \tag{3}
\end{equation*}
$$

Remark that

$$
y^{*}(A-B) x=\operatorname{tr}\left((A x) \cdot y^{*}-x \cdot\left(B^{*} y\right)^{*}\right) .
$$

* Research supported in part by Grant-in-Aid for Scientific Research

Since the matrix $(A x) \cdot y^{*}-x \cdot\left(B^{*} y\right)^{*}$ is of rank ≤ 2, the number of its non-zero singular values $s_{1} \geq s_{2} \geq \cdots \geq s_{n}(\geq 0)$ is 2 at most. Therefore

$$
\begin{align*}
\left|y^{*}(A-B) x\right| & \leq\left\|(A x) \cdot y^{*}-x \cdot\left(B^{*} y\right)^{*}\right\|_{1} \\
& =s_{1}+s_{2} \\
& \leq \sqrt{2}\left(s_{1}^{2}+s_{2}^{2}\right)^{1 / 2} \\
& =\sqrt{2}\left\|(A x) \cdot y^{*}-x \cdot\left(B^{*} y\right)^{*}\right\|_{2} \tag{3}
\end{align*}
$$

where $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ denote the trace norm and the Hilbert-Schmidt norm respectively;

$$
\|X\|_{1} \equiv \operatorname{tr}(|X|) \quad \text { and } \quad\|X\|_{2} \equiv\left(\operatorname{tr}\left(|X|^{2}\right)\right)^{1 / 2}
$$

with $|X|$, the positive semidefinite square root of $X^{*} X$.
Consider the linear map $\Delta_{A, B}$ on the Hilbert space ($\mathbb{M}_{n},\|\cdot\|_{2}$), defined by

$$
\begin{equation*}
\Delta_{A, B}(X)=A X-X B \tag{4}
\end{equation*}
$$

Then clearly we have

$$
\begin{equation*}
(A x) \cdot y^{*}-x \cdot\left(B^{*} y\right)^{*}=\Delta_{A, B}\left(x \cdot y^{*}\right) . \tag{5}
\end{equation*}
$$

On the other hand, since $\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty}$ coincides with the operator (spectral) norm of $\Delta_{A, B}$ on ($\mathbb{M}_{n},\|\cdot\|_{2}$), it follows from (3) and (5) that

$$
\begin{aligned}
\left|y^{*}(A-B) x\right| & \leq \sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \cdot\left\|x \cdot y^{*}\right\|_{2} \\
& =\sqrt{2}\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \cdot\|x\| \cdot\|y\|
\end{aligned}
$$

The following special case was proved by Omladic and Semrl [2] by a different method.
Corollary 2. If A, B are normal matrices with eigenvalues $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ and $\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ respectively, then

$$
\begin{equation*}
\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty} \leq \sqrt{2} \max _{i, j}\left|\alpha_{i}-\beta_{j}\right| . \tag{6}
\end{equation*}
$$

Proof. Remark that for general A, B, the set of eigenvalues of $A \otimes I-I \otimes B^{T}$ coincides with $\left\{\alpha_{i}-\beta_{j}: i, j=1,2, \cdots, n\right\}$. If A and B are normal, so is $A \otimes I-I \otimes B^{T}$, hence

$$
\begin{equation*}
\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty}=\max _{i, j}\left|\alpha_{i}-\beta_{j}\right| . \tag{7}
\end{equation*}
$$

Now the assertion follows from (1) and (7).
Again in view of (7), for normal A, B the inequality

$$
\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \leq \sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty}
$$

is quite trivial. Let us show that this holds in general.

Theorem 3.

$$
\begin{equation*}
\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \leq \sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty} \tag{8}
\end{equation*}
$$

Proof. Let us consider the operator $\Delta_{A, B}$, defined by (4), on each of the Schatten p-space $\left(\mathbb{M}_{n},\|\cdot\|_{p}\right)(1 \leq p \leq \infty)$, where

$$
\|X\|_{p} \equiv\left(\operatorname{tr}\left(|X|^{p}\right)\right)^{1 / p}
$$

The operator norm of $\Delta_{A, B}$ on $\left(\mathbb{M}_{n},\|\cdot\|_{p}\right)$ will be denoted by $\left\|\Delta_{A, B}\right\|_{p \rightarrow p}$. We used already the fact

$$
\begin{equation*}
\left\|\Delta_{A, B}\right\|_{2 \rightarrow 2}=\left\|A \otimes I-I \otimes B^{T}\right\|_{\infty} \tag{9}
\end{equation*}
$$

Since $\left(\mathbb{M}_{n},\|\cdot\|_{p}\right)_{1 \leq p \leq \infty}$ is an interpolation scale (see [1] Chap. III), it follows from the general theory that

$$
\begin{equation*}
\left\|\Delta_{A, B}\right\|_{2 \rightarrow 2} \leq \sqrt{\left\|\Delta_{A, B}\right\|_{1 \rightarrow 1} \cdot\left\|\Delta_{A, B}\right\|_{\infty \rightarrow \infty}} \tag{10}
\end{equation*}
$$

By (9) and (10), for (8) it suffices to prove that

$$
\begin{equation*}
\left\|\Delta_{A, B}\right\|_{1 \rightarrow 1}=\left\|\Delta_{A, B}\right\|_{\infty \rightarrow \infty}=\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty} \tag{11}
\end{equation*}
$$

First, since the unit ball of $\left(\mathbb{M}_{n},\|\cdot\|_{\infty}\right)$ is the convex hull of \mathbb{U}_{n},

$$
\begin{aligned}
\left\|\Delta_{A, B}\right\|_{\infty \rightarrow \infty} & =\sup _{U \in \mathbb{U}_{n}}\|U A-B U\|_{\infty} \\
& =\sup _{U \in \mathbb{U}_{n}}\left\|A-U^{*} B U\right\|_{\infty}
\end{aligned}
$$

Next

$$
\begin{aligned}
\sup _{U \in \mathbb{U}_{n}}\|U A-B U\|_{\infty} & =\sup _{\|T\|_{1} \leq 1} \sup _{U \in \mathbb{U}_{n}}|\operatorname{tr}(T U A-T B U)| \\
& =\sup _{\|T\|_{1} \leq 1} \sup _{U \in \mathbb{U}_{n}}\left|\operatorname{tr}\left(U \cdot \Delta_{A, B}(T)\right)\right| \\
& =\sup _{\|T\|_{1} \leq 1}\left\|\Delta_{A, B}(T)\right\|_{1}=\left\|\Delta_{A, B}\right\|_{1 \rightarrow 1} .
\end{aligned}
$$

These establish (11) and complete the proof.

References

[1] I. Gohberg, M.G. Krein: Introduction to the Theory of Nonselfajoint Operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969.
[2] M. Omladic, P. Semrl: On the distance between normal matrices, Proc. Amer. Math. Soc. 110 (1990) 591-596.

