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1. Introduction

Functionals depending on curvatures arise in different contexts, such as differential ge-
ometry [30], integral geometry [28], and singular perturbations in the theory of phase
transitions [12]. The study of minimum problems related to functionals of this type is
meaningful in some applications, for instance in the segmentation of images in computer
vision [24,25].

In this article we study the L1(IRN )-lower semicontinuity and the approximation, via

Γ-convergence, of a functional F defined on the class C∞b (IRN ) of all bounded open sets

E ∈ C∞(IRN ), and consisting of two parts: the perimeter of E and an integral over ∂E
of a suitable function f of the curvatures of ∂E. If F reduces to the perimeter functional
then it is lower semicontinuous and it turns out [13,22,23] that the measures defined by

[h−1|∇v|2 + hW (v)] dx, (1.1)

where v is a smooth function, W (t) = t2(1− t)2 and h ∈ IN, provide an approximation of
the perimeter as h→ +∞. This result has been widely generalized [1,6,26].
The presence here of the curvatures in the energy F is clearly source of new difficulties. We
start by expressing the curvature term through the signed distance function dE from ∂E,
and this reflects on the choice of the approximating functionals Fh. To be more precise the

following result is a consequence of Theorems 4.2 and 4.3. Let F, Fh : L1(IRN )→ [0,+∞]
be the maps defined by

F (u) =

∫

∂E
[1 + f(x,∇dE,∇2dE)] dHN−1 if u = 1E, E ∈ C∞b (IRN ), (1.2)
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and, if v ∈ C∞(IRN ) has compact support,

Fh(v) =

∫

IRn\{|∇v|=0}

[
1 + f

(
x,
∇v
|∇v| ,

P∇v∇2vP∇v
|∇v|

)]
dµh(x). (1.3)

Here HN−1 is the (N − 1)-dimensional Hausdorff measure, f is a non-negative contin-

uous function, 1E is the characteristic function of E, ∇2v is the Hessian of v, P∇v =

Id−|∇v|−2∇v ⊗ ∇v, and µh (which depend on v) are as in (1.1). Let us extend F and

Fh with value +∞ on the whole L1(IRN ). Then, if F is L1(IRN )-lower semicontinuous on

C∞b (IRN ), we prove that

Γ− lim
h→+∞

Fh = 2c0F on L1(IRN ), (1.4)

where c0 =
∫ 1

0

√
W (t) dt, F denotes the L1(IRN )-lower semicontinuous envelope of F , and

the Γ-limit is computed with respect to the L1(IRN )-topology. More in general, we prove

that (1.4) holds if the measure HN−1 is replaced by a suitable anisotropic surface measure
(see (4.1) and Section (2.1)), provided that the measures µh in (1.3) are consequently
modified (see (4.2)).
Our results apply, in particular, to the elastica functional F (see [14] and [20]) defined, in
dimension N = 2, by

F (1E) =

∫

∂E
[1 + |κ|2] dH1, (1.5)

where κ(x) is the curvature of ∂E at the point x. Since F is L1(IR2)-lower semicontinuous

on C∞b (IR2) [2], by (1.4) it can be approximated by the sequence of functionals

Fh(v) =

∫

IR2\{|∇v|=0}

[
1 +

∣∣∣|∇v|−1∆v − |∇v|−3
2∑

i,j=1

∇iv∇jv∇2
ijv
∣∣∣
2 ]

dµh(x),

where ∇v = (∇1v,∇2v) and (∇2v)ij = ∇2
ijv.

Thanks to (1.4) the approximation problem is reduced to study the lower semicontinuity

of F . Conditions on f ensuring that F = F on C∞b (IRN ) are partially investigated in the

last part of the paper, in which the cases N = 2 and N ≥ 3 are separately considered.
In particular, if N = 3, using a slicing argument [9] we prove the lower semicontinuity
of F when f is a suitable quadratic form of the principal curvatures (Proposition 6.1).

Moreover, if N ≥ 2, we prove that F = F on C∞b (IRN ) provided that f is a convex

function of the length of the second fundamental form (Theorem 6.3).
The outline of the paper is the following. In Section 2 we give some notation. In Section 3
we give some preliminaries concerning the signed distance function and we recall the notion

of geometric integrand f̃ (next used in the definition of the approximating functionals
Fh), and we show some examples. In Section 4 we define the functionals F and Fh. In
Theorems 4.2 and 4.3 we show the relations between F and the Γ-limit of the sequence
{Fh}. In Section 5 we find, in dimension N = 2, some necessary conditions on f that
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guarantee the lower semicontinuity of F (Theorem 5.2). Finally, in Section 6 we exhibit
some examples of lower semicontinuous functionals in dimension N ≥ 3.

2. Notation

Let E be a subset of IRN , N ≥ 2; we denote by 1E the characteristic function of E, i.e.,

1E(x) = 1 if x ∈ E, and 1E(x) = 0 if x ∈ IRN \ E. We write E ∈ C∞b (IRN ) if E is

bounded, open, and near each point x ∈ ∂E the set E can be written as the subgraph of

a function of class C∞. If E ∈ C∞b (IRN ) its boundary ∂E is oriented by the inner unit

normal vector field νE; moreover, we say that u : IRN → IR is a defining function of ∂E
if u is of class C∞ in a neighbourhood of ∂E, ∂E = {u = 0}, E = {u > 0}, and |∇u| 6= 0
on ∂E.
Given p, q ∈ IRN , by p ⊗ q we mean the matrix whose entries are (p ⊗ q)ij = piqj , for

i, j = 1, . . . , N . We set also p� q = (p⊗ q + q ⊗ p)/2.

If p ∈ IRN \ {0}, by Pp : IRN → IRN we mean the projection matrix on the orthogonal

subspace to p, i.e.,

Pp = Id−|p|−2p⊗ p. (2.1)

Note that if q ∈ IRN we have
Pp p� q Pp = 0. (2.2)

We denote by Sym(N) the space of the real N×N symmetric matrices. For notational
simplicity we set

T = IRN × (IRN \ {0})× Sym(N). (2.3)

2.1. Definitions of φ, φo, δ, δE, dE, m, and PN−1

We denote by | · | and d the norm and the distance in IRN (in the euclidean sense),
respectively.

In what follows φ : IRN
x × IRN

ξ → [0,+∞[ is a symmetric convex Finsler metric, that

is a continuous function which is locally equivalent (uniformly with respect to x) to the

euclidean norm and such that φ(x, ·) is positively one-homogeneous and convex on IRN .

We denote by φo : IRN
x × IRN

ξ∗ → [0,+∞[ the dual of φ with respect to ξ [27, p. 128],

defined as φo(x, ξ∗) = sup{ξ · ξ∗ : φ(x, ξ) ≤ 1}. One can show that φo is a symmetric
convex Finsler metric.
We indicate by δ the distance on IRN induced by the metric φ, and by δE the δ signed

distance function from ∂E positive inside E ⊆ IRN , i.e.,

δE(x) = δ(x, IRN \ E)− δ(x, E). (2.4)

By dE we mean the euclidean signed distance function from ∂E positive inside E.

In the sequel m : IRN → ]0,+∞[ is a function of class C1(IRN ) such that 0 < inf m ≤
supm < +∞.

We denote by Hk the k-dimensional Hausdorff measure, for k ∈ IN, 0 ≤ k ≤ N , and

by PN−1 the (N − 1)-dimensional measure associated to φ and m, defined, on a smooth
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compact boundary ∂E, as the restriction to ∂E of HN−1 with density φo(x, νE)m(x),
see [5].

2.2. Definitions of Γ-convergence and lower semicontinuous envelope

Let Fh : L1(IRN )→ [0,+∞] be a sequence of functionals. For any v ∈ L1(IRN ) set

(Γ− lim inf
h→+∞

Fh)(v)=inf

{
lim inf
h→+∞

Fh(vh) : {vh} ⊆ L1(IRN ), vh
h→+∞−→ v in L1(IRN )

}

(Γ− lim sup
h→+∞

Fh)(v)=inf

{
lim sup
h→+∞

Fh(vh) :{vh}⊆L1(IRN ), vh
h→+∞−→ v in L1(IRN )

}
.

We say that the sequence {Fh} is Γ-convergent with respect to the L1(IRN )-topology if
Γ − lim inf

h→+∞
Fh = Γ − lim sup

h→+∞
Fh =: Γ − lim

h→+∞
Fh [13,11]. If Fh = F for any h ∈ IN, the

Γ− lim
h→+∞

Fh is denoted by F and is called the L1(IRN )- lower semicontinuous envelope of

F [8].

3. Preliminaries

We recall that if E ∈ C∞b (IRN ) then there exists a neighbourhood U of ∂E such that
dE ∈ C∞(U) and |∇dE| = 1 in U ; moreover, on ∂E, ∇dE = νE and −(N − 1)−1∆dE is
the scalar mean curvature of ∂E (see [18, 14.6]). Since ∇dE ∈ Ker(∇2dE) in U , we have

P∇dE∇
2dEP∇dE = ∇2dE on ∂E. (3.1)

The following lemma, which is useful for the definition of f̃ in (3.3), shows the relations
between ∇2dE and ∇2u, where u is any defining function of ∂E.

Lemma 3.1. Let E ∈ C∞b (IRN ) and suppose that u, v : IRN → IR are two defining
functions of ∂E. Then

|∇u|−1P∇u∇2uP∇u = |∇v|−1P∇v∇2vP∇v = ∇2dE on ∂E. (3.2)

Proof. Fix x ∈ ∂E. By [4, Lemma 3.2] we have

|∇u(x)|−1∇2u(x) = |∇v(x)|−1∇2v(x) +∇u(x)� q,

for a suitable q ∈ IRN . Then (3.2) follows from (2.2) and (3.1).

Let us recall the definition of the geometric integrand f̃ associated to f [17].

Definition 3.2. Let T be as in (2.3) and let f : T → IR be a continuous function. We

define the function f̃ : T → IR as follows: if (x, p,X) ∈ T we set

f̃(x, p,X) = f

(
x,

p

|p| ,
PpXPp
|p|

)
, (3.3)

where Pp is defined in (2.1).
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The following properties are consequences of (3.3), (2.2) and (3.2).

Lemma 3.3. The function f̃ is continuous,
˜̃
f = f̃ and

(i) for any (x, p,X) ∈ T , any λ > 0, and any q ∈ IRN we have

f̃(x, λp, λX + p� q) = f̃(x, p,X); (3.4)

(ii) if E ∈ C∞b (IRN ) and u is any defining function of ∂E then

f̃(x,∇u,∇2u) = f̃(x,∇dE,∇2dE) = f(x,∇dE,∇2dE) on ∂E. (3.5)

Let E ∈ C∞b (IRN ) and let u be any defining function of ∂E.

Example 3.4. Let α ∈ [1,+∞[ and let f1, f2 : T → [0,+∞[ be defined as

f1(x, p,X) = f1(X) = ((N − 1))−α |tr (X)|α ,
f2(x, p,X) = f2(X) = ((N − 1))−1[ tr

(
X2
)

]1/2.

Then f̃1(∇u,∇2u) equals |H|α on ∂E, where H is the scalar mean curvature of ∂E, while

((N − 1)f̃2(∇u,∇2u))2 equals, on ∂E, the sum of the squares of the principal curvatures

of ∂E, and (f2(∇2dE))2 = (N − 1)−2
∑N

i,j=1

∣∣∣∇2
ijdE

∣∣∣
2
.

Example 3.5. Assume that φ2, (φo)2 are of class C2 and that (φ(x, ·))2, (φo(x, ·))2 are
strictly convex. Let f : T → [0,+∞[ be defined as

f(x, p,X) =

∣∣∣∣∣
N∑

i=1

∂2(φo)

∂xi∂ξi
(x, p) +∇2

ξ(φ
o)(x, p)X +∇ξ(φo)(x, p) · ∇(logm)

∣∣∣∣∣ .

Then one can show that f = f̃ ; f(x,∇u,∇2u) represents the absolute value of the
anisotropic scalar mean curvature of ∂E with respect to φ and m [5,4].

4. Definitions of the functionals. Γ-convergence result

Given the continuous function f : T → [0,+∞[ we define the map F : L1(IRN )→ [0,+∞]
as

F (u) =

∫

∂E

[
1 + f(x,∇dE,∇2dE)

]
dPN−1 (4.1)

if u is the characteristic function of a set E ∈ C∞b (IRN ), and F = +∞ elsewhere. The

integral in (4.1) will be also denoted by F (E), thus emphasizing the dependence of F on

the set E rather than on its boundary ∂E. Note that by (3.5) we can replace f by f̃ in
(4.1) without affecting the result.
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4.1. The approximating functionals Fh

For any v ∈ C∞c (IRN ) (the space of functions of class C∞(IRN ) with compact support)

and h ∈ IN we define the non-negative Radon measures µh on IRN by

dµh(x) = [h−1(φo(x,∇v))2 + hW (v)] m(x) dx, (4.2)

where W : IR → [0,+∞[ is defined by W (t) = t2(1− t)2 and dx stands for the Lebesgue
measure. For simplicity of notation we omit the dependence on v in the notation of the

measures µh. We set c0 =
∫ 1

0

√
W (t) dt.

Let f : T → [0,+∞[ be a continuous function; for any h ∈ IN we define the map

Fh : L1(IRN )→ [0,+∞] as

Fh(v) =

∫

IRN\{|∇v|=0}

[
1 + f̃(x,∇v,∇2v)

]
dµh(x) if v ∈ C∞c (IRN ), (4.3)

and Fh = +∞ elsewhere. Note the presence of f̃ in (4.3).

The following remark is a consequence of (3.5) and the definition of F , and will be useful
in the proof of Theorem 4.2.

Remark 4.1. Let {Ek} be a sequence in C∞b (IRN ) converging in L1(IRN ) to E with

1E ∈ L1(IRN ). For any k ∈ IN let uk be a defining function of ∂Ek. Then

lim inf
k→+∞

∫

∂Ek

[1 + f̃(x,∇uk,∇2uk)] dPN−1 ≥ F (E).

The main result of this section is contained in the following two theorems.

Theorem 4.2. Let T be as in (2.3), let f : T → [0,+∞[ be a continuous function

and let f̃ be defined as in (3.3). Let F , Fh be the functionals defined in (4.1) and (4.3),
respectively. Then

Γ− lim inf
h→+∞

Fh ≥ 2c0F on L1(IRN ).

Proof. Let u ∈ L1(IRN ) and let {vh} be a sequence in C∞c (IRN ) converging to u in

L1(IRN ) such that lim inf
h→+∞

Fh(vh) = (Γ− lim inf
h→+∞

Fh)(u) < +∞. Passing to a subsequence,

we may assume that the lim infh→+∞ is a limh→+∞ and that {vh} converges to u almost

everywhere. We have
∫

IRN W (vh) dx ≤ O(h−1), so that u is the characteristic function of

some measurable set E ⊆ IRN .

As h−1(φo(x,∇vh))2 + hW (vh) ≥ 2φo(x,∇vh)
√
W (vh), using the fact that φo(x, ·) is

one-homogeneous and the coarea formula [16] we have

Fh(vh) ≥ 2

∫

{|∇vh|6=0}
|∇vh|

√
W (vh)

[
1 + f̃(x,∇vh,∇2vh)

]
φo
(
x,
∇vh
|∇vh|

)
mdx

≥ 2

∫ 1

0

√
W (t)

∫

{vh=t}∩{|∇vh|6=0}

[
1 + f̃(x,∇vh,∇2vh)

]
dPN−1dt.
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Observe that, given h ∈ IN, ∂{vh > t} is compact for every t ∈ ]0, 1[. Moreover, Sard’s
theorem [16, 3.4.3] implies that |∇vh| 6= 0 on {vh = t} for almost every t ∈ ]0, 1[, hence

{vh = t} = ∂{vh > t} and {vh > t} ∈ C∞b (IRN ). Let Ih ⊆ ]0, 1[ be such that the

Lebesgue measure |Ih| of Ih is zero and {vh > t} verifies the properties listed above for

any t ∈ ]0, 1[ \Ih. Letting I :=
⋃
h∈IN Ih we have |I| = 0 and, for any h ∈ IN,

Fh(vh) ≥ 2

∫

]0,1[\I

√
W (t)

∫

∂{vh>t}

[
1 + f̃

(
x,∇vh,∇2vh

)]
dPN−1dt. (4.4)

Using the Cavalieri formula there exist a subsequence {vk} of {vh} and a set J ⊆ ]0, 1[ with

|J | = 0 such that 1{vk>t} → 1{u>t} = E in L1(IRN ) as k → +∞ for any t ∈ ]0, 1[\(I ∪ J).

Fix t ∈ ]0, 1[\(I ∪ J) and set uk = vk − t. Using (4.4), Fatou’s lemma, applying Remark

4.1 with Ek replaced by {uk > 0} and observing that ∇uk = ∇vk, ∇2uk = ∇2vk, we
obtain

(Γ− lim inf
h→+∞

Fh)(u) = lim
h→+∞

Fh(vh) = lim
k→+∞

Fk(vk)

≥ 2

∫

]0,1[\I∪J

√
W (t) lim inf

k→+∞

∫

∂{uk>0}

[
1 + f̃(x,∇uk,∇2uk)

]
dPN−1dt

≥ 2F (E)

∫

]0,1[\(I∪J)

√
W (t) dt = 2c0F (E).

This concludes the proof.

Theorem 4.3. Assume that φ does not depend on x and that φ2, (φo)2 are of class C∞
and strictly convex. Let F and Fh be as in the statement of Theorem 4.2. Suppose that

F is L1(IRN )-lower semicontinuous on C∞b (IRN ). Then

Γ− lim sup
h→+∞

Fh ≤ 2c0F on L1(IRN ). (4.5)

Proof. Let u ∈ L1(IRN ); we can assume that F (u) < +∞, so that u = 1E for some

measurable set E ⊆ IRN . Let us first suppose that E ∈ C∞b (IRN ), so that F (E) = F (E).

Denote by γ the minimizer of the one-dimensional functional
∫

IR(|ζ ′|2 + W (ζ)) dt under

the constraints ζ ∈ H1
loc(IR), lim

t→+∞
ζ(t) = 1, lim

t→−∞
ζ(t) = 0, ζ(0) = 1/2. With our choice

of W it turns out that γ(t) = (tgh(t/2) + 1) /2. For any h ∈ IN let th = log h. Denote
by χh : [0,+∞[→ [0, 1] a function of class C∞ with the following properties: χh = 1 on

[0, th], χh = 0 on [2th,+∞[, χ′h < 0 in ]th, 2th[ and ‖χ′h‖L∞([th,2th]) = O(1/ logh). Let

γ̂h(t) =

{
γ(t)χh(t) + 1− χh(t) if t ≥ 0,

1− γ̂h(−t) if t < 0,
γh(t) = γ̂h(ht),

and
uh(x) = γh(δE(x)) ∀x ∈ IRN , (4.6)
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where δE is defined in (2.4). One can show that uh → 1E in L1(IRN ) as h → +∞ and
that, under our assumptions on φ and φo, the function δE is of class C∞ in a suitable

neighbourhood of ∂E. Hence uh ∈ C∞c (IRN ) for any h large enough. Set

Ah = {x ∈ IRN : |δE(x)| < h−1th}, Bh = {x ∈ IRN : h−1th < |δE(x)| < 2h−1th}.

Using the definition of Fh we have

Fh(uh) =

∫

Ah

dµh(x) +

∫

Ah

f̃(x,∇uh,∇2uh) dµh(x)

+

∫

Bh

dµh(x) +

∫

Bh

f̃(x,∇uh,∇2uh) dµh(x)

=: F
(1)
h (uh) + F

(2)
h (uh) + F

(3)
h (uh) + F

(4)
h (uh).

We shall show that

lim
h→+∞

(
F

(1)
h (uh) + F

(2)
h (uh)

)
= 2c0F (E), (4.7)

lim
h→+∞

(
F

(3)
h (uh) + F

(4)
h (uh)

)
= 0, (4.8)

and this will conclude the proof of (4.5) when E ∈ C∞b (IRN ). We recall a basic property

of δE [5, Theorem 3.2]: if E ∈ C∞b (IRN ) then

φo(∇δE) = 1 (4.9)

in a suitable neighbourhood of ∂E, which implies, in particular, that the infimum of |∇δE|
in this neighbourhood is strictly positive.
Let us prove (4.7). First it is well known [5,6,26] that

lim
h→+∞

F
(1)
h (uh) = 2c0

∫

∂E
dPN−1. (4.10)

By (4.6), for h large enough we have

∇uh = γ′h(δE)∇δE , ∇2uh = γ′′h(δE)∇δE ⊗∇δE + γ′h(δE)∇2δE. (4.11)

Hence by (4.9) and since γ′ =
√
W (γ), on Ah we have

h−1(φo(∇uh))2 + hW (uh) = h−1
(
γ′h(δE)

)2
+ hW (γh(δE))

= 2γ′h(δE)
√
W (γh(δE)).

(4.12)

In addition, using (4.11) and (3.4) (for x ∈ Ah) applied with λ = γ′h(δE(x)) > 0, p =

∇δE(x) ∈ IRN \ {0}, and q = γ′′h(δE(x))∇δE(x)/2, we obtain that

f̃(x,∇uh,∇2uh) = f̃(x,∇δE,∇2δE) on Ah. (4.13)
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By (4.12) and (4.13), the fact that |∇δE|−1 = φo
(
∇δE
|∇δE |

)
in a neighbourhood of ∂E (see

(4.9)) and the coarea formula we get, for h large enough,

F
(2)
h (uh) = 2

∫

Ah

|∇δE|γ′h(δE)
√
W (γh(δE)) f̃(x,∇δE,∇2δE)φo

( ∇δE
|∇δE|

)
m dx

= 2

∫ h−1th

−h−1th

γ′h(t)
√
W (γh(t))

∫

{δE=t}
f̃(x,∇δE ,∇2δE) dPN−1dt.

We observe now that for any h large enough

∫

{δE=t}
f̃(x,∇δE,∇2δE) dPN−1

=

∫

∂E
f̃(x,∇δE,∇2δE) dPN−1 + o(h−1th)

(4.14)

for any t ∈ [−h−1th, h
−1th]. Indeed, if t ∈ [−h−1th, h

−1th], x ∈ {δE = t} and if π(x) is
the (unique) projection of x onto ∂E with respect to the metric φ, we have x = π(x) +

t(∇φo)(νE(π(x))) [4], ∇iδE(x) = ∇iδE(π(x)) + O(h−1th), ∇2
ijδE(x) = ∇2

ijδE(π(x)) +

O(h−1th), and similar relations hold for φo and m. Hence, as all Ah are contained (for h
large enough) in a fixed neighbourhood of ∂E where δE is of class C∞ and inf |∇δE| > 0,

and since f̃ , φo and m are continuous, we have

f̃(x,∇δE(x),∇2δE(x))φo
( ∇δE(x)

|∇δE(x)|
)
m(x)

= f̃(π(x),∇δE(π(x)),∇2δE(π(x)))φo
( ∇δE(π(x))

|∇δE(π(x))|
)
m(π(x)) + o(h−1th)

for any x ∈ Ah, and this, together with a change of variables, implies (4.14). We then get

F
(2)
h (uh) = 2

∫

∂E
f̃(x,∇δE,∇2δE) dPN−1

∫ h−1th

−h−1th

γ′h(t)
√
W (γh(t)) dt

+ o(h−1th)

∫ h−1th

−h−1th

γ′h(t)
√
W (γh(t)) dt =: Ih + IIh.

Now ∫ h−1th

−h−1th

γ′h(t)
√
W (γh(t)) dt =

∫ γ(th)

γ(−th)

√
W (τ) dτ → c0 as h→ +∞.

Therefore limh→+∞ IIh = 0, and using (3.5)

lim
h→+∞

Ih = 2c0

∫

∂E
f̃(x,∇δE ,∇2δE) dPN−1 = 2c0

∫

∂E
f(x,∇dE,∇2dE) dPN−1.

Then (4.7) follows recalling (4.10).
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Let us prove (4.8). One can check that

‖γ̂h − 1‖L∞([th,2th]) = O(h−1), ‖γ̂′h‖L∞([th,2th]) = o(h−1). (4.15)

Applying (4.9), the coarea formula and (4.15) we have, for h large enough,

F
(3)
h (uh) =

∫

Bh

|∇δE|φo
( ∇δE
|∇δE|

)
dµh(x)

≤ O(1)

∫ 2h−1th

h−1th

h−1|γ′h(t)|2 + hW (γh(t)) dt = o(1).

It remains to show that limh→+∞ F
(4)
h (uh) = 0.

Reasoning as in (4.13) we have f̃(x,∇uh,∇2uh) = f̃(x,∇δE,∇2δE) on Bh. As δE ∈
C∞(Bh) and infBh |∇δE| > 0 for h large enough and since f̃ is continuous, we then have

F
(4)
h (uh) ≤

∫

Bh

f̃(x,∇δE,∇2δE) dµh(x) ≤ O(1)

∫

Bh

dµh(x) = o(1).

The proof of (4.8) is concluded.

We have showed that (4.5) holds for E ∈ C∞b (IRN ). If u = 1E ∈ L1(IRN ) we can find a

sequence {Eh} in C∞b (IRN ) converging to u in L1(IRN ) such that F (Eh) → F (E) < +∞
as h→ +∞. Then (4.5) follows from the previous case and a diagonal procedure.

Using Theorems 4.2 and 4.3 we have the following result, which shows that the Γ-approxi-

mability of the functional F is reduced to study its lower semicontinuous envelope F .

Corollary 4.4. Under the assumptions of Theorem 4.3 we have

Γ− lim
h→+∞

Fh =

{
2c0F on C∞b (IRN ),

2c0F elsewhere on L1(IRN ).

Remark 4.5. Let c ∈ [0,+∞[ and assume that {vh} is a sequence in L1(IRN ) such

that Fh(vh) ≤ c for any h ∈ IN. Then {vh} admits a subsequence converging in L1(IRN )

to a characteristic function of a set E of finite perimeter such that F (E) < +∞.

Indeed, as c ≥ Fh(vh) ≥ O(1)
∫

IRN h−1|∇vh|2 + hW (vh) dx, we have [22] that {vh} has

a subsequence converging in L1(IRN ) to a characteristic function of a set E of finite

perimeter. Reasoning as in the proof of Theorem 4.2, one then obtains F (E) < +∞.

5. Lower semicontinuity of F in two dimensions

In this section we find some necessary conditions on f which ensure the L1-lower semi-
continuity of F in two dimensions. In view of Corollary 4.4, F can be approximated via
Γ-convergence. A particular case has been illustrated in Section 1, see (1.5).
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Let N = 2; if p = (p1, p2) ∈ IR2 we set p⊥ = (−p2, p1).

Remark 5.1. If N = 2 we have

∇2dE = ∆dE(∇dE)⊥ ⊗ (∇dE)⊥ on ∂E. (5.1)

Proof. It is enough to observe that if p ∈ IR2, |p| = 1, and X ∈ Sym(2) is such that

PpXPp = X, then X = tr(X)p⊥ ⊗ p⊥. Letting x ∈ ∂E, p = ∇dE(x), X = ∇2dE(x) and

using (3.1), the assertion follows.

Let E ∈ C∞b (IR2) and let γ : [0, l(γ)]→ IR2 be an oriented parametrization by arc length of

a connected component of ∂E (here l(γ) denotes the length of γ). Then at x = γ(s) ∈ ∂E,
we have

∇dE = (γ̇)⊥, ∆dE = −κ, ∇2dE = −κγ̇ ⊗ γ̇, γ̈ = κ∇dE,
where κ is the curvature (with sign) of ∂E.

If f : T = IR2 × (IR2 \ {0})× Sym(2)→ [0,+∞[ is a continuous function, using also (5.1)
it follows that at x = γ(s) ∈ ∂E we have

f
(
x,∇dE,∇2dE

)
= g(γ, γ̇, γ̈), (5.2)

where g : IR2 × (IR2 \ {0})× IR2 → [0,+∞[ is the continuous function defined by

g(x, ξ, η) = f(x, ξ⊥, ξ ⊗ η⊥). (5.3)

Theorem 5.2. Let f : T → [0,+∞[ be a continuous function such that f = f̃ (see
(3.3)) and satisfying the following properties:

(i) there exist constants c > 0 and α > 1 such that f(x, p,X) ≥ c
∣∣∣ tr(PpXPp)

|p|

∣∣∣
α

for any

(x, p,X) ∈ T ;

(ii) for any x ∈ IR2 and any p ∈ IR2 \ {0} the function q → f(x, p⊥, p⊗ q⊥) is convex on

IR2.

Then the map F defined in (1.2) (with N = 2) is L1(IR2)-lower semicontinuous on

C∞b (IR2).

Proof. Let E ∈ C∞b (IR2) and let {Eh} be a sequence in C∞b (IR2) converging to E in

L1(IR2) as h→ +∞. We must prove that

F (E) ≤ lim inf
h→+∞

F (Eh). (5.4)

We can suppose, possibly passing to a subsequence, that the right hand side of (5.4) is a
finite limit. For simplicity, this subsequence (and any further subsequence) will be still
denoted by {Eh}. Using assumption (i) we then have

sup
h

∫

∂Eh

|∆dEh|α dH1 ≤ c−1 sup
h

∫

∂Eh

f(x,∇dEh,∇2dEh) dH1 < +∞,
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so that the LαH1-norm of the curvature of ∂Eh is uniformly bounded with respect to h.

Since also {H1(∂Eh)} is bounded, possibly passing to a subsequence, for any h the set ∂Eh
has a finite number m̄ of connected components [2], and m̄ is independent of h. Let ∆h

be an oriented parametrization of ∂Eh [2, Definition 3.2]; then ∆h = {γ1
h, . . . , γ

m̄
h }, where

γih are closed regular simple smooth disjoint curves parametrized with constant velocity

on [0, 1]. Let {γi1h , . . . , γinh } be the H2,α-equibounded sequence and let {γi1, . . . , γin} be

the limit system of curves of class H2,α constructed (starting from ∆h) in the proof of
Lemma 3.3 of [2]. Then m̄ ≥ n,

n⋃

j=1

γij ([0, 1]) ⊇ ∂E, (5.5)

and for any j = 1, . . . , n we have that γ
ij
h ⇀ γij weakly in H2,α([0, 1]) as h → +∞ (in

particular lim
h→+∞

l(γ
ij
h ) = l(γij )). Recalling m̄ ≥ n, (5.5) and (5.2), we obtain

lim inf
h→+∞

F (Eh) ≥ lim inf
h→+∞

[ n∑

j=1

l(γ
ij
h ) +

n∑

j=1

∫ l(γ
ij
h

)

0
g(γ

ij
h , γ̇

ij
h , γ̈

ij
h ) ds

]

≥ H1(∂E) +

n∑

j=1

lim inf
h→+∞

∫ l(γ
ij
h

)

0
g(γ

ij
h , γ̇

ij
h , γ̈

ij
h ) ds.

(5.6)

By assumption (ii), for any x ∈ IR2 and ξ ∈ IR2 \ {0}, the function η → g(x, ξ, η) is

convex on IR2. Consequently the functional γ →
∫
I g(γ, γ̇, γ̈) ds is weakly H2,α(I)-lower

semicontinuous (see, for instance, [8, Section 2.3]), where I ⊆ [0, l(γ)] is an open interval.

For any j = 1, . . . , n let 0 < λj < l(γij ). We have l(γ
ij
h ) > λj for any j = 1, . . . , n

provided that h is large enough. Therefore by (5.6)

lim inf
h→+∞

F (Eh) ≥ H1(∂E) +

n∑

j=1

∫ λj

0
g
(
γij , γ̇ij , γ̈ij

)
ds.

Since this inequality holds for any λj < l(γij ) we have

lim inf
h→+∞

F (Eh) ≥ H1(∂E) +

n∑

j=1

∫ l(γ
ij )

0
g
(
γij , γ̇ij , γ̈ij

)
ds. (5.7)

Using (5.5) and reasoning as in [2, Lemma 3.4] we also have

n∑

j=1

∫ l(γ
ij )

0
g
(
γij , γ̇ij , γ̈ij

)
ds ≥

∫

∂E
f(x,∇dE,∇2dE) dH1. (5.8)

Then (5.4) follows from (5.7) and (5.8).
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Example 5.3. The function f(p,X) = |p|−α| tr(PpXPp)|α for α > 1 (which corresponds

to f̃1 of Example 3.4) verifies the assumptions of Theorem 5.2. Indeed given p = (p1, p2) ∈
IR2 \ {0}, we have, for q = (q1, q2) ∈ IR2,

f(p⊥, p⊗ q⊥) = |p|−α| tr(p⊗ q⊥Pp⊥)|α = |p|−α|p2q1 − p1q2|α,

so that the map q → f(p⊥, p⊗ q⊥) is convex on IR2.

The case in which the integrand f has linear growth at infinity is useful for some appli-

cations, see [25]. In particular the functional F (E) =
∫
∂E [1 + ζ(κ)] dH1, where ζ(t) =

c1|t|21{|t|≤τ}+ [c2|t| − c3]1{|t|>τ}, for τ > 0, c1 > 0, c1τ
2 = c2τ − c3, c2 = 2c1τ , is

lower semicontinuous on C∞b (IR2), see [3, Theorem 6.1]. Hence by Corollary 4.4 F is

the Γ-limit of the sequence in (4.3) where m ≡ 1, φ(x, ξ) = |ξ|, and f(X) = c1 |tr(X)|2
1{X∈Sym(2):|tr(X)|≤τ} +(c2| tr(X)| − c3) 1{X∈Sym(2):|tr(X)|>τ}.

6. Lower semicontinuity of F in dimension N ≥ 3

In this section we show some examples of functionals F in dimension N ≥ 3 depending on

curvatures and which are L1(IRN )-lower semicontinuous on smooth compact boundaries.
In the proof of the following proposition we use a slicing argument [9].

Proposition 6.1. Let N = 3, let f1, f2 be as in Example 3.4 with α = 2, let a, b ∈
]0,+∞[, and set

f(p,X) = af̃1(p,X) + b(f̃2(p,X))2 ∀p ∈ IR3 \ {0}, ∀X ∈ Sym(3). (6.1)

Then if b ≥ 2a the map F defined in (1.2) (with N = 3) is L1(IR3)-lower semicontinuous

on C∞b (IR3).

Note that, if κ1, κ2 are the principal curvatures of ∂E, letting H = (κ1 + κ2)/2 and
K = κ1κ2, then the functional F in (1.2) corresponding to f in (6.1) can be written as

F (E) =

∫

∂E

[
1 +

a

4
|∆dE|2 +

b

4

3∑

i,j=1

|∇2
ijdE|2

]
dH2

=

∫

∂E
[1 +

a

4
|κ1 + κ2|2 +

b

4
(κ2

1 + κ2
2)]dH2 =

∫

∂E
[1 + (a+ b)|H|2 − b

2
K] dH2.

Proof of Proposition 6.1.

Let E ∈ C∞b (IR3) and let {Eh} be a sequence in C∞b (IR3) converging to E in L1(IR3)

as h → +∞. We must prove inequality (5.4). We can suppose, possibly passing to a
subsequence, that the right hand side of (5.4) is a finite limit. Hence, in view of [7,
Remark 29.4.9 with N − 1 = m = 2], possibly passing to a further subsequence, we can
assume that each ∂Eh has a finite number of connected components independent of h.
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We recall now a particular case of a kinematic formula due to C.-S. Chen [9, Section 5] :

if π denotes a plane in IR3, one has

∫

∂E

[
6|H|2 − 2K

]
dH2 = c2

∫

π

∫

π∩∂E
κ2 dH1 dπ, (6.2)

where dπ denotes the density for the planes in IR3 [28, II.12.5], c2 > 0 depends only on
the dimension, and κ denotes the curvature of the curve π ∩ ∂E (note that for dπ-almost
every π the curve π ∩ ∂E is of class C∞ by Sard’s theorem, and π ∩ ∂E = ∂(π ∩ E)).
Moreover

H2(∂E) = c1

∫

π
H1(π ∩ ∂E) dπ, (6.3)

where c1 > 0 depends only on the dimension (see [10, formula (81) with e = 0]).

Observe now that if Eh → E in L1(IR3), then by Fubini’s theorem for dπ-almost every π

we have π ∩ Eh → π ∩ E in L1(π).
Let us first suppose that b = 2a. For any h denote by Jh the complement of all planes π so

that π∩∂Eh = ∂(π∩Eh) and π∩Eh is of class C∞. Using the L1(π)-lower semicontinuity
on C∞b (π) of the map

π ∩ E →
∫

∂(π∩E)
[c1 + c2κ

2] dH1

proved in [2, Theorem 3.2], using Fatou’s lemma, letting J = ∪hJh (which has zero
dπ-measure), and denoting by κh the curvature of ∂(π ∩ Eh), by (6.2) and (6.3) we have

lim inf
h→+∞

F (Eh) ≥ a

2

∫

π\J
lim inf
h→+∞

∫

∂(π∩Eh)
[c1 + c2κ

2
h] dH1 dπ

≥ a

2

∫

π\J

∫

∂(π∩E)
[c1 + c2κ

2] dH1 dπ = F (E).

If b ≥ 2a split F as

F (E) =

∫

∂E

[1

2
+ a{f1(∇2dE) + 2(f2(∇2dE))2}

]
dH2

+

∫

∂E
[
1

2
+ (b− 2a)(f2(∇2dE))2] dH2 =: F1(E) + F2(E).

Then F1 is lower semicontinuous by the previuos case and F2 is lower semicontinuous by
Theorem 6.3 below. This concludes the proof.

The next remark shows the connection between the second fundamental form of ∂E and
∇2dE, and is useful in the proof of Theorem 6.3.

Remark 6.2. If Bk
ij , i, j, k ∈ {1, . . . , N}, denotes the second fundamental form of ∂E

with respect to the canonical basis of IRN , then Bk
ij = −∇2

ijdE∇kdE on ∂E. In particular

N∑
i,j,k=1

|Bk
ij |2 =

N∑
i,j=1

|∇2
ijdE|2 on ∂E.
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Indeed, following [19, Proposition 5.1.1 (i)], if δij is the Kronecker delta, summing over

repeated indices from 1 to N and using the fact that ∇dE ∈ Ker(∇2dE) on ∂E, we get,
at x ∈ ∂E,

Bk
ij = −(δlj −∇ldE∇jdE)(δih −∇idE∇hdE)(∇2

khdE∇ldE +∇2
lhdE∇kdE)

= −(δlj −∇ldE∇jdE)(∇2
kidE∇ldE +∇2

lidE∇kdE) = −∇2
ijdE∇kdE.

Theorem 6.3. Let α > 1 and let ζ : [0,+∞[→ [0,+∞[ be a strictly convex function such

that ctα ≤ ζ(t) for any t ∈ [0,+∞[, for some constant c > 0. Let F : C∞b (IRN )→ [0,+∞]

be the map defined by

F (E) =

∫

∂E

[
1 + ζ

([N−1∑

i=1

κ2
i

]1/2)]
dHN−1, (6.4)

where κ1, . . . , κN−1 are the principal curvatures of ∂E. Then F is L1(IRN )-lower semi-

continuous on C∞b (IRN ).

Proof. Let E ∈ C∞b (IRN ) and let {Eh} be a sequence in C∞b (IRN ) converging to E in

L1(IRN ) as h→ +∞. We must prove inequality (5.4). We can suppose, possibly passing
to a subsequence, that the right hand side of (5.4) is a finite limit. Set

L(∂Eh) :=

∫

∂Eh

ζ
([N−1∑

i=1

(κhi )2
]1/2)

dHN−1,

where κh1 , . . . , κ
h
N−1 are the principal curvatures of ∂Eh. We have

sup
h
HN−1(∂Eh) < +∞, sup

h
L(∂Eh) < +∞, (6.5)

hence, if Hh denotes the scalar mean curvature of ∂Eh, by the Hölder inequality and the
properties of ζ we deduce that

∫

∂Eh

|Hh| dHN−1 ≤ O(1)
(
HN−1(∂Eh)

)1/α′

[L(∂Eh)]1/α = O(1), (6.6)

where α−1 + (α′)−1 = 1. We need now some tools of geometric measure theory and we
refer to the book of Simon [28]. We associate to each ∂Eh the integer (N−1)-dimensional

rectifiable varifold (∂Eh, 1∂Eh), which can be seen as a measure Vh on IRN times the

Grassmannian of the (N − 1)-dimensional linear subspaces of IRN . The weight λh of Vh
is the measure defined as the restriction of HN−1 to ∂Eh. Using (6.6) and [28, Theorem
42.7 and Remark 42.8] there exists an integer (N − 1)-dimensional rectifiable varifold
V = (M, θ) with weight λV and a subsequence (still denoted by {Vh}) such that Vh ⇀ V
in the sense of varifolds. We claim that

∂E ⊆M. (6.7)
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Indeed, let x ∈ ∂E and let Br(x) be the open ball centered at x with radius r > 0. Since
Vh ⇀ V we have λh ⇀ λV weakly as measures. Using [15, Section 1.9], for any r > 0

such that λV (∂Br(x)) = 0 (hence for all r > 0 up to a countable set) we have

λV (Br(x)) = lim
h→+∞

λh(Br(x)) = lim
h→+∞

HN−1(Br(x) ∩ ∂Eh) ≥ HN−1(Br(x) ∩ ∂E),

where the last inequality follows by using the L1-lower semicontinuity of the perimeter of
a set relatively to Br(x) [15, Section 5.2.1]. Since M = spt(λV ), we have x ∈M , and this

proves the claim.

Observe also that by (6.5) and [19, Theorem 5.3.2] V is a varifold with generalised second
fundamental form in Lα in the sense of Hutchinson, and

lim inf
h→+∞

L(∂Eh) ≥ L(V ), (6.8)

where

L(V ) :=

∫

M
ζ([

N∑

i,j,k=1

|Bk
ij |2]1/2)θ dHN−1,

and Bk
ij are defined in [19, Definition 5.2.5].

Recall now that the L1(IRN )-lower semicontinuity of the perimeter implies that

lim inf
h→+∞

HN−1(∂Eh) ≥ HN−1(∂E);

hence, in view of (6.8), to prove (5.4) it is enough to show that

L(V ) ≥ L(∂E) :=

∫

∂E
ζ([

N∑

i,j,k=1

|Bk
ij |2]1/2) dHN−1. (6.9)

We firstly remark that M is a measurable countably (HN−1, N −1)-rectifiable set. Hence

by (6.7) the tangent space T ∂Ex to ∂E at x ∈ ∂E coincides with the approximate tangent

space TMx to M at x ∈ ∂E for HN−1-almost every x ∈ ∂E. Therefore the orthogonal

projection P∂E on T ∂Ex coincides with the orthogonal projection PM on TMx for HN−1-

almost every x ∈ ∂E. We recall now that each Bk
ij(x), x ∈ M (resp. x ∈ ∂E) can

be obtained by tangentially differentiating in the λV -approximate sense (resp. in the

classical sense) the function PM (resp. P∂E), see [21, Theorem 5.4] and [19, Proposition

5.1.1 (i)]. Since P∂E and PM coincide HN−1-almost everywhere on ∂E ∩{θ = n}, n ∈ IN,

n ≥ 1, they must have on ∂E ∩ {θ = n} the same approximate tangential differential
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HN−1-almost everywhere. Hence by (6.7) and Remark 6.2

L(V ) ≥
∫

∂E
ζ([

N∑

i,j,k=1

|Bk
ij |2]1/2) θ dHN−1

≥
∞∑

n=1

∫

∂E∩{θ=n}
ζ([

N∑

i,j,k=1

|Bk
ij |2]1/2) dHN−1

=
∞∑

i=1

∫

∂E∩{θ=n}
ζ([

N∑

i,j=1

|∇2
ijdE|2]1/2)dHN−1 =

∫

∂E
ζ([

N∑

i,j=1

|∇2
ijdE|2]1/2)dHN−1,

which yields (6.9) and concludes the proof.

Remark 6.4. In view of Corollary 4.4 we have the following approximation results.
Assume that F is as in Theorem 5.2, (6.1) and (6.4) respectively. Then

(Γ− lim
h→+∞

Fh)(u) =

{
2c0F (u) if u = 1E, E ∈ C∞b (IRN ),

2c0F (u) elsewhere in L1(IRN ),

where N = 2, N = 3, N ≥ 2 respectively, Fh is defined in (4.3) with m ≡ 1, φ(x, ξ) = |ξ|
and, concerning (6.4), f̃ = ζ((N − 1)f̃2), where f2 is defined in Example 3.4.

Acknowledgements. I am grateful to Ennio De Giorