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Pairs of compact convex sets naturally arise in quasidifferential calculus as a sub- and superdifferentials of
a quasidifferentiable function (see [1]). Since the sub- and superdifferential are not uniquely determined,
minimal representations are of special importance. For the 2-dimensional case, equivalent minimal pairs
of compact convex sets are uniquely determined up to translations (see [3], [14]). For the 3-dimensional
case, this is not longer true. J. Grzybowski [3] gave an example of finitely many equivalent minimal
pairs of compact convex sets which are not connected by translations. A continuous family of equivalent
minimal pairs of compact convex sets which are not connected by translation for different indices is given
in [9]. In a recent paper R. Urbański [16] investiged the mimimality of pairs of compact convex sets
which satisfy additional conditions, namely the minimal convex pairs. This paper is a continuation of
this research direction. Here we study the minimality under a different type of conditions. Moreover we
give a definition of a “convex hull” of a pair of sets.
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1. Introduction

In this paper we consider the R̊adström-Hörmander lattice [4] of equivalence classes of
pairs of nonempty compact convex sets and investigate minimal representants which sat-
isfy additional conditions. As in [6] we denote for a real topological vector space X the
set of all nonempty compact convex subsets by K(X) and the set of all pairs of nonempty

compact convex subsets by K2(X), i.e. K2(X) = K(X) × K(X). The equivalence
relation between pairs of compact convex sets is given by: “(A,B) ∼ (C,D) if and only
if A + D = B + C” using the Minkowski-sum, and a partial order is given by the

relation: “(A,B) ≤ (C,D) if and only if A ⊆ C and B ⊆ D.” The space K2(X) has been
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investigated in series of papers, (see for instance [3], [6], [7], [8], [9], [14], [16]).
Pairs of compact convex sets arise in quasidifferential calculus as the sub- and superdif-
ferentials of the directional derivative of a quasidifferentiable function (see [1], [13]).
Let us first set some notations: Let X be a real topological vector space, and X∗ be
the space of all continuous real valued linear functional. For two compact convex sets
A,B ∈ K(X) we will use the notation

A ∨ B := conv(A ∪B),

where the operation “conv” denotes the convex hull. With A we denote the closure of a
set A.
During the proofs, an easy identity for compact convex sets, which was first observed by
A. Pinsker [10] will be used frequently, namely: For A,B,C ∈ K(X) we have:

(A + C) ∨ (B + C) = C + (A ∨ B). (∗)

This identity can be proved as follows: Every x ∈ (A ∨ B) + C can be represented
as x = α · a + (1 − α) · b + c with a ∈ A, b ∈ B, c ∈ C and 0 ≤ α ≤ 1. Now
x = α · a + (1 − α) · b + c = α · (a + c) + (1 − α) · (b + c) and hence C + (A ∨ B) ⊆
(A + C) ∨ (B + C).
The converse inclusion can be seen as follows: Let x ∈ (A+C)∨ (B+C). Then we have:
x = α · (a + c1) + (1 − α) · (b + c2) with a ∈ A, b ∈ B, c1, c2 ∈ C and 0 ≤ α ≤ 1. Now
x = α · (a+ c1) + (1− α) · (b+ c2) = α · a+ (1− α) · b + α · c1 + (1− α) · c2. Hence we
see that the converse inclusion (A+ C) ∨ (B + C) ⊆ C + (A ∨ B) holds also.
We will use the abbreviation A+B∨C for A+(B∨C) and C+d for C+{d} for compact
convex sets A,B,C and a point d. Moreover we will write [a, b] instead of {a} ∨ {b}.
Finally let us state explicitely the order cancellation law (see [4], [15]).
Let X be real topological vector space and A,B,C ⊆ X compact convex subsets.
Then the inclusion

A + B ⊆ A + C

implies
B ⊆ C.

Thus from the algebraic point of view the set K(X) of all nonempty compact convex
subsets of a real topological vector space X is a commutative semi-ring with cancellation
property endowed with the “addition # ” given by:

A # B := A ∨ B

and the “multiplication ?” given by:

A ? B := A + B.

Within this context, the elements of K2(X) with respect to the relation ∼ can be
considered as fractions.

The starting point of this paper is a characterization, which is proved in [16], of those
convex subsets of a compact convex set, which define a decomposition in the following
sense:
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In [8] the following notation was introduced: Let A,B, S ∈ K(X), then we say that S
“separates” the sets A and B if for every a ∈ A and b ∈ B we have [a, b] ∩ S 6= ∅. In this
terminology we have:

Theorem 1.1. Let X be a real topological vector space and A,B ∈ K(X).
Then the following statements are equivalent:

(i) The set A ∪ B is convex
(ii) The set A ∩ B separates the sets A and B
(iii) The set A ∨ B is a summand of the set A+B
(iv) A + B = A ∨ B + A ∩ B and A ∩ B 6= ∅.
Let us remark, that if A∩B separates the sets A and B, the basic relationship between the
Minkowski-sum, the convex hull and the intersection is given by property (iv) of Theorem
1.1. The algebraic analogue of this formula is, that the product of two integers a, b ∈ IN
is equal to the product of its greatest common divisor d(a, b) with its smallest common
multiplier m(a, b). i.e. a · b = d(a, b) ·m(a, b).

In [16] a pair (A,B) ∈ K2(X) is called “convex” if A ∪ B is a convex set. Moreover it is

shown, that every pair (A,B) ∈ K2(X) is equivalent to a convex pair, namely:

Proposition 1.2. Let X be a real topological vector space and (A,B) ∈ K2(X).
Then:

(i) The pair (A+ A ∨ B,B + A ∨ B) ∈ K2(X) is convex
(ii) (A+ A ∨ B) ∩ (B + A ∨ B) = A+B
(iii) (A,B) ∼ (A+ A ∨ B,B + A ∨ B).

(iv) Let (C,D) ∈ K2(X) and (A,B) ∼ (C,D) and assume that the pair (A,B) is convex.
Then

A + D = B + C = C ∨D + A ∩ B.

Let us recall that for a real topological vector space X a pair (A,B) ∈ K2(X) is minimal if

and only if for every equivalent pair (C,D) ∈ K2(X) the relation (C,D) ≤ (A,B) implies
C = A and B = D. Therefore we define:

Definition 1.3. Let X be a real topological vector space. Then a convex pair (A,B) ∈
K2(X) is minimal convex if and only if for every equivalent convex pair (C,D) ∈ K2(X)
the relation (C,D) ≤ (A,B) implies C = A and B = D.

It is shown in [16] that for every convex pair (A,B) ∈ K2(X) there exists an equivalent
minimal convex pair and the following characterization of minimal convex pairs holds.

Theorem 1.4. Let X be a real topological vector space. Then the convex pair (A,B) ∈
K2(X) is minimal convex if and only if the pair (A ∩ B,A ∪ B) is minimal.

2. Algebraic Properties of Compact Convex Sets

In this section we prove several algebraic properties of compact convex sets, which are
usefull for further discussions and also interesting in itself. Let us start with the following
observations:
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Lemma 2.1. Let X be a real topological vector space and A,B,C ⊂ X nonempty
subsets.

