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1. Introduction

When dealing with minimization problem for the given functional I: X → ĪR ≡ IR ∪
{+∞}, X being some Banach space of admissible functions, it is important to know the
behavior of its solutions (i.e. minimum values and points of minima) with respect to small
perturbation of parameters of the problem. In other words, we are to study the problem
of Γ-convergence of the functionals Iν to I.

This paper is concerned with minimization problem for functional with deviating argu-
ment defined by the relationship

I(x) =

1∫

0

f(t,x(h1(t)), . . . ,x(hk(t)), ẋ(g1(t)), . . . , ẋ(gl(t))) dt,

x(t) = 0, ẋ(t) = 0, whenever t 6∈ [0, 1].

(V∞)

where t ∈ [0, 1], x(t) ∈ IRn is a vector function, {k, l} ⊂ IN, hi: [0, 1]→ IR, gj: [0, 1]→ IR

and f : [0, 1]× IRnk× IRnl → ĪR. The problem of continuous dependence of its solutions on
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parameters can be stated as follows: suppose we have a sequence of perturbed functionals
of the same type

Iν(x) =

1∫

0

fν(t,x(hν1(t)), . . . ,x(hνk(t)), ẋ(gν1 (t)), . . . , ẋ(gνl (t))) dt,

x(t) = 0, ẋ(t) = 0, whenever t 6∈ [0, 1],

(Vν)

hνi : [0, 1]→ IR, gνj : [0, 1]→ IR, fν : [0, 1]× IRnk× IRnl → ĪR tending in certain sense to hi,

gj and f respectively as ν →∞. One is interested in finding out whether in this case the

solutions to the minimization problems (Vν) (minimum values of the functionals Iν and
the points of their minima xν) approach the solution to the minimization problem (V∞)
(respectively, minimum value of I and the points x of minimum of the latter).
The concept of Γ-convergence was introduced in the 1970s by E. De Giorgi (see, e.g., [1])
and afterwards received significant contributions by many authors. In the sequel we
mainly follow its recent developments in control theory by G. Dal Maso and G. But-
tazzo [2,3].

It happens that the standard Sobolev space W 1,p ((0, 1); IRn), being defined as the space
of equivalent classes of vector functions, is not well adapted to the study of nonlocal
problems of the above type, and it is much more convenient to conduct the study in the
spaces of absolutely continuous vector functions. In this paper we use the spaces of abso-
lutely continuous functions with the derivatives in some Orlicz spaces, which allow also
to consider the functionals with rapidly (e.g. exponentially) growing integrands. After
reiterating with minor changes and generalizations for this case the standard auxiliary
results for classical functionals (without transformation of the argument) in section 4,
we start with introducing the inner superposition (composition) operators which play the
key role in the further discussion and study various types of their convergence in sec-
tion 5. In the last section we relate the properties of convergence of inner superposition
operators with Γ-convergence of the functionals with deviating argument thus solving the
above-posed problem of stability of solutions. Developing the technique introduced in the
paper we consider also some generalizations, e.g. for the functionals with impulsive con-
straints, which most often appear in the optimal control problems for impulsive functional
differential equations.

2. Notation and preliminaries

Recall that the Fenchel conjugate I ′: X ′ → IR ∪ {±∞} for the functional I: X ′ →
IR ∪ {±∞} is defined by the formula

I ′(x′) := sup
x∈X

(〈x, x′〉 − I(x)).

For the general properties of the conjugate the reader is referred to [4, p. 35]. In what
follows we also use the Fenchel conjugate in finite-dimensional space referring to it as the
Legendre transformation.
Let Lp(0, 1) stand for the standard Lebesgue space of functions integrable on the interval
(0, 1) with the power 1 ≤ p <∞ (or essentially bounded when p =∞). In the sequel we
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make an extensive use of the space Lp ((0, 1); IRn) (further on denoted by Lpn for the sake
of brevity) of IRn-valued vector functions with the components in Lp(0, 1), equipped by

its usual norm. By ACpn denote the space of vector functions with absolutely continuous

components and with the derivatives in Lpn, equipped with the norm ||x||ACpn := |x(0)|+
||ẋ||p, where |·| stands for the norm in IRn (upon the necessity to emphasize the dimension

of the space, the latter will be also denoted by | · |n). Also by Cn[0, 1] (Cn, for short) we
denote the space of all IRn-valued vector functions with continuous components.

When dealing with rapidly increasing (e.g. exponential) nonlinearities, it is often conve-
nient to use Orlicz spaces. While introducing them here we follow the lines of [5, chapter 4].
Let P : IR→ [0,+∞) be the Young function (i.e. even, convex, lower semicontinuous with
P (0) = 0). Of course, the trivial situations P (x) ≡ 0 and P (x) ≡ +∞ are excluded.

In the sequel we denote by LPn the Orlicz space of vector functions x: [0, 1] → IRn, the

components of which are from the Orlicz space LP (0, 1) generated by P (x). Equip LPn
with the usual Luxembourg norm

||x||P := inf

{
λ > 0 :

∫ 1

0
P (|x(τ)|/λ) dτ ≤ 1

}
.

Recall that the Lebesgue spaces Lpn are particular examples of the Orlicz spaces intro-

duced. The corresponding space of absolutely continuous vector functions ACP
n is intro-

duced in the same way as ACpn. In what follows we will use as well the notion of the

subspace
◦

ACPn (resp.
◦

ACpn) of ACPn (resp. ACpn) consisting of the functions satisfying the
restriction x(0) = x(1) = 0.

Consider the associated Young function P ′ obtained by the Legendre transform of P [5,

p. 122]. It generates the associate Orlicz space LP
′

n which is closed in the topological dual

(LPn )′ and coincides with the latter if and only if P (x) is a ∆2-function, that is, for each

λ > 0 there is α > 0 such that P (λx) ≤ αP (x). For the particular case LPn = Lpn one

gets LP
′

n = Lp
′
n , where 1/p+ 1/p′ = 1. Furthermore, LPn is reflexive if both P and P ′ are

∆2-functions [5, pp. 124-125]. Another important property of Orlicz spaces generated by
∆2-functions is their separability.

Note that ACPn ⊂ Cn (as sets). Using the standard arguments involving Young’s in-
equality and the estimate for the Orlicz norm of a characteristic function of the set (for-
mula (4.40) in [5]) one can easily show that the latter immersion is compact provided that

P−1(x)/x → 0 when x → +∞. This surely holds when P ′ is a ∆2-function. It is also

worth noting that the inclusions L∞n ⊂ LPn ⊂ L1
n hold for any Young function P (x).