Then

A ∪B + C = (A + C) ∪ (B + C).

Proof. For x ∈ A ∪ B + C, exists c ∈ C and d ∈ A ∪ B such that x = c + d. Hence
x ∈ (A+ C) ∪ (B + C), i.e. A ∪ B + C ⊆ (A+ C) ∪ (B + C).

Conversely, for x ∈ (A + C) ∪ (B + C) there exist elements c ∈ C and d ∈ A or d ∈ B
such that x = c+ d. Hence x ∈ A ∪B + C, i.e. (A+ C) ∪ (B + C) ⊆ A ∪B + C.

Lemma 2.2. Let X be a real topological vector space with dimX > 1 and (A,B) ∈
K2(X).

If for every singleton C = {c} ∈ K(X)

(A ∨ C) ∪ (B ∨ C) = A ∨ B ∨ C (2.2.1)

holds, then A ∩B 6= ∅.

Proof. Suppose that A ∩ B = ∅. Then there exists a ∈ A and b ∈ B such that
(a, b) ∩ (A ∪ B) = ∅, where (a, b) is the open line segment between the points a, b.

Let us denote by l the line passing through the points a and b.

Now we consider two cases:

(i) A,B ⊂ l, i.e. the sets A and B are intervalls lying in l. Then for every c ∈ X \ l and
C := {c} we have (A ∨ C) ∩ (B ∨ C) = {c}. But {c} ∩ [a, b] = ∅. From this follows
that {c} does not separate the sets A∨C and B∨C. Hence the set (A∨C)∪ (B∨C)
is not convex which is a contradiction to the assumption.

(ii) Now let us assume, that one of the sets A and B is not contained in the line l,
for instance that B 6⊂ l. Then there exists a point b1 ∈ B with b1 /∈ l such that
(a, b1) ∩ B = ∅. Now put C1 := {b1}. Then it follows from equation (2.2.1) and
Theorem 1.1 (ii) that the set (A ∨ b1) ∩ B separates the sets A ∨ b1 and B. Hence
there exist numbers α, β ≥ 0, α+β = 1, such that α ·a + β ·b ∈ (A∨b1)∩B. But by
assumption we have (a, b)∩ (A∪B) = ∅, hence α = 0 and β = 1, and we obtain that
b ∈ A∨b1. From this follows, that b = α1 ·b1 + β1 ·a1 for some α1, β1 ≥ 0, α1 +β1 = 1
and a1 ∈ A.
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Now we proceed analogously for the set C2 := {a1} and obtain that a = α2 · a1 + β2 · b2
for some α2, β2 ≥ 0, α2 + β2 = 1 and b2 ∈ B. Hence we have (a, b1) ∩ [b, b2] 6= ∅. Since
(a, b1)∩ [b, b2] = {p} for some p ∈ (a, b1), this is a contradiction to (a, b1)∩B = ∅. Hence
we have A ∩B 6= ∅.

Remark 2.3. If dimX = 1, and A,B ∈ K(X) with A ∩ B = ∅.
Then for every C ∈ K(X) we have (A ∨ C) ∪ (B ∨ C) = A ∨ B ∨ C.
Lemma 2.4. Let X be a real topological vector space and A,B ∈ K(X).
Moreover assume, that A ∩ B 6= ∅ and that for every segment C = [a, b] ∈ K(X)

(A ∨ C) ∩ (B ∨ C) = (A ∩ B) ∨ C
holds.
Then the set A ∩ B separates the sets A and B.

Proof. First observe, that if dimX = 1 and A ∩B 6= ∅ then A ∪B is convex and hence
A ∩ B separates the sets A and B.
Now suppose that dimX > 1 and that A∩B does not separate the sets A and B. Then
there exist elements a ∈ A and b ∈ B such that [a, b] ∩ (A ∩ B) = ∅. For an arbitrary
element p ∈ A ∩ B let us consider the sequences (an)n∈IN and (bn)n∈IN given by:

an :=
1

n
· p + (1− 1

n
) · a and bn :=

1

n
· p + (1− 1

n
) · b for n ∈ IN.

Denote In := [an, bn] = 1
n · p + (1− 1

n) · [a, b]. It is easy to observe that In0 ∩ [a, b] = ∅ for

some n0 ∈ IN. Namely, assume that for every n ∈ IN we have In ∩ [a, b] 6= ∅. Then there
exits a sequence (cn)n∈IN with:

cn :=
1

n
· p + (1− 1

n
) · [αn · a+ (1− αn) · b]

and 1 ≥ αn ≥ 0. Since there exist a subsequence (αnk)k∈IN which converges to α0 ∈ [0, 1],

it follows, that the sequence (cnk)k∈IN which converges to c0 = α0 · a+ (1− α0) · b. Since

A ∩ B is compact and for every n ∈ IN we have cn ∈ A ∩ B it follows additionally that
c0 ∈ [a, b] ∩ (A ∩B).
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Now let H be the linear manifold generated by the points a, b, p. Moreover let ln be the line
which passes through the points an and bn. This line devides the plane into the halfplanes

H+ and H− where we assume that p ∈ H−.
Suppose that H+ ∩ (A ∩ B) 6= ∅. Then there exists x ∈ H+ ∩ (A ∩ B) and therefore
[x, p] ∩ l 6= ∅. Let us put {y} := [x, p] ∩ l, then we have In ∩ A ∩ B 6= ∅. But this is a

contradiction, hence H+ ∩ A ∩B = ∅.
Now put {z} := [an, b]∩ [a, bn], then z ∈ H+. First observe that z = ({a}∨{bn})∩ ({b}∨
{an}) ⊂ (A ∨ In) ∩ (B ∨ In), and that z /∈ In.
Furthermore choose u ∈ {[(A ∩ B) ∨ In] \ In} ∩H. Then there exist α, β > 0, α + β = 1

such that u = α · q + β · v for some q ∈ A ∩ B and v ∈ In ⊂ H−. This implies that

q = 1
α · u −

β
α · v and 1

α −
β
α = 1. Hence q ∈ A ∩ B ∩ H ⊂ H−, and we obtain that

u ∈ α ·H− + β ·H− ⊂ H−.
Now suppose that z ∈ [(A ∩B) ∨ In] ∩H. Since z /∈ In this implies that z ∈ {[(A ∩B) ∨
In] \ In} ∩H ⊂ H−. But this contradicts the assumption that z ∈ H+.
Now for C := In we have that (A ∨ C) ∩ (B ∨ C) 6= (A ∩ B) ∨ C, hence A ∩B separates
the sets A and B.

Now we are able to prove the following equivalences:

Proposition 2.5. Let X be a real topological vector space and (A,B) ∈ K2(X).
Then the following assertions are equivalent:

(i) A ∪ B is convex
(ii) For every C ∈ K(X) we have (A+ C) ∪ (B + C) = A ∨ B + C
(iii) A ∩ B 6= ∅ and for every C ∈ K(X) we have (A+ C) ∩ (B + C) = A ∩ B + C
(iv) A∩B 6= ∅ and for every segment C ∈ K(X) we have (A∨C)∩ (B∨C) = (A∩B)∨C
(v) For every singleton C ∈ K(X) we have (A∨C)∪ (B∨C) = A∨B ∨C, if A∩B 6= ∅

or dimX > 1.

Proof. (i) ⇐⇒ (ii). If A ∪ B is convex then A ∪ B = A ∨ B. But from Lemma 2.1
follows that for every C ∈ K(X) we have (A + C) ∪ (B + C) = A ∪ B + C. Hence
(A+C) ∪ (B +C) = A ∨B +C. For the converse direction observe that (i) follows from
(ii) for C := {0}, then A ∪ B = A ∨B.
(ii)⇐⇒ (iii). By formula (∗) and Theorem 1.1 we have A+C+B+C = A∨B+C+(A+
C)∩ (B+C). This implies A+B+C = A∨B+ (A+C)∩ (B+C). But (ii) is equivalent
to (i), hence we know that A∪B is convex and therefore we have A+B = A∨B+A∩B.
From this we obtain that

A ∨ B + A ∩ B + C = A ∨B + (A+ C) ∩ (B + C).

Hence by the law of cancellation we get

A ∩ B + C = (A + C) ∩ (B + C).

(iii) =⇒ (i). Observe that for C := A ∨B, we get from (iii):

A +B ⊂ (A+ A ∨ B) ∩ (B + A ∨ B) = A ∩ B + A ∨ B.

Thus by [16] Theorem 2.3 we have that A∩B separates the sets A and B and hence A∪B
is convex.
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(i) =⇒ (iv) and (v). For C ∈ K(X), then we have:

A ∨ C +B ∨ C = (A ∨ C +B) ∨ (A ∨ C + C)

= (A +B) ∨ (B + C) ∨ (A+ C) ∨ (C + C)

= (A ∪B + A ∩B) ∨ (A ∨ B + C) ∨ (C + C)

= (A ∪B + (A ∩B) ∨ C) ∨ (C + C)

⊆ (A ∪ B + (A ∩ B) ∨ C) ∨ ((A ∩ B) ∨ C + C)

⊆ (A ∪ B) ∨ C + (A ∩B) ∨ C
⊆ (A ∨ C) ∨ (B ∨ C) + (A ∩ B) ∨ C
⊆ (A ∨ C) ∨ (B ∨ C) + (A ∨ C) ∩ (B ∨ C).

Hence
A ∨ C +B ∨ C ⊆ (A ∨ C) ∨ (B ∨ C) + (A ∨ C) ∩ (B ∨ C),

and by [16] Theorem 2.3 and Theorem 1.1 we have:

A ∨ C +B ∨ C = (A ∨ C) ∨ (B ∨ C) + (A ∨ C) ∩ (B ∨ C).

Hence we have
(A ∨ C) ∩ (B ∨ C) = (A ∩B) ∨ C

and
(A ∨ C) ∪ (B ∨ C) = (A ∨ B) ∨ C.

(iv) =⇒ (i). By Lemma 2.4 we have that A ∩ B separates the sets A and B, hence the
set A ∪B is convex.

(v) =⇒ (i). If A ∩ B 6= ∅, then for x ∈ A ∩B and C := {x} we obtain A ∪B = A ∨B.
If dimX > 1, then from Lemma 2.2 we get A ∩ B 6= ∅ and proceed as in the above
mentioned case.

Proposition 2.6. Let X be a real topological vector space and (A,B), (C,D) ∈ K2(X)
are two equivalent pairs and assume that the pair (C,D) is convex.
Then the pairs (A+ C,B + C), (A+D,B + D) are convex.

Proof. From Proposition 1.2 we have that

A+D = B + C = A ∨B + C ∩D.

This implies that

A + C +B + C = A ∨ B + C + A + C ∩D,

and
A+ D +B +D = A ∨B +D +B + C ∩D.

Moreover,

(A+ C) ∨ (B + C) = A ∨ B + C and (A+D) ∨ (B +D) = A ∨ B +D.

Now from Theorem 1.1 follows, that (A+C,B+C) and (A+D,B+D) are convex pairs.
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3. C-minimal pairs

Definition 3.1. Let X be a real topological vector space and C ∈ K(X). Then the

pair (A,B) ∈ K2(X) is called “C-minimal” if the pair (A + C,B + C) is convex, and if
for every C1 ∈ K(X) with C1 ⊆ C and such that (A + C1, B + C1) is a convex pair it
follows that C1 = C.

Remark 3.2. The pair (A,B) is convex if and only if the pair (A,B) is C-minimal and
the set C is a singleton.

Theorem 3.3. Let X be a real topological vector space and C ∈ K(X).

Then the pair (A,B) ∈ K2(X) is C-minimal if and only if there exists a D ∈ K(X) such
that the pair (C,D) is minimal and equivalent to (A ∨ B,A+B).

Proof. “=⇒” Since the pair (A,B) ∈ K2(X) is C-minimal, we know by Theorem 1.1
(iv) that

A+ C +B + C = (A+ C) ∪ (B + C) + (A+ C) ∩ (B + C).

Since
(A+ C) ∪ (B + C) = (A+ C) ∨ (B + C) = (A ∨ B) + C

we obtain that
A+B + C = A ∨B + (A+ C) ∩ (B + C).

If we put D := (A+ C) ∩ (B + C), then it follows, that

(A ∨ B,A+B) ∼ (C,D). (3.3.1)

Now suppose that there exists a C1 ⊂ C and D1 ⊂ D such that (C,D) ∼ (C1, D1). Then
(A ∨ B,A + B) ∼ (C1, D1). Hence we have A ∨ B + D1 = A + B + C1, which implies
(A+C1)∨ (B+C1)+D1 = (A+C1)+(B+C1). Thus (A+C1)∨ (B+C1) is a summand
of (A+ C1) + (B + C1), which means that the set (A+ C1) ∪ (B + C1) is convex. Hence
by the C-minimality of (A,B) it follows that C = C1 and D = D1.

“⇐=” Now if (A ∨ B,A + B) ∼ (C,D) and (C,D) minimal, then (A + C,B + C) is a
convex pair. Then for every (C1, D1) ≤ (C,D) which is equivalent to (C,D) we have
C = C1 and D = D1.

Corollary 3.4. For every pair (A,B) ∈ K2(X) there exists a set C ∈ K(X) such that
the pair (A,B) is C-minimal.

Theorem 3.5. Let X be a real topological vector space and A,B,C ∈ K(X).
Then the pair (A + C,B + C) is minimal convex if and only if there exists a D ∈ K(X)
such that (A ∨ B,A+B) is equivalent to (C,D) and (A ∨B + C,D) is a minimal pair.

Proof. “⇐=” First observe, that the minimality of the pair (A∨B+C,D) implies, that
(C,D) is minimal since

(A ∨B + C,D) = (A ∨B, 0) + (C,D)

and (A ∨ B, 0) is minimal (see [6]). Now by Theorem 3.3 the pair (A,B) is C-minimal.
But then we have:

(A+ C) ∪ (B + C) = A ∨ B + C and (A+ C) ∩ (B + C) = D.
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Hence it follows from Theorem 1.4 that (A + C,B + C) is a minimal convex pair.

“=⇒” Now let us assume that (A + C,B + C) is a minimal convex pair. Then the set
(A+C)∪ (B+C) is convex and by Theorem 1.1 the pair (A∨B,A+B) is equivalent to
(C,D), with D = (A+C)∩ (B+C). Now from Theorem 1.4 follows that (A∨B +C,D)
is a minimal pair.

Corollary 3.6. The pair (A + A ∨ B,B + A ∨ B) ∈ K2(X) is minimal convex if and
only if the pair (A ∨ B,A+B) is minimal.

Proof. The minimality of the pair (A∨B,A+B) is equivalent to the minimality of the
pair (2 · (A∨B), A+B). Hence we obtain from the above Theorem, that (A+A∨B,B+

A∨B) ∈ K2(X) is a minimal convex pair if and only if (A∨B,A+B) is a minimal pair.

Remark 3.7.

(i) The set D ∈ K(X) of Theorem 3.5 is uniquely determined and coincides with (A +
C) ∩ (B + C).

(ii) If the pair (A+ C,B + C) is minimal convex, then (A,B) is a C-minimal pair.

Proposition 3.8. Let X be a real topological vector space and (A,B), (C,D) ∈ K2(X)
are two equivalent minimal pairs and assume that the sets A ∪ C and B ∪D are convex.
Then A = C and B = D.

Proof. Observe that by Proposition 2.5 (iii)

A+ (B ∩D) = (A +B) ∩ (A +D) = (A+B) ∩ (B + C) = B + (A ∩ C),

since the sets A ∪ C and B ∪D are convex. By assumption the pair (A,B) ∈ K2(X) is
minimal. Hence

A ∩ C = A and B ∩D = B.

Since the pair (C,D) ∈ K2(X) is is also minimal, it follows that A = C and B = D.

In analogy to the above Proposition 3.8 and the results of J. Grzybowski [3] and S. Scholtes
[14] we have:

Theorem 3.9. If (A,B), (C1, C2) ∈ K2(IRn), 1 ≤ n ≤ 2 and the pair (A,B) is
Ci-minimal for i = 1, 2, then there exists an x ∈ IRn such that C2 = C1 + x.

Proof. Since for i = 1, 2 the pair (A,B) is Ci-minimal, there exists by Theorem 3.3
elements Di ∈ K(IRn), such that the pairs (Ci, Di), i = 1, 2 are both minimal and
equivalent to (A ∨B,A+B). Hence it follows from the resultes of J. Grzybowski and S.
Scholtes (see for instance: [3], Lemma 3.7) that C2 = C1 + x for an x ∈ IRn.

Now we study some properties of C-minimal equivalence classes.

Lemma 3.10. Let X be a topological vector space and A,Bα ∈ K(X), for α ∈ Λ.
If the family {Bα}α∈Λ is a chain, then

⋂
α∈Λ Bα 6= ∅ and

A+
⋂

α∈Λ

Bα =
⋂

α∈Λ

(A+Bα).
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Proof. Since the family F := {Bα}α∈Λ has the finite intersection property, we have⋂
α∈Λ Bα 6= ∅ (see [2]).

If we define for α, β ∈ Λ a partial order by:

α ≤ β if and only if Bβ ⊆ Bα

then the set Λ is directed by ≤ .

Now observe that

A +
⋂

α∈Λ

Bα ⊆
⋂

α∈Λ

(A +Bα).

To prove the converse inclusion, let us choose an arbitrary element x ∈ ⋂
α∈Λ(A+Bα).

Then for every α ∈ Λ there exist aα ∈ A and bα ∈ Bα such that x = aα + bα. Since the
set S := {aα | α ∈ Λ } is a net in the compact set A, there exists a cluster point a ∈ A
of S. Now bα = x− aα and since X is a topological vector space, there exists an element
b ∈ X which is a cluster point of the net S ′ := {bα | α ∈ Λ } with x = a+ b.

To complete the proof, it suffices to show, that b ∈ X belongs to all members of the family
F . Therefore take a Bα ∈ F . Then for every neighborhood V of b there exists an index
β ≥ α such that bβ ∈ V. Since bβ ∈ Bβ ⊆ Bα, we conclude that Bα∩V 6= ∅. Furthermore,

the set Bα is closed which implies, that b ∈ Bα.

Definition 3.11. Let X be a real topological vector space and A,B,C ∈ K(X).
The class [A,B] is called “C-convex” if for every representant (A1, B1) ∈ [A,B] the pair
(A1 + C,B1 + C) is convex.

Definition 3.12. Let X be a real topological vector space and A,B,C ∈ K(X). The
class [A,B] is called “C-minimal” if for every C1 ∈ K(X) with C1 ⊆ C for which the class
[A,B] is C1-convex, follows that C1 = C.

Theorem 3.13. Let X be a real topological vector space.
Then for every class [A0, B0], with A0, B0 ∈ K(X), there exists a set C0 ∈ K(X) such
that the class [A0, B0] is C0-minimal.

Proof. For the pair (A0, B0) ∈ K2(X) let us consider the family

C[A0,B0] := {C | C ∈ K(X) such that for every (A,B) ∈ [A0, B0]

the pair (A + C,B + C) is convex }.
This family is non empty, namely A0 + A0 ∨ B0 ∈ C[A0,B0], which can be seen as follows:

Observe first that the pair (A0, B0) is equivalent to the convex pair (A0 +A0 ∨B0, B0 +
A0 ∨B0). If we put now C∗ := A0 + A0 ∨ B0 then the rest follows from Proposition 2.6.
Now we can order the class C[A0,B0] by inclusion, namely Cα ⊆ Cβ ⇐⇒ α ≤ β. Now

consider an ordered chain {Cα}α∈Λ. Then by Lemma 3.10 we have:

A+
⋂

α∈Λ

Cα =
⋂

α∈Λ

(A+ Cα)

and

B +
⋂

α∈Λ

Cα =
⋂

α∈Λ

(B + Cα).
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for arbitrary elements A,B ∈ K(X).
Now consider (A,B) ∈ [A0, B0]. From the definition of the class C[A0,B0] follows, that for

every α ∈ Λ the pair (A + Cα, B + Cα) is convex. Therefore we have: (A ∨ B,A +B) ∼
(Cα, (A+ Cα) ∩ (B + Cα)), which means that

A+B + Cα = A ∨ B + (A+ Cα) ∩ (B + Cα).

Now by Lemma 3.10 we have:

⋂

α∈Λ

(A+B + Cα) = A+B +
⋂

α∈Λ

Cα,

and also

⋂

α∈Λ

(A ∨B + (A+ Cα) ∩ (B + Cα)) = A ∨B +
⋂

α∈Λ

(A+ Cα) ∩ (B + Cα).

Denote

C0 =
⋂

α∈Λ

Cα.

Hence
A + B + C0 = A ∨ B + (A+ C0) ∩ (B + C0).

Now from C0 ∈ C[A0,B0] and the Lemma of Kuratowski-Zorn follows, that C[A0,B0] has a

minimal element.

Proposition 3.14. Let X be a real topological vector space C ∈ K(X) and (A0, B0) ∈
K2(X) be a C-minimal pair. Moreover let us assume that A0 or B0 is a summand of
(A0 + C) ∩ (B0 + C).
Then the class [A0, B0] is C-minimal.

Proof. For every (A,B) ∈ [A0, B0] we have (A,B) ∼ (A0 + C,B0 + C). Hence

A + B0 + C = A0 + C + B = A ∨ B + (A0 + C) ∩ (B0 + C). (3.14.1)

Now assume that B0 is a summand of (A0 + C) ∩ (B0 + C). Hence we have (A0 + C) ∩
(B0 + C) = B0 + S, for some S ∈ K(X). Now we obtain from (3.14.1) that

B + C = A ∨ B + S,

and by adding A+C we get A + B + C + C = A∨B + C + A + S, and therefore
we have:

(A + C) + (B + C) = (A ∨B + C) + (A + S)

i.e.
(A + C) + (B + C) = (A + C) ∨ (B + C) + (A + S).

From Theorem 1.1 and the formula (A + C) ∨ (B + C) = (A ∨B + C), follows that

(A +C)∪ (B + C) is convex. Since (A0, B0) ∈ K2(X) a C-minimal pair it follows, that
the class [A0, B0] is C-minimal.
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Proposition 3.15. Let X be a real topological vector space.
Then a convex pair (A0, B0) ∈ K2(X) is minimal convex if and only if for every convex

pair (A,B) ∈ K2(X) equivalent to (A0, B0) with A ∪ B ⊆ A0 ∪ B0 follows that A = A0

and B = B0.

Proof. “=⇒” Let (A,B) be a convex pair which is equivalent to (A0, B0) and such that
A ∪ B ⊆ A0 ∪B0. Then

A + B0 = A0 + B = A ∪B + A0 ∩ B0 ⊆ A0 ∪ B0 + A0 ∩ B0 = A0 + B0.

Now from the order cancellation law we get that A ⊂ A0 and B ⊂ B0. From the convex
minimality we deduce that A = A0 and B = B0.

“⇐=” Now let (A,B) ∼ (A0, B0) be a convex pair with A ⊂ A0 and B ⊂ B0. Then
A ∪ B ⊂ A0 ∪ B0, and therefore by assumption we have A ∪ B = A0 ∪B0. This means
by Theorem 1.1 that

A + B0 = B + A0 = A0 ∪ B0 + A0 ∩ B0 = A0 + B0,

and hence A = A0 and B = B0.

4. Convex hull of pairs of compact convex sets

In this section we give a definition of a convex hull of a pair of compact convex sets. The
intention is, that the convex hull can be considered as a smallest convexification of the
set, and this is the motivation for our definition:

Definition 4.1. Let X be a real topological vector space and and (A,B) ∈ K2(X).

A convex pair (C,D) ∈ K2(X) is called a “convex hull” of the pair (A,B) if (A,B) ≤
(C,D) ∼ (A,B) and if for every convex pair (C1, D1) ∈ K2(X) with (C1, D1) ∼ (C,D)
and (A,B) ≤ (C1, D1) ≤ (C,D), it follows that (C,D) = (C1, D1).

Proposition 4.2. Let X be a real topological vector space and (C,D) ∈ K2(X) a convex

pair, which is equivalent to (A,B) ∈ K2(X). Then the following statements are equivalent:

(i) The set C ∩D separates the sets A and B,
(ii) (A,B) ≤ (C,D),
(iii) A ∪ B ⊆ C ∪D.

Proof. “(i) =⇒ (ii)” Since the pair (C,D) is convex and equivalent to (A,B) by Theorem
1.2 we have that A+D = B+C = A∨B+C∩D. Since C∩D separates the sets A and
B we have by (see [8]) that A+B ⊆ A∨B+C ∩D. Therefore A+B ⊆ A+D = B+C
and from the order law of cancellation we get that A ⊂ C and B ⊂ D.

“(ii) =⇒ (i)” is obvious by (see [8]).

“(iii) =⇒ (ii)” Since the pair (A + A ∨ B,B + A ∨ B) is convex and equivalent to the
convex pair (C,D) it follows immediately from Lemma 1.2 that

A+ A ∨ B +D = B + A ∨ B + C = A+B + C ∪D ⊇ A +B + A ∨ B.

The inclusions A ⊆ C and B ⊆ D follow now from the order law of cancellation.

“(ii) =⇒ (iii)” This implication is obvious.
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Theorem 4.3. Let X be a real topological vector space.

Then for every pair (A,B) ∈ K2(X) there exists a convex hull of (A,B).

Proof. For the pair (A,B) ∈ K2(X) let us consider the family

C(A,B) :=

{(C,D) | (C,D) ∈ K2(X) such that (A,B) ≤ (C,D) ∼ (A,B) and (C,D) is convex}.

This family is non empty, namely for every arbitrary x ∈ A ∨ B we have by Proposition
1.2 that the pair (A+ A ∨ B − x,B + A ∨B − x) is convex and equivalent to (A,B).
Moreover

(A,B) ≤ (A+ A ∨B − x,B + A ∨ B − x).

Analogously to the proof of Theorem 3.13 we can show that for an arbitrary totally
ordered set B ⊆ C(A,B), with B := {(Aα, Bα) | α ∈ Λ }, the pair (A0, B0) is equivalent to

(A,B), where

A0 =
⋂

α∈Λ

Aα and B0 =
⋂

α∈Λ

Bα.

It is obvious that (A,B) ≤ (A0, B0). Hence by the Lemma of Kuratowski-Zorn there
exists a minimal element in C(A,B) and this is a convex hull of the pair (A,B).

Remark 4.4. If the pair (A,B) is equivalent to (C,D) and is such that (A,B) ≤ (C,D)
and (C,D) is minimal convex, then (C,D) is a convex hull of (A,B).

5. Reduction of pairs of compact convex sets

In this part of the paper we discuss algorithmic concepts of reducing a pair of compact
convex sets within its equivalence class and such that given properties of a pair remain
preserved under the reduction.
In [16] the following result is proved:

Theorem 5.1. Let X be a real topological vector space and (A,B) ∈ K2(X) be a convex

pair. Then for every pair (F,G) ∈ K2(X) which is equivalent to (A∩B,A∪B) such that
(F,G) ≤ (A ∩ B,A ∪ B) there exists a convex pair (A0, B0) ∼ (A,B) with A0 ∩ B0 = F
and A0 ∪ B0 = G.

Now we show:

Proposition 5.2. If (A,B) ∈ K2(X) is a convex pair and F,G ∈ K(X) such that
A ∪ B + F = A ∩ B + G, F ⊆ A ∩ B. Moreover let us assume that A ∪ G = A ∪ B or
B ∪G = A ∪ B.
Then A ∪ B is a summand of A+G or A ∪B is a summand of B +G.

Proof. From Theorem 5.1 follows, that there exist A0, B0 ∈ K(X) such that

A +B0 = B + A0 = A ∪ B + F = A ∩ B +G,

with
B0 ∩ A0 = F and B0 ∪ A0 = G.
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Hence we have:

B + A0 + A ∪ B = A ∩ B + A ∪B +G = A+B +G,

and
A0 + A ∪B = A+G. (5.2.1)

Analogously
B0 + A ∪ B = B +G. (5.2.2)

If A ∪G = A ∪B then A+G = A ∩G+ A ∪B, and we obtain that

A0 + A ∪B = A ∩G+ A ∪ B,

which gives A0 = A ∩ G. From the assumption B ∪ G = A ∪ B follows analogously,
that B0 = B ∩G.

Proposition 5.3. Let X be a real topological vector space and (A,B) ∈ K2(X) a
convex pair. Moreover let us assume that there exist sets A1, B1, C ∈ K(X), such that
A = A1 ∪ C , B = B1 ∪ C and C ∩ A1 = C ∩ B1.
Then (A1, B1) is a convex pair which is equivalent to (A,B).

Proof. "

#

$

%

&' (*),+
-.)

(*)

-/)

0

1

Let us put S := C ∩ A1. Then we have:

A+ S = C + A1 B + S = C +B1. (5.3.1)

Hence

A ∪B + S = C + A1 ∨B1 A+B + 2S = 2C + A1 +B1. (5.3.2)

From the last equation we get:

A ∪ B + S + A ∩ B + S = 2C + A1 +B1. (5.3.3)

But
C + A1 ∩ B1 = A ∩B + S, (5.3.4)
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hence from (5.3.3) and (5.3.4) follows, that

A1 +B1 = A1 ∨ B1 + A1 ∩ B1.

Now by Theorem 5.1 we know that the pair (A1, B1) is convex and from (5.3.1) follows
that A +B1 = B + A1.

Corollary 5.4. Let (A,B) ∈ K2(X) be a convex pair and let G ∈ K(X) be such that
A ∪G = B ∪G = A ∪ B.
Then the pair (A ∩G,B ∩G) is convex and equivalent to (A,B).

Proof. Put A1 := A∩G, B1 := B∩G, and C := A∩B. Then C∪A1 = (A∩B)∪ (A∩G) =
A∩(B∪G) = A, and C∪B1 = B. Moreover C∪(A1∩B1) = (A∩B)∪(A∩B∩G) = A∩B
and C ∩ A1 = C ∩ B1 = A ∩ B ∩G. Hence by the above Proposition 5.3 we obtain that
(A ∩G,B ∩G) is a convex pair, which is equivalent to the pair (A,B).

Corollary 5.5. Let (A,B) ∈ K2(X) be a convex pair and assume that conv(A ∪ B\
A ∩ B) 6= A ∪ B.
Then (A,B) is not convex minimal.

Proof. Denote

F := (A ∩ B) ∩ conv(A ∪ B \ A ∩ B) and G := conv(A ∪B \ A ∩ B).

Then A ∪ B + F = A ∩ B + G and since A ∪ G = B ∪ G = A ∪ B, we obtain from
Proposition 5.2 that (A∩G,B ∩G) ∼ (A,B). Since A∩G is an essential subset of A, we
see that the pair (A,B) is not convex minimal.

Proposition 5.6. Let X be a real topological vector space and (A1, B1), (A2, B2) ∈
K2(X) convex pairs such that:

(A1 ∩B1 + x) ∪ (A2 ∪ B2) = A1 ∪ B1,

(A1 ∩B1 + x) ∩ (A2 ∪ B2) = A2 ∩ B2 + x, for some x ∈ X.

Moreover assume that

A1 ∪B2 = A2 ∪B2 and A1 ∩ B2 = A1 ∩ B1 (5.6.1)

or
A2 ∪B1 = A1 ∪B1 and A2 ∩ B1 = A2 ∩ B2. (5.6.2)

Then
(A1, B1) ∼ (A2, B2) and (A2, B2) ≤ (A1, B1).

Proof. Let us first observe that

(A1 ∩ B1 + x) + (A2 ∪ B2) = A1 ∪ B1 + (A1 ∩ B1 + x) ∩ (A2 ∪B2),

and hence
A1 ∩B1 + A2 ∪B2 = A1 ∪ B1 + A2 ∩ B2. (5.6.3)
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Without loss of generality we may assume that assumption (5.6.1) is satisfied. Then by
Proposition 1.2 we have:

A1 + B2 = A1 ∪B2 + A1 ∩B2 = A2 ∪ B2 + A1 ∩ B1. (5.6.4)

Now let us put F := A2 ∩ B2 and G := A2 ∪ B2. Then we have G ⊆ A1 ∪ B1 and

F ⊆ A1∩B1, and by Theorem 5.1 there exists a pair (A0, B0) ∈ K2(X) which is equivalent
to (A1, B1) and such that

A1 + B0 = A1 ∪ B1 + F = A1 ∩B1 + G = B1 + A0 (5.6.5)

and moreover A0 ∩B0 = F and A0 ∪B0 = G.
From equation (5.6.4) we obtain A1 + B0 = A1 + B2, and hence B0 = B2.
Now we observe that A0 +B0 = F +G = A2 +B2, and hence we have A0 = A2.

6. Application to the quasidifferential calculus

For an arbitrary real topological vector space X a characterization of a convex pair
(A,B) ∈ K2(X) has been given in [16] and is stated in Theorem 1.1. In the follow-
ing we restrict our attention to the case of a locally convex topological vector space X
and will describe the charactization of a convex pair in terms of its support functions.
Therefore let X be a locally convex topological vector space and X∗ the topological dual,
i.e. the linear space of all continuous linear functional defined on X, endowed with the
weak-*-topology. Moreover let us denote by

〈·, ·〉 : X∗ ×X → IR

be the dual pairing given by
〈 v, x 〉 := v(x).

Then the “support function” of A ∈ K(X) is given by

pA : X∗ −→ IR

with
pA(x) = max

a∈A
〈a, x〉.

It was shown by L. Hörmander [4] that the support function is sublinear and continuous
with respect to the weak-*-topology on X∗.
There exists a partial order on the set of support functions, namely

pA ≤ pB if and only if for every x ∈ X∗ pA(x) ≤ pB(x) ⇐⇒ A ⊆ B.

For a locally convex topological vector space X we will now give a characterization of a
convex pair (A,B) ∈ K2(X) in terms of the support functions pA and pB.

Let us furthermore denote by

D(X∗) := {ϕ = pA − pB | (A,B) ∈ K2(X)}

the real vector space of differences of support functions.
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Theorem 6.1. Let X be a locally convex topological vector space and (A,B) ∈ K2(X).
Then the pair (A,B) is convex if and only if

min{pA, pB} : X∗ −→ IR

is a convex function.

Proof. “=⇒” By Theorem 1.1 the pair (A,B) ∈ K2(X) is convex if and only if A∨B is a
summand ofA+B. This means that there exists an S ∈ K(X) such thatA+B = A∨B + S.
From property (iv) of Theorem 1.1 follows easily that S = A ∩ B. Hence we have:

A +B = A ∨ B + A ∩ B.

But since for the support function of A ∨ B the formula (see [4]) pA∨B = max{pA, pB}
holds this equation can be formulated in terms of support functions as:

pA + pB = max{pA, pB} + pA∩B.

Now we have min{pA, pB} = pA∩B, since for arbitrary real numbers a, b ∈ IR the formula
a + b = max{a, b} + min{a, b} holds.

“⇐=” Now assume that min{pA, pB} is convex. Since this function is also positively
homogeneous there exists an S ∈ K(X) such that min{pA, pB} = pS. Hence we have

pA + pB = max{pA, pB} + min{pA, pB} = pA∨B + pS,

which means that
pA + B = pA∨B + pS = pA∨B+S .

From this follows that
A + B = A ∨B + S,

(see [4]), which means that A∨B is a summand of A+B. Hence by Theorem 1.1 the set
A ∪ B is convex.

Let us remark, that for A,B ∈ K(X) with A ∩ B 6= ∅ the support function of A ∩ B is
the “infimal convolution” (see [11]) pA pB given by:

pA pB : X∗ −→ IR

with
(pA pB)(x) := inf{pA(x− v) + pB(v) | v ∈ X∗}.

Hence we have the following

Corollary 6.2. Let X be a locally convex topological vector space and (A,B) ∈ K2(X).
Then the pair (A,B) is convex if and only if

min{pA, pB} = pA pB.

Observe that the representation of the elements of the space D(X∗) is not unique. From
the obove mentioned characterization of a convex pair, we are able to show, that some
special types of representations exist.
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Proposition 6.3. Let X be a locally convex topological vector space and

D(X∗) := {ϕ = pA − pB | (A,B) ∈ K2(X)}

the real vector space of differences of support functions, defined on X∗.
Then for every element ϕ ∈ D(X∗) there exist the following types of representations:

(i) ϕ ∈ D(X∗) can be represented as ϕ = pA − pB with min{pA, pB} ≥ 0
(ii) ϕ ∈ D(X∗) can be represented as ϕ = pA0−pB0 such that min{pA0, pB0} is a sublinear

function and that pA0 +pB0 is minimal, i.e. pA0 +pB0 = min{pA+pB | ϕ = pA−pB}
(iii) There exists a C ∈ K(X) such that for every representation of ϕ ∈ D(X∗) as ϕ =

pA − pB the function min{pA, pB}+ pC is sublinear.

Proof. (i) The first assertion follows immediately from the Theorem of Hahn-Banach.
Namely let

ϕ(h) := sup
v∈A
〈 h, v 〉 − sup

v∈B
〈 h, v 〉.

Then we can add to the first summand a continuous linear functional f1 ∈ X??, given by
f1(h) := 〈u1, h〉, u1 ∈ X, with

sup
v∈A
〈 h, v 〉 ≥ f1(h)

and, analogously, to the second summand a f2 ∈ X??, f2(h) := 〈u2, h〉, u2 ∈ X with

sup
v∈B
〈 h, v 〉 ≥ f2(h).

Now we take a representation:

ϕ(h) = (sup
v∈A
〈 h, v 〉−f1(h)+max{f1(h)−f2(h), 0})−(sup

v∈B
〈 h, v 〉−min{f2(h)−f1(h), 0}).

Now we prove part (ii)

Since every pair (A,B) ∈ K2(X) is equivalent to a convex pair, namely (A,B) ∼ (A +
A∨B,B+A∨B) there exists a minimal convex pair (A0, B0) equivalent to (A,B). From
Theorem 1.1 and Proposition 3.15 follows, that min{pA0, pB0} is convex and pA0 + pB0

is minimal.
Part (iii) follows immediately from Theorem 3.5. Namely for the class [A,B] there exists

a minimal element C ∈ K(X) such that for all (A
′
, B
′
) ∈ [A,B] the pair (A

′
+C,B

′
+C) is

convex. Hence by Theorem 1.1 we have that min{pA′+C , pB′+C} = min{pA′ , pB′}+ pC ,

which means that the function min{pA′ , pB′}+ pC is sublinear.

Now let us turn our attention to the class of quasidifferentiable functions which where
introduced by V.F. Demyanov and A.M. Rubinov [1]. We will start with the definition of
a quasidifferentiable function defined on an open subset of a normed vector spaces. (see:
[1]).
Let (X, ‖ · ‖) be a real normed vector space, let X∗ be its topological dual, and let U ⊆ X
be an open subset of X.
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Definition 6.4. A continuous real valued function f : U → IR is said to be quasidiffer-
entiable at x0 ∈ U if the following two conditions are satisfied:

(a) For every g ∈ X \ {0} the directional derivative

df

dg

∣∣∣∣
x0

= lim
t→0+

f(x0 + tg)− f(x0)

t

exists.
(b) There exist two sets ∂f |x0, ∂f |x0 ∈ K(X∗) such that

df

dg

∣∣∣∣
x0

= max
v∈∂f |x0

〈v, g〉+ min
w∈∂f |x0

〈w, g〉.

Here K(X∗) denotes the collection of all nonempty weak-*-compact convex subsets of X∗.
We remark that, by the Theorem of Alaoglu ( cf. [12], p. 228) the elements of K(X∗) are
bounded in the dual norm.
Observe that the condition (b) is equivalent to the requirement that the directional deriva-
tive as a function of the direction g can be expressed as the difference of two sublinear
functions.
Although the quasidifferential Df |x0

= ( ∂f |x0
, ∂f |x0

) is not uniquely determined it

preserves certain properties within an equivalence class.
In [1], chapter 17, it is shown that for a quasidifferentiable function all steepest ascent-
and descent directions can be explicitely determined.
Namely, if for a given quasidifferentiable function f : U −→ IR a quasidifferential

Df |x0
= ( ∂f |x0

, ∂f |x0
), in x0 ∈ U ⊂ X is known, then every steepest descent direction

of the function f in x0 is given by

g∗ := − w0 + v0

‖w0 + v0‖∗
(6.4.1)

with
‖w0 + v0‖∗ = sup

w∈∂f|x0

inf
v∈∂f|x0

‖w + v‖∗, (6.4.2)

where ‖.‖∗ denotes the dual norm.
An analogue formula holds for the steepest ascent direction.
If the quasidifferentiable function f : U −→ IR has a local maximum in x0 ∈ U then the
formulas (6.4.1) and (6.4.2) imply that

−∂f |x0
⊆ ∂f |x0

(6.4.3)

and analogously for a local minimum in x0 ∈ U of the function f : U −→ IR in x0 ∈ U
one has

−∂f |x0
⊆ ∂f |x0

. (6.4.4)

Hence we see, that in the case of a local extremum of a quasidifferentiable function

f : U −→ IR in x0 ∈ U the class [ ∂f |x0
,−∂f |x0

] is convex and that it is C-minimal for

every C := {p}, p ∈ X.
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7. Examples of different types of minimality

Example 7.1. Let X := IR2 and let us put 0 := (0, 0), a := (0, 1), b := (1, 1), c :=
(1, 0) and put d := b + c. Now we define the following compact convex sets:

A0 := 0 ∨ a
A1 := A0 ∨ b
A2 := A0 + I0

A3 := A0 + I1

A4 := A1 + I1

,

,

,

,

,

B0 := 0 ∨ b ∨ c
B1 := B0 ∨ d
B2 := B0 + I0

B3 := B0 + I1

B4 := B1 + I1

where I0 := 0 ∨ c and I1 := 0 ∨ b. Moreover put b1 := 2b and c1 := c+ b1.

2 2 2
2 2

3
4 5

6
798 :;8 2 2 2

2 2
2 2 2

2 27*< :.<
=

2 2 2
2 27/> :?>

@7.>BAC:?>

2 2 2
2 2

2 2 2
2 2 2

2 2 2 2

2 2 2
2 2 2

2 2 2 2

7?D :ED
7?F :EF4 < 5 < 6 <

GIH

It is obvious that (A0, B0) is equivalent to (A2, B2) and (A3, B3). Moreover (A4, B4) is
equivalent to (A1, B1). Now we show that (A0, B0) is equivalent to (A1, B1). This can be
seen as follows:
First we have:

(A1 + c) ∪ B0 = B1 and (A1 + c) ∩B0 = A0 + c.

Now from [16] Corollary 2.4 follows that

B0 + A1 + C = A0 + c +B1 and hence B0 + A1 = A0 +B1,

which means that (A0, B0) ∼ (Ai, Bi) for i ∈ {1, 2, 3, 4}. Moreover it follows immediately
from [7] Theorem 2.1 that the pair (A0, B0) is minimal.

The pair (A1, B1) is convex and (A1 ∪ B1, A1 ∩ B1) = (A1 ∪ B1, I1). Since the pair
(A1 ∪ B1, I1) is minimal, it follows from Theorem 1.4 that the pair (A1, B1) is minimal
convex. Now observe that
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(A0 ∨B0, A0 +B0) ∼ (A0 + I0, A0 +B0) ∼ (I0, B0),

and since (I0, B0) is a minimal pair it follows by Theorem 3.3 that the pair (A0, B0) is
C-minimal with C := I0. Moreover we have A2 = A0 + C and B2 = B0 + C. Since
B0 = (A0 + C) ∩ (B0 + C), it follows from Proposition 3.14 that the class [A0, B0] is
C-minimal.
Now we will prove that the pair (A4, B4) is a convex hull of the pair (A3, B3). Therefore

suppose that there exists a convex pair (C,D) ∈ K2(X) such that

(A3, B3) ≤ (C,D) ≤ (A4, B4).

Then
A3 ∩ B3 = I1 ⊂ C ∩D ⊂ A4 ∩ B4 = 2 · I1.

If we assume that C ∩ D 6= A4 ∩ B4, then there exists a point p ∈ 2 · I1, p 6= b1 such
that C ∩D = [(0, 0), p]. But since C ∪D is convex, the intersection C ∩D separates the
sets C and D. Now for the two points a1 ∈ C and b1 ∈ D we have [a1, b1] ∩ C ∩D = ∅.
This is a contradiction and therefore we have p = b1 and C ∩D = A3 ∩ B3. From [16]
Corollary 3.7 it follows, that C = A4 and D = B4.
Moreover we have that A3+x ⊆ A4 implies that x = 0, and hence the pair (A4+x,B4+x)
is not a convex hull of the pair (A3, B3) for x 6= 0.

Example 7.2. Let X := IR2 and let us put

A := {(−1, 0)}∨{(0,−1)}∨{(1, 0)}∨{(1, 1)} and B := A + x0 with x0 := (2, 0).

Then the pair (A,B) ∈ K2(IR2) is not convex.
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KPOQKSRT UV

WX Y�Z
[ [ [�\ \ \[[[\\\ \ \ \�[ [ [

\\\[[[ ] ] ]]]]
] ] ]]]]

] ] ]]]]^ Y Z`_ Z abZ

Given any cα := α · a + (1− α) · b, 0 ≤ α ≤ 1, where a := (0, 1) and b := (2, 1).
Now we consider

Cα := {−cα} ∨ {cα} ∨ {(cα − x0)} ∨ {(x0 − cα)}, and Dα := Cα + x0.

The pair (Cα, Dα) is a convex hull of the pair (A,B). We observe that for every x 6= 0
the pair (Cα + x,Dα + x) is not a convex hull of (A,B). Moreover

⋂
0≤α≤1

Cα = A and
⋂

0≤α≤1
Dα = B.
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A minimal pair which is equivalent to the pair (A,B) is the pair ({0}, {x0}) and a convex
minimal pair of (A,B) is the pair ([0, x0], [x0, 2 · x0]).

Example 7.3. Let X := IR2 and let us put

A := {(0, 0)} ∨ {(0, 1)} , B := {(0, 0)} ∨ {(1, 0)}
C := {(0, 1)} ∨ {(1, 0)} , D := C ∨ {(1, 1)}.

c

d

e f gh iPj
k�lnm

f
g

o

iqp

It is easy to see that the pair (A ∨ B,A + B) is equivalent to the pair (C,D). Moreover
by Theorem 1.4 the pair (A+ C,B + C) is convex minimal.

Example 7.4. Let X := IR2 and let us put

A := {(0, 1)} ∨ {(1

2

√
3,−1

2
)} ∨ {(−1

2

√
3,−1

2
, 0)}, and B := −A.

Then the pair (A,B) ∈ K(IR2) is minimal.

rs

sut r
r tvsuw rx

sytysuw rz

Also (A ∨ B,A + B) is minimal. Hence by Theorem 1.4 we see that the pair (A + A ∨
B,B + A ∨ B) is minimal convex.
Since (A + A ∨ B) ∩ (B + A ∨ B) = A + B, it follows from Proposition 3.14 that the
class [A,B] is C-minimal with C = A ∨B.
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Example 7.5. Let X := IR2 and let us put

A := {(0, 0)} ∨ {(0, 1)} and B := {(0, 0)} ∨ {(1, 0)} ∨ {(1, 1)}.

Then the following pairs (A′j , B
′
j) for j ∈ {1, ..., 7} and the convex pairs (Ak, Bk) for

k ∈ {1, ..., 8} are equivalent to the pair (A,B) and the pair (A8, B8) is minimal convex.

The first assertion can be seen by using subsequently the reduction technique for pairs of
compact convex sets (see [8] Theorem 2.6).
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Now we construct the convex pairs (Ak, Bk) for k ∈ {1, ..., 8}. Let us put A1 := A+A∨B
and B1 := B+A∨B. Then the pair (A1, B1) is convex and equivalent to the pair (A,B).
Moreover the following convex pairs (Ak, Bk) for k ∈ {2, ..., 8} are equivalent to (A1, B1)
and from Theorem 1.4 follows, that the pair (A8, B8) is minimal convex.
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[4] L. Hörmander: Sur la fonction d’ appui des ensembles convexes dans un espace localement

convex, Arkiv för Matematik 3 (1954) 181–186.
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D.Pallaschke, W.Urbańska, R.Urbański / C-minimal pairs of compact convex sets 25
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