3. Basic facts about Γ-convergence

Throughout this section let (X, τ) be a topological space with a topology τ , Iν : X → ĪR,

ν ∈ IN be a sequence of functionals, I: X → ĪR.
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Definition 3.1. I is called the (sequential) Γ−(τ)-limit of Iν over X (written I =

Γ−(τ) limν Iν), if

I = Γ−(τ) lim infν Iν = Γ−(τ) lim supν Iν , where

Γ−(τ) lim infν Iν(x) := inf { lim infν Iν(xν) : xν
τ→x},

Γ−(τ) lim supν Iν(x) := inf { lim supν Iν(xν) : xν
τ→x}.

From now on we restrict ourselves to the following 3 situations:

(C1) X is a Banach space with τ the topology of its norm.

(C2) X is a reflexive Banach space with separable topological dual X ′, τ is the weak
topology.

(C3) X = V ′ is the topological dual of a separable Banach space V , τ is the ∗-weak
topology.

In the case (C1) we speak about strong Γ−-limits, in the cases (C2) and (C3) about weak

and ∗-weak Γ−-limits, respectively. The reference to the topology τ will be omitted in
the sequel whenever it cannot cause misunderstanding.

Recall that the functional I0: X → ĪR is said to be coercive, when I0(x) → +∞ as
||x||X → ∞. The sequence {Iν} is then called equicoercive, if Iν(x) ≥ I0(x) for each

ν ∈ IN. We will make an extensive use of following criterion for the Γ−-convergence which
is the reformulation of the propositions 1.2 and 1.4 from [6].

Proposition 3.2. In the case (C1) I = Γ− limν Iν , if and only if two conditions are
satisfied simultaneously:

∀{xν} ⊂ X, x ∈ X, xν → x ⇒ I(x) ≤ lim inf
ν

Iν(xν); (1)

∀x ∈ X, ∃{xν} ⊂ X, xν → x such that I(x) = lim
ν
Iν(xν). (2)

The same is true in the cases (C2) and (C3) under the additional requirement that the
sequence {Iν} be equicoercive.

The proposition below gives the well-known main property of Γ−-limits (see [2], corol-
lary 7.20 and theorem 7.8, corollary 1.25).

Proposition 3.3. Let I = Γ− limν Iν and {xν} ⊂ X be such that

lim
ν
Iν(xν) = lim

ν
(inf
X
Iν).

I. If xν → x, then x provides global minimum for I on X, while

lim
ν

(inf
X
Iν) = min

X
I.

II. If {Iν} is equicoercive, I 6≡ +∞, then I is coercive, while there exists a subsequence
xνµ → x, the above being valid. Moreover, if I has unique point of minimum x, then
xν → x.
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Remark 3.4. In particular, for xν one can take the points of global minima of the
respective Iν over X.

It is well-known that the weak Γ−-convergence of a sequence of functionals in a reflexive

Banach space with separable dual is closely related to the strong Γ−-convergence of their
Fenchel conjugates. To state the exact assertion to be used in the sequel, recall first
that the functional I: X → IR ∪ {±∞} is said to be proper, if I(x) 6≡ ±∞, and lower
semicontinuous, if xν → x in X implies I(x) ≤ lim infν I(xν).

Proposition 3.5. Let X be a reflexive Banach space with the separable dual X ′, while

the functionals I, Iν , I0: X → ĪR and their Fenchel conjugates I ′, I ′ν , I ′0: X ′ → IR∪{±∞}
satisfy the following assumptions:

(i) I and all Iν are convex and lower semicontinuous;

(ii) Iν(x) ≥ I0(x) for all x ∈ X, where I0 is coercive, I ′0 being proper;

(iii) limν I
′
ν(x′) = I ′(x′) for all x′ ∈ X ′, the sequence {I ′ν} being equicontinuous.

Then Iν → I Γ−-weakly in X.

Remark 3.6. In the condition (iii) it is enough to require that limν I
′
ν(x′) = I ′(x′) only

for each x′ ∈ D′, where clD′ = X ′, whenever {I ′ν} is equilipschitzian.

Proof. The condition (ii) implies, by virtue of the proposition 5.9 of [2], that the point-

wise convergence of I ′ν to I ′ over X ′, provided by (iii), is equivalent to the Γ−-convergence

of I ′ν to I ′ in the strong (normed) topology of X ′. From condition (i) follows that the

second conjugates I ′′ = I and I ′′ν = Iν . Thus, using the fact that all I ′ν are proper and
the theorem 3.2.4 of [7], one yields the desired result.

4. Auxiliary lemmata

Recall that g: [0, 1]×IRn → ĪR is said to be a Carathéodory function, if g(t,y) is continuous
in y ∈ IRn for a.e. t ∈ [0, 1] and Lebesgue measurable in t ∈ [0, 1] for all y ∈ IRn. Consider
its Legendre transform

g′(t,y′) := sup
y∈IRn

(yy′ − g(t,y)).

Introduce the functional J : LPn → IR ∪ {±∞} by the relationship

J(y) =

∫ 1

0
g(t,y(t)) dt. (3)

The statement below which gives the representation of its Fenchel conjugate, is the slight
variation of the proposition 2.1 in [8, chapter IX].

Lemma 4.1. Let g(t,y) be a Carathéodory function, while the functional J given by

(3) be proper in LPn . Then the conjugate J ′: (LPn )′ → IR ∪ {±∞} of the latter admits

representation J ′(y′) =
∫ 1

0 g
′(t,y′(t)) dt.
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Proof. According to the conditions, there exists y0 ∈ LPn such that J(y0) 6= ±∞. Given

y′ ∈ (LPn )′, consider the functions

g′j(t) := sup
|y|≤j|y0(t)|

(yy′(t)− g(t,y)).

One observes that the sequence {g′j} is nondecreasing and convergent for a.e. t ∈ [0, 1]

to g′(t,y′(t)). Moreover, g′j(t) ≥ y0(t)y′(t) − g(t,y0(t)) for all j ∈ IN, the right hand

side being integrable due to the original assumption. According to the Krasnosel’skǐı-La-
dyzhenskǐı lemma on measurable selections [5, theorem 6.2], for each j ∈ IN there is a
measurable vector function yj : [0, 1]→ IRn, such that |yj(t)| ≤ j|y0(t)| and

g′j(t) = yj(t)y
′(t)− g(t,yj(t)).

Noting that g′(t,y′(t)) is measurable as a limit of measurable functions and bounded from
below by an integrable function, it is easy to conclude that

1∫

0

g′(t,y′(t)) dt = sup
j




1∫

0

(yj(t)y
′(t)− g(t,yj(t))) dt




≤ sup
x∈LPn




1∫

0

(
y(t)y′(t)− g(t,y(t))

)
dt


 = J ′(y′).

The analogous upper estimate J ′(y′) ≤
∫ 1

0 g
′(t,y′(t)) dt follows from Young’s inequality.

Consider the sequence of functionals Jν : LPn → IR ∪ {±∞} defined by the formula

Jν(y) =

∫ 1

0
gν(t,y(t)) dt. (4)

Another auxiliary assertion to be used in the sequel concerns its pointwise convergence

to a functional J : LPn → IR ∪ {±∞} given by the relationship (3), and follows closely
lemma 3.1 of [6].

Lemma 4.2. Let gν , g, g0, g0: [0, 1] × IRn → ĪR be Carathéodory functions satisfying
the assumptions

(i) For a.e. t ∈ [0, 1], for all y ∈ IRn holds one has g0(t,y) ≤ gν(t,y) ≤ g0(t,y), gν(t, ·)
and g(t, ·) being convex, while g0(·,y), g0(·,y) ∈ L1(0, 1);

(ii) gν(·,y) ⇀ g(·,y) weakly in L1(0, 1).

Then Jν(y)→ J(y) for each y ∈ Cn.

Proof. First observe that as g0(t, ·) and g0(t, ·) are finite, then gν(t, ·) and g(t, ·) are
equilipschitzian according to corollary 2.4 of [8, chapter I], that is, from |y1| < R, |y2| < R
follows that for a.e. t ∈ [0, 1]

|gν(t,y1)− gν(t,y2)| ≤ lR(t)|y1 − y2|, where
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lR(t) =
max|y|≤R0

g0(t,y)−min|y|≤R0
g0(t,y)

R0 − R
, R0 > R.

Obviously lR ∈ L1(0, 1). It is also easy to show that g(t,y) has the same upper and lower
bounds, and therefore, it has the same estimate for a Lipschitz constant.
For y ∈ Cn consider the finite ε-net {yi}mi=1 ⊂ IRn of y([0, 1]) and the respective open

balls Bε(yi): |y− yi| < ε covering the latter. Let {hi(t)} stand for the partition of unity

on y−1(Bε(yi)) and denote Ωi := [0, 1] ∩ y−1(Bε(yi)). Also let R stand for the radius of
the ball covering all y([0, 1]). The estimate

|Jν(y)− J(y)| ≤
m∑

i=1

∣∣∣∣
∫

Ωi

(gν(t,y(t))− g(t,y(t)))hi(t) dt

∣∣∣∣ ≤

m∑

i=1

( ∣∣∣∣
∫

Ωi

(gν(t,y(t))− gν(t,yi))hi(t) dt

∣∣∣∣+

∣∣∣∣
∫

Ωi

(gν(t,yi)− g(t,yi))hi(t) dt

∣∣∣∣+
∣∣∣∣
∫

Ωi

(g(t,y(t))− g(t,yi))hi(t) dt

∣∣∣∣
)
≤ (2lR + 1)ε

for sufficiently large ν shows the statement.

5. Convergence of sequences of inner superposition operators

In this section we discuss various notions of continuous convergence of a sequence of
mappings Aν : X → Y between two Banach spaces. In the sequel we will be particularly
interested in studying the convergence of sequence of linear inner superposition operators
{Sgν} acting on some space of vector functions x: [0, 1] → IRn and defined formally by
the relationships

(Sgνx)(t) =

{
x(gν(t)), gν(t) ∈ [0, 1],

0, gν(t) 6∈ [0, 1],
(5)

where gν: [0, 1]→ IR ∪ {±∞}. Denote by Sg the operator

(Sgx)(t) =

{
x(g(t)), g(t) ∈ [0, 1],

0, g(t) 6∈ [0, 1],
(6)

with g: [0, 1] → IR ∪ {±∞}. From now on we assume that both g(t) and all gν(t) are

almost everywhere finite and measurable. For the sake of brevity we denote g0 := g.
On the σ-algebra of measurable subsets e ⊂ [0, 1] define for all ν ∈ IN∪ {0} the functions

µgν(e) := meas (gν)−1 (e) and, when the latter are absolutely continuous with respect to

the Lebesgue measure, the respective Radon-Nikodym derivatives
dµgν
dm . The methods of

the explicit calculation of the latter in various particular cases are given in [9, pp. 21-
23]. In an analogous way, for each τ ∈ [0, 1], ν ∈ IN ∪ {0} consider the set functions

µgν(τ, e) := meas (gν)−1 (e) ∩ [0, τ ] and their Radon-Nikodym derivatives

dµgν(τ)

dm
(t) := lim

ε→+0

µgν(τ, [t− ε, t+ ε])

2ε
, for a.e. t ∈ (0, 1).
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Further on we as usual omit the superscript if ν = 0. To calculate the above functions
one can use the relationship

dµgν(τ)

dm
(t) =

d

dt
meas (gν)−1 ([0, t]) ∩ [0, τ ].

It is also worth noting that
dµgν (1)
dm ≡ dµgν

dm . Also for every τ ∈ [0, 1] consider the sets

Eν(τ) := (gν)−1 ([0, τ ]).

Further on we will write E(τ) instead of E0(τ) and omit the reference to τ when τ = 1.
Let from now on F(X, Y ) denote the set of all mappings between two Banach spaces X
and Y , L(X, Y ) stand for the space of linear bounded operators acting in the same spaces.
If X = Y , we write as usual F(X), L(X) respectively.

5.1. Pointwise and continuous convergence

Definition 5.1. The sequence of maps Aν ∈ F(X, Y ) is said to converge continuously

to A ∈ F(X, Y ), Aν
C→A, if {xν} ⊂ X, xν → x ∈ X ⇒ Aνxν → Ax ∈ Y .

One notes that whether Aν are continuous or not, Aν
C→A implies that A is continuous

(see Kuratowski [10], Chapter II, § 20, Section VII). Moreover, if all Aν are linear, then
it also implies their boundedness as well as the linearity and boundedness of the limit
operator A. Furthermore, it is well-known that for linear operators between two Banach
spaces continuous convergence is equivalent to the strong (pointwise) convergence.
Turn now to the particular case of a sequence of inner superposition operators. At first,
we study the strong (pointwise) and, therefore, continuous convergence of the sequence

Sgν : Cn → LPn to the Sg: Cn → LPn . Observe that for these operators to be well-defined

by the formulae (5) and (6) respectively it suffices to require the measurability of all gν
and g. The assertion below extends the analogous one for Lebesgue space (see theorem 2.1
in § 4.2 of [9]).

Proposition 5.2. Let the Young function P satisfy the ∆2-condition. The sequence of

operators Sgν : Cn → LPn defined by (5) converges pointwise to Sg: Cn → LPn defined by

(6) if and only if the following two assumptions hold as ν →∞:

(i) gν → g in measure on E ;
(ii) meas Eν∆E → 0, where ∆ stands for symmetric difference between the sets.

Remark 5.3. The same result is valid for LPn = L∞n if the assumptions are replaced by

(i) gν → g in L∞ norm on E ;
(ii) meas Eν∆E = 0 starting from some ν ∈ IN.

Proof. The necessity has been proved in the theorem 2.1 in § 4.2 of [9]. To prove
sufficiency recall that according to the same theorem Sgνx → Sgx in measure for any

x ∈ Cn under the conditions (i) and (ii). To show the norm convergence note that

||Sgνx− Sgx||P = inf λ,
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where infimum is taken over all λ > 0 such that

∫

Eν\E

P (|(Sgνx) (t)| /λ) dt +

∫

E\Eν

P (|(Sgx) (t)| /λ) dt+

∫

E∩Eν

P (|(Sgνx) (t)− (Sgx) (t)| /λ) dt ≤ 1.

For each fixed λ > 0 the first two integrals in this sum tend to zero when ν →∞ due to the
the boundedness by the value P (max[0,1] |x(t)|/λ) meas E∆Eν, the last one tending to zero

by virtue of the Lebesgue monotone convergence theorem, which shows the statement.

For the sake of completeness we mention here that the strong convergence of the sequence
of inner superposition operators acting between two Lebesgue spaces has been studied in
[11].

5.2. Weak pointwise convergence

Definition 5.4. The sequence of maps Aν ∈ F(X, Y ) is said to converge weakly
pointwise to A ∈ F(X, Y ), if for all x ∈ X Aνx ⇀ Ax ∈ Y .

This type of convergence is clearly strictly weaker than the pointwise convergence unless
Y is a finite-dimensional space. However, for a sequence of linear operators it still implies
their boundedness as well the linearity and the boundedness of the limit operator A. One
notes also that the weak pointwise convergence of the linear operators Aν to A is equivalent
to the weak pointwise convergence of their adjoints A′ν : Y ′ → X ′ to A′: Y ′ → X ′.
We discuss now the case of inner superposition operators.

Proposition 5.5. Let the Young functions P and Q satisfy the ∆2-condition, while

Φ(x) = P (Q−1(x)) be the Young function with the Legendre transform Φ′. The sequence

of operators Sgν : LPn → LQn defined by (5) converges weakly pointwise to Sg: L
P
n → LQn

defined by (6), if

(i) ∃A :
∥∥∥dµgνdm

∥∥∥
Φ′
≤ A for all ν ∈ IN ∪ {0};

(ii) meas Eν(τ)∆E(τ)→ 0 when ν →∞ for any τ ∈ [0, 1].

Remarks 5.6.

1. Under the conditions of this proposition necessarily LPn ⊂ LQn .

2. The same result holds when instead of Q its Legendre transform Q′ satisfies the
∆2-condition. In this case weak convergence should be replaced by the ∗-weak one.

Proof. It is enough to show that

(I) The sequence Sgν has uniformly bounded norms;

(II) Sgνx⇀ Sgx for all x ∈ X0, where spanX0 is dense in LPn .

Clearly, (I) follows from (i). One should demonstrate also that (ii) implies (II). For this
purpose take

X0 =
{
χ[0,τ ]ej | τ ∈ [0, 1], j = 1, . . . , n

}
⊂ LPn ,
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where χ[0,τ ] stands for the characteristic function of the interval [0, τ ], ej is the j-th

coordinate unit vector in IRn. Observe that cl spanX0 = LPn , because P is a ∆2-function.
Taking into account that

Sgνχ[0,τ ]ej = χEν(τ )ej and Sgχ[0,τ ]ej = χE(τ )ej,

and that for any f ∈ LQ′(0, 1)

∣∣∣∣
∫ 1

0
χEν(τ )(t)f(t) dt−

∫ 1

0
χE(τ )(t)f(t) dt

∣∣∣∣ ≤
∣∣∣∣∣

∫

Eν(τ )\E(τ )
f(t) dt

∣∣∣∣∣+
∣∣∣∣∣

∫

E(τ )\Eν(τ )
f(t) dt

∣∣∣∣∣→ 0,

according to (ii), one shows (II).

It is clear from the proof that condition (ii) of the above proposition is also necessary for
the weak pointwise convergence of the sequence of inner superposition operators between

two Orlicz spaces. In fact, the choice x = χ[0,τ ]ej implies then χEν(τ ) ⇀ χE(τ ) in LQ(0, 1),

wherefrom (ii) follows. On the contrary, condition (i) is only sufficient. For instance, if

P ≡ Q, then LΦ′(0, 1) = L∞(0, 1), while the uniform essential boundedness of
dµgν

dm is gen-

erally speaking not necessary for the uniform boundedness of the operators Sgν . However
for the particular case of Lebesgue spaces we can improve at this point proposition 5.5.

Corollary 5.7. The sequence of operators Sgν : Lpn → Lqn, 1 < q ≤ p < ∞, defined by

(5), converges weakly pointwise to Sg: Lpn → Lqn defined by (6) if and only if

(i) ∃A :
∥∥∥dµgνdm

∥∥∥
p/(p−q)

≤ A;

(ii) meas Eν(τ)∆E(τ)→ 0 when ν →∞ for any τ ∈ [0, 1].

Proof. One observes that if LPn = Lpn, LQn = Lqn, 1 < q ≤ p < ∞, then LΦ′
n = L

p/(p−q)
n .

It remains to note that the condition (i) is also necessary for the uniform boundedness of
the operators Sgν (which is an immediate consequence of theorem 1 of [12]).

5.3. Weak continuous convergence

Definition 5.8. The sequence of maps Aν ∈ F(X, Y ) is said to converge weakly

continuously to A ∈ F(X, Y ), Aν
Cσ⇀A, if {xν} ⊂ X, xν ⇀ x ∈ X ⇒ Aνxν ⇀ Ax ∈ Y .

Obviously this type of convergence implies weak pointwise convergence. The reverse
however is not true even for linear operators. Consider for example, the sequence of linear

operators Aν: L
2(0, 1)→ L2(0, 1), (Aνx)(t) = x(t) sin νπt. It converges weakly pointwise

to the zero operator, while does not converge in the weak continuous sense. To show the
latter, take the sequence xν(t) = sin νπt (to be more precise, the restrictions of the above
functions to the interval [0, 1]), and observe that Aνxν does not converge weakly to zero

in L2(0, 1). One also notes that due to the statement of Kuratowski ([10], Chapter II,

§ 20, Section VII) from Aν
Cσ⇀A follows the weak continuity of A (i. e. A maps any weakly

convergent sequence into a weakly convergent one).
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For linear operators it is obvious that for Aν
Cσ⇀A in L(X, Y ) it is sufficient that A′ν → A′

strongly (pointwise) in L(Y ′, X ′). If, in addition, X is reflexive and Y is uniformly convex
(in particular, Hilbert) space, then this condition is also necessary. To show this, assume

Aν
Cσ⇀A in L(X, Y ) and consider an arbitrary subsequence of a sequence of operators

{Aν} (for brevity we will use the same index ν). As A′νy
′ ⇀ A′y′ for each y′ ∈ Y ′, then

||A′y′||X ′ ≤ lim infν ||A′νy′||X ′. On the other hand, according to the Hahn-Banach theorem

there is such a sequence {xν} ∈ X, that ||xν ||X = 1 and < xν , A
′
νy
′ >= ||A′νy′||X ′.

Extracting a weakly converging subsequence xνµ ⇀ x, ||x||X ≤ 1, and recalling that the

continuous convergence of a sequence of operators implies the continuous convergence of
any its subsequence to the same limit ([10], Chapter II, § 20, Section VII), one sees that

||A′νµy′||X ′ → 〈x,A′y′〉 ≤ ||A′y′||X ′ and hence A′νµy
′ → A′y′. Therefore, the whole weakly

convergent sequence {A′νy′} ⊂ X ′ is compact and thus A′νy
′ → A′y′.

Now return to the particular case of inner superposition operators acting between two
Orlicz spaces.

Proposition 5.9. Let both the Young functions P , Q and their Legendre transforms

P ′, Q′ satisfy the ∆2-condition, while Φ(x) = P (Q−1(x)) be the Young function with the

Legendre transform Φ′. If the following requirements are satisfied

(i) ∃A > 0: ||dµgνdm ||Φ′ ≤ A for all ν ∈ IN ∪ {0};
(ii)

∥∥∥dµgν (τ )
dm

∥∥∥
P ′
→
∥∥∥dµg(τ )

dm

∥∥∥
P ′

for each τ ∈ [0, 1];

(iii) meas Eν(τ)∆E(τ)→ 0 when ν →∞ for each τ ∈ [0, 1],

then Sgν
Cσ⇀Sg in L(LPn , L

Q
n ). Moreover, if LPn = Lpn, LQn = Lqn, 1 < q ≤ p < +∞, then

also the reverse is true.

Proof. We will show that the adjoint operators S ′gν : LQ
′

n → LP
′

n converge strongly

(pointwise) to S ′g: L
Q′
n → LP

′
n . For this purpose it is enough to prove that

(I) The sequence Sgν has uniformly bounded norms;

(II) S′gνy
′ → S′gy

′ for all y ∈ X0 ⊂ LQ
′

n , where X0 is defined in the proof of the

proposition 5.5.

Obviously (I) holds due to the fulfillment of the condition (i). Now note that the operators
Sgν converge to Sg weakly pointwise due to the proposition 5.5, and thus

S′gνχ[0,τ ]ej =
dµgν(τ)

dm
ej ⇀

dµg(τ)

dm
ej = S′gχ[0,τ ]ej ,

which together with (ii) implies (II).

It is clear that the conditions (ii) and (iii) are also necessary for the weak continuous
convergence of the operators Sgν to Sg. However, condition (i) is necessary only in the

case of Lebesgue spaces, which can be proved with reference to theorem 1 of [12].
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5.4. Strong continuous and uniform convergence

Definition 5.10. The sequence of maps Aν ∈ F(X, Y ) is said to converge strongly

continuously to A ∈ F(X, Y ), Aν
C
⇀A, if {xν} ⊂ X, xν ⇀ x ∈ X ⇒ Aνxν → Ax ∈ Y .

Of course, the strong continuous convergence implies all the other types of convergences
discussed before. The reference to Kuratowski ([10], Chapter II, § 20, Section VII) also

shows that from Aν
C
⇀A follows the strong continuity of A (i. e. A maps any weakly

convergent sequence into a norm convergent one). In particular, if X is reflexive, then
A is necessarily compact and continuous. Furthermore, one can easily show (see again
[10, p. 109]) that in the case of reflexive X the strong continuous convergence implies the
uniform convergence.
It has been shown (see Theorem 3.3 in § 1.3 of [9]) that an inner superposition operator
acting between two Orlicz spaces cannot be compact and continuous unless it is identically
zero. Hence one concludes that the sequence of inner superposition operators defined on
a reflexive Orlicz space cannot converge strongly continuously to an inner superposition
operator different from zero.
Finally we point out that if the sequence {Aν} is compact in totality (i. e. ∪νAν(B) is

compact in Y for any bounded B ∈ X), then Aν
Cσ⇀A implies Aν

C
⇀A.

5.5. Condition T

In the sequel we need also the following property of the sequence of mappings {Aν} ⊂
F(X, Y ), closely related to the property of weak continuous convergence:

Aνxν ⇀ y ∈ Y ⇒ ∃x ∈ X : xν ⇀ x. (T )

The statement below concerns the verification of this condition for the sequence of oper-
ators {Sgν} defined by the expression (5) and acting in some Orlicz space.

Proposition 5.11. Assume that the Young function P and its Legendre transform P ′

satisfy the ∆2-condition. Let for the operator Sg: LPn → LPn and the sequence of operators

Sgν : LPn → LPn the following conditions hold:

(i) There is a measurable function γ: g(E) → E satisfying γ(g(t)) = t for a.e. t ∈ E ,
while

e ⊂ g(E), meas e = 0 ⇒ meas γ−1(e) = 0;

(ii) There are numbers a, A such that for all ν ∈ IN a.e. on [0, 1] holds

0 < a ≤ dµgν

dm
≤ A, 0 < a ≤ Sg

dµg
dm
≤ A;

(iii) Conditions (ii) and (iii) of proposition 5.9 hold.

Then the sequence {Sgν} satisfies property (T ).

Remark 5.12. The condition (i) is usually referred to as the ω-condition (see [9, pp.
42–44]).

Proof. Let Sgνxν ⇀ y ∈ LPn for some {xν} ⊂ LPn . Thus there is a constant C > 0

satisfying ||Sgνxν ||P ≤ C. It is easy to show that condition (ii) implies the uniform
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boundedness from below of the operator norms of Sgν and thus the uniform boundedness

of the sequence {xν}.
On the other hand, it is easy to show by the method used in [13], that due to the conditions

(i) and (ii) the operator Sg is continuously invertible in LPn . Set then x = S−1
g y.

According to the conditions Sgν
Cσ⇀Sg in LPn . Furthermore, since {xν} is bounded and

thus weakly precompact, (Sgν − Sg)xν ⇀ 0. Minding that Sgνxν ⇀ Sgx, we obtain
Sgxν ⇀ Sgx, which implies xν ⇀ x due to the continuous invertibility of Sg.

6. Γ-convergence for functionals with transformed argument

We start this section with a simple abstract statement which relates various types of con-
vergence of mappings introduced in section 5 with the weak Γ−-convergence of functionals
with transformed argument. Let X, Y be reflexive Banach spaces with separable duals

and consider the functionals I, Iν: Y → ĪR. Recall that the linear operator A: X → Y is
called correctly solvable, if ||Ax||Y ≥ C||x||X for all x ∈ X and for some constant C > 0.

Proposition 6.1. Assume that the sequence Iν be equicoercive and equicontinuous (in

norm), while Iν → I Γ−-weakly over Y . If the sequence of linear uniformly in ν correctly

solvable operators Aν : X → Y with dense images in Y satisfies Aν
Cσ⇀A in L(X, Y ) and

condition (T ), then Iν(Aν(·))→ I(A(·)) Γ−-weakly over X.

Remark 6.2. It will be clear from the proof, that if in addition every Aν is surjective,
then the statement is true without the requirement of equicontinuity of Iν .

Proof. From proposition 3.2 follows that

yν ⇀ y in Y ⇒ I(y) ≤ lim inf
ν

Iν(yν), (α)

∃{ȳν} ⊂ Y, ȳν ⇀ y in Y ⇒ I(y) = lim
ν
Iν(ȳν) (β)

for every y ∈ Y . The weak continuous convergence of the operators Aν to A and the
property (α) imply

xν ⇀ x in X ⇒ I(Ax) ≤ lim inf
ν

Iν(Axν). (α1)

On the other hand, given x ∈ X, according to (β) there is a sequence yν ⇀ Ax satisfying
I(Ax) = limν Iν(yν). Using the density of the images of each Aν in Y , one finds a sequence
{x̄ν} ⊂ X, such that ||Aν x̄ν−yν ||Y → 0 when ν →∞. Obviously Aν x̄ν ⇀ Ax. Moreover,
the estimate

|I(Ax)− Iν(Aν x̄ν)| ≤ |I(Ax)− Iν(yν)|+ |Iν(Aν x̄ν)− Iν(yν)|

together with condition (T ) provide that x̄ν ⇀ x and

I(Ax) = lim
ν
Iν(Aν x̄ν). (β1)

To verify the equicoercivity of Iν(Aν(·)), it is enough to check according to proposition 7.7
of [2] that the sublevels of the latter are uniformly bounded in X. This can be observed
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as an immediate consequence of the uniform correct solvability of Aν . To conclude the
proof, it remains to refer to proposition 3.2.

One should point out that the conditions on the sequence {Aν} used in the above result

are in general not necessary for the Γ−-convergence of the respective functionals with
transformed argument. To illustrate this consider a particular example of a functional J
and the sequence of its perturbations Jν

J(x) =

∫ 1

0
(Sgx)2 (t) dt, Jν(x) =

∫ 1

0
(Sgνx)2 (t) dt,

where x ∈ L2(0, 1), Sgν and Sg are the inner superposition operators as introduced by

the relationships (5) and (6) respectively. Changing the variable under the integration
sign and applying proposition 3.5 with lemmata 4.1 (representation of Fenchel conjugate)
and 4.2 (pointwise convergence of the conjugates) one obtains that for Jν to converge

Γ−-weakly to J on L2(0, 1) it is sufficient that

∃a :
dµgν

dm
≥ a > 0 and

(
dµgν

dm

)−1

⇀

(
dµg
dm

)−1

weakly in L1(0, 1) (7)

which is certainly much less than required by proposition 6.1.

6.1. Functionals with deviating argument

Now return to the original problem (V∞) and its perturbations (Vν). The Legendre
transforms of fν , f in the last variables are given by the expressions

f ′(t,u, v′) := sup
v∈IRnl

(vv′ − f(t,u, v)),

f ′ν(t,u, v′) := sup
v∈IRnl

(vv′ − fν(t,u, v)),

Introduce the following set of conditions.

(P0) The Young functions P , Q and their Legendre transforms P ′, Q′ satisfy the ∆2-
condition.

(Q1) f , fν : [0, 1] × IRnk × IRnl → ĪR are Carathéodory functions, such that fν(t,u, ·),
f(t,u, ·) are convex, while for a.e. t ∈ [0, 1], for all (u, v) ∈ IRnk × IRnl, v′ ∈ IRnl

and for some v̄ ∈ IRnl, aj ≥ 0, j = 1, . . . , l,
∑l

j=1 a
2
j > 0, b ∈ L1(0, 1) holds

fν(t,u, v1, . . . , vl) ≥
l∑

j=1

ajP (|vj |) + b(t),

fν(t,u, v̄) ≤ c(t,u),

where c: [0, 1]× IRnk → ĪR is some Carathéodory function, c(·,u) ∈ L1(0, 1).

(Q2) For a.e. t ∈ [0, 1], for each {u1,u2} ⊂ IRnk, v ∈ IRnl holds

|fν(t,u1, v)− fν(t,u2, v)| ≤ ω(t, |u1 − u2|nk),
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where ω: [0, 1]× [0,+∞)→ [0,+∞) is a Carathéodory function nondecreasing in

the second variable, with ω(t, 0) ≡ 0, ω(·, u) ∈ L1(0, 1) for each u > 0.

(Q3) For any u ∈ LQnk the functionals

Jν(v) =

1∫

0

fν(t,u(t), v(t)) dt and J(v) =

1∫

0

f(t,u(t), v(t)) dt

are proper in the space LPnl;

(Q4) f ′ν(·,u, v′) ⇀ f ′(·,u, v′) weakly in L1(0, 1) for all {u, v′} ∈ IRnk × IRnl.

In the sequel we denote for the sake of brevity h0
i := gi, g

0
j := gj . The notations below

refer to ν ∈ IN∪{0}. Define the inner superposition operators Tgνi : Cn → LQn , i = 1, . . . , k

and Sgνj : LPn → LPn , j = 1, . . . , l by the relationships

(Thνi x)(t) =

{
x(hνi (t)), hνi (t) ∈ [0, 1],

0, hνi (t) 6∈ [0, 1],
(Sgνj x)(t) =

{
x(gνj (t)), gνj (t) ∈ [0, 1],

0, gνj (t) 6∈ [0, 1].

Also denote

T νh : x ∈ Cn 7→
(
Thν1x, . . . , Th

ν
k
x
)
∈ LQnk, Sνg : x ∈ LPn 7→

(
Sgν1x, . . . , Sg

ν
l
x
)
∈ LPnl.

Let for each τ ∈ [0, 1], i = 1, . . . , k, j = 1, . . . , l,

Eνi := (hνi )−1([0, 1]), Eνj (τ) :=
(
gνj
)−1

([0, τ ]).

Again we omit the reference to τ when τ = 1 and to ν when ν = 0.
For the above-introduced operators consider the following assumptions.

(R1) For any j = 1, . . . , l the functions gj , g
ν
j : [0, 1]→ IR∪{±∞} are almost everywhere

finite and measurable, while

∃(a, A) : 0 < a ≤
dµgνj
dm

(t) ≤ A a.e. on [0, 1], ν ∈ IN ∪ {0} and
∥∥∥∥∥
dµgνj (τ)

dm

∥∥∥∥∥
P ′
→
∥∥∥∥
dµgj(τ)

dm

∥∥∥∥
P ′

as ν →∞.

(R2) measEν
j = 1, while there are measurable functions γνj : IR → [0, 1], j = 1, . . . , l,

ν ∈ IN ∪ {0} such that e ⊂ [0, 1], meas e = 0 implies meas
(
γνj

)−1
(e) = 0, and

γνj (gνj (t)) = t for a.e. t ∈ Eν
j .

(R3) For all i = 1, . . . , k the functions hi, h
ν
i : [0, 1]→ IR∪{±∞} are almost everywhere

finite and measurable, while hνi → hi in measure on Ei.
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(R4) meas Eνi ∆Ei → 0 for each i = 1, . . . , k and measEν
j (τ)∆Ej(τ) → 0 for any τ ∈

[0, 1], j = 1, . . . , l.

Theorem 6.3. Consider the functionals I, Iν :
◦

ACPn→ ĪR defined by the expressions
(V∞) and (Vν) respectively. Under the assumptions (P0), (Q1)–(Q4), (R1)–(R4) the fol-

lowing statement holds: if {xν} ⊂
◦

ACPn is such that

lim
ν
Iν(xν) = lim

ν
( inf
◦

ACPn

Iν).

(in particular, when each xν is the point of global minimum of the respective Iν over
◦

ACPn )
and xν ⇀ x, then

lim
ν

( inf
◦

ACPn

Iν) = min
◦

ACPn

I = I(x).

Remarks 6.4.

1. If the sequence {xν} is bounded, then it contains a weakly convergent subsequence
{xνµ} for which the statement of the theorem is valid.

2. The statement is valid in particular in
◦

ACpn, 1 < p <∞.

Proof.
Step 1. Consider the functionals Gν , G: LQnk × LPnk → ĪR defined by the formulae

Gν(u, v) =

1∫

0

fν(t,u(t), v(t)) dt and G(u, v) =

1∫

0

f(t,u(t), v(t)) dt.

We will prove (see, for instance, the analogous results of G. Buttazzo and G. Dal Maso

[3]) that due to conditions (P0), (Q1)-(Q4) from uν → u in LQnk follows

vν ⇀ v in LPnl ⇒ G(u, v) ≤ lim inf
ν

Gν(uν, vν); (A)

∃{vν} ⊂ LPnl such that vν ⇀ v ∈ LPnl and G(u, v) = lim
ν
Gν(uν , vν), (B)

where in (B) the the sequence {vν} is independent of the choice of {uν}. These properties
will be proved below in step 4.
Step 2. Turn now to the original functionals Iν , I and prove properties (1), (2) of propo-

sition 3.2. Suppose xν ⇀ x in
◦

ACPn . Let then

vν := Sgν ẋν , v := Sgẋ, uν := Thνxν , u := Thx.

From conditions (R1)-(R4) and proposition 5.9 follows that vν ⇀ v in LPnl and uν → u

in LQnk, and hence (A) implies that I(x) ≤ lim infν Iν(xν), proving (1).
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On the other hand, proposition 5.11 provides the validity of condition (T ) for the sequence

of operators {Sgν}. Therefore, if a sequence {Sgν ẋν} is weakly convergent in LPnl, then

so is {ẋν} in LPn , and thus {xν} is weakly convergent in
◦

ACPn . Conditions (R1) and (R2)
provide the continuous invertibility of Sgν , Sg. Hence (B) implies that there is a sequence

Sgν ẋν = vν ⇀ v0 in LPnl such that given Thνxν = uν → u0 in LQnk, the relationship holds

G(u0, v0) = lim
ν
Iν(xν).

Observing by our previous discussion that xν ⇀ x in
◦

ACPn , we obtain v0 = Sgẋ,

u0 = Thx and I(x) = limν Iν(xν), which proves (2).

Step 3. At this moment we are going to show that I = Γ−(w) limν Iν , where w stands for

the weak topology of
◦

ACPn . For this purpose it is enough to prove that the sequence {Iν}
is equicoercive and refer to proposition 3.2. To prove equicoercivity, use conditions (Q1)
and (R1), observing that

Iν(x) ≥ b1 +
l∑

j=1

aj

∫ 1

0
P
(∣∣∣
(
Sgνj x

)
(t)
∣∣∣
)
dt ≥ b1 + a

l∑

j=1

aj

∫ 1

0
P (|x(t)|) dt ≥ I0(||x||P ),

where b1 ∈ IR and I0(x)→ +∞ for x→ +∞.

At last, having established that I is the (weak) Γ−-limit of the sequence {Iν}, it remains
only to conclude the proof referring to proposition 3.3.

Step 4. We prove (A) and (B). Let uν → u in LQnk and consider the functionals Jν , J :

LPnl → ĪR introduced by the formulae

Jν(v) := Gν(u, v), J(v) := G(u, v).

Proposition 3.5 with the help of lemmata 4.1 and 4.2 implies that Jν → J Γ−-weakly over

LPnl. This according to proposition 3.2 provides the following two conditions:

(A′) If vν ⇀ v in LPnl, then J(u) = G(u, v) ≤ lim infν Jν(vν).

(B′) There is a sequence {vν} ⊂ LPnl, and v ∈ LPnl satisfying vν ⇀ v, such that Jν(vν)→
J(v).

To prove (A), use (A′) and the lower semicontinuity of each Gν(·, vν), concluding

G(u, v) ≤ lim inf
ν

lim inf
µ

Gν(uµ, vν) ≤ lim inf
ν

Gν(uν , vν).

Property (B) is proved by (B′) and the estimate

|G(u, v)−Gν(uν , vν)| ≤ |J(v)− Jν(vν)|+
∫ 1

0
ω(t, |u(t)− uν(t)|nl) dt.



86 M. Drakhlin, E. Stepanov / Γ-convergence for a class of functionals ...

6.2. Nonlocal perturbations of the classical functional

In this section we apply theorem 6.3 to the analysis of the typical situation when the
unperturbed functional (V∞) has the classical form, that is, does not involve the argument
deviation:

I(x) =

1∫

0

f̃(t,x(t), ẋ(t)) dt, (Ṽ∞)

where f̃(t,x(t), ẋ(t)) := f(t,x(t), . . . ,x(t), ẋ(t), . . . , ẋ(t)). In this case the Euler equa-

tions written out for the functional (Ṽ∞) are the ordinary differential equations, as it is
usual for such well studied variational problems. Thus one may formulate in other words
that the purpose of this section is to analyze the stability of solutions to the classical
problem of the calculus of variations with respect to the nonlocal perturbations. It is
particularly interesting to note that such a setting can be regarded as the “dual” to the
well-known situations, when the homogenization of the local problems leads to a nonlocal
one (see for instance [14, 15, 16] and references therein).
Replace the conditions (R1)–(R4) by the following ones:

(R1′) For any j = 1, . . . , l the functions gνj : [0, 1] → IR ∪ {±∞} are almost everywhere

finite and measurable, while

∃(a, A) : 0 < a ≤
dµgνj
dm

(t) ≤ A a.e. on [0, 1], ν ∈ IN ∪ {0} and
∥∥∥∥∥
dµgνj (τ)

dm

∥∥∥∥∥
P ′
→ τP−1(1/τ) as ν →∞.

(R2′) measEνj = 1 and there are measurable functions γνj : IR → [0, 1], j = 1, . . . , l,

ν ∈ IN such that e ⊂ [0, 1], meas e = 0 implies meas
(
γνj

)−1
(e) = 0, and

γνj (gνj (t)) = t for a.e. t ∈ Eν
j .

(R3′) For all i = 1, . . . , k the functions hνi : [0, 1] → IR ∪ {±∞} are almost everywhere

finite and measurable, while hνi → h, h(t) ≡ t, in measure.

(R4′) meas Eνi → 1 for each i = 1, . . . , k and measEν
j (τ)∆[0, τ ] → 0 for any τ ∈ [0, 1],

j = 1, . . . , l.

Now we claim the following direct corollary from theorem 6.3.

Theorem 6.5. Consider the functionals I, Iν : ACPn → ĪR defined by the expres-

sions (Ṽ∞) and (Vν) respectively. Under the assumptions (P0), (Q1)–(Q4), (R1′)–(R4′)
the assertion of theorem 6.3 remains valid.

6.3. Functionals with impulsive constraints

In this section we show how the technique developed can be used to tackle the problems
of Γ−-convergence for a sequence of functionals defined on some space different from the



M. Drakhlin, E. Stepanov / Γ-convergence for a class of functionals ... 87

the standard space of absolutely continuous functions. Such problems most often arise in
applications from optimal control theory. In particular, here we deal with an important

example of Γ−-convergence of a sequence of functionals with deviating argument subject
to impulsive constraints, which very often appears when analyzing continuous dependence
on parameters of optimal solutions to controlled impulsive differential equations. To apply
the general scheme used in the proof of theorem 6.3 we construct some special space of
piecewise absolutely continuous functions with prescribed behavior at discontinuity points.
Let the original functional (V∞) be restricted by the system of impulsive constraints:

∆x(ti) ≡ x(ti)− x(ti − 0) = ζi, i = 1, . . . , m, (C∞)

where the points of discontinuity {ti}mi=1, 0 = t0 < t1 < . . . < tm < tm+1 = 1 are fixed,

while ζi ∈ IRn are given vectors. Introduce the space PACP
n [{ti}mi=1] (for short, PACPn )

isomorphic to LPn × IRn+mn by the relationship

J : (z, β) ∈ LPn × IRn+mn 7→ x = Λz +Dβ :=

∫ t

0
z(τ) dτ + ω(t)β ∈ PACPn , (8)

where ω(t) is the n× (n+mn) matrix

ω(t) =
(
En, χ[t1,1]En, · · · , χ[tm,1]En

)
,

En is the unit n×n matrix, χA(t) is the characteristic function of the set A ⊂ [0, 1]. The
inverse of (8) is determined by the equality

J−1 : x ∈ PACPn 7→ (z, β) = (δx, ρx) := (ẋ,∆x) ∈ LPn × IRn+mn, (9)

where ∆x := col{x(0),∆x(t1), . . . ,∆x(tm)}. Thus any element of PACPn is uniquely
representable in the form

x(t) =

∫ t

0
ẋ(τ) dτ + x(0) +

m∑

i=1

χ[ti,1]∆x(ti).

Introducing the norm ||x||PAC := ||ẋ||P + |∆x|n+mn one turns PACPn into a Banach
space. The isomorphism J given by the expressions (8) and (9) was first suggested by A.

Anokhin (see [9, § 6.3]). One easily observes that PACP
n is exactly the desired space of

piecewise absolutely continuous vector functions x: [0, 1]→ IRn continuous from the right
at the given points {ti}mi=1 and satisfying the impulsive conditions (C∞) at these points.
It is reasonable to expect that the perturbations of the original problem affect also the set
of constraints, and therefore, we have to deal with the sequence of perturbed variational
problems (Vν) restricted by additional conditions

∆x(tνi ) ≡ x(tνi )− x(tνi − 0) = ζνi , i = 1, . . . , m, (Cν)

where again the points of discontinuity are ordered: 0 = tν0 < tν1 < . . . < tνm < tνm+1 = 1.

Reiterating the above construction we obtain for each functional Iν the respective space

of piecewise absolutely continuous vector functions PACP
n [{tνi }mi=1] (for short, PACPn (ν))
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isometrically isomorphic to LPn × IRn+mn. These spaces are however different and so to
study the problem of stability of minimizers of (V∞) subject to (C∞) as the problem of

Γ-convergence in PACPn one needs extra constructions. For this purpose denote

rν(t) =

m∑

i=0

(
ti +

ti+1 − ti
tνi+1 − tνi

(t− tνi )

)
χ[tνi ,t

ν
i+1](t), t ∈ [0, 1].

It is easy to verify that the inner superposition operator Srν : LPn → LPn is continuous and

continuously invertible, while Srνx ∈ PACPn whenever x ∈ PACPn (ν).

Definition 6.6. The sequence of functions xν ∈ PACpn(ν) is said to be weakly P-

convergent to x ∈ PACPn , xν
P
⇀x, if Srνxν ⇀ x in PACPn .

Denote by PAC
P
n , PAC

P
n (ν) the subspaces of PACPn , PACPn (ν) respectively, consisting

of the functions satisfying the constraints x(0) = x(1) = 0. One can now claim the
following extension of theorem 6.3 to the case of functionals with impulsive constraints.

Theorem 6.7. Let tνi → ti and ζνi → ζi when ν →∞. Then under the conditions (P0),

(Q1)–(Q4), (R1)–(R4) if {xν} ⊂ PAC
P
n (ν) is such that

lim
ν
Iν(xν) = lim

ν
( inf
PAC

P
n (ν)

Iν).

(in particular, when each xν is the point of global minimum of the respective Iν over

PAC
P
n (ν)) and xν

P
⇀x, then

lim
ν

( inf
PAC

P
n (ν)

Iν) = min
PAC

P
n

I = I(x).
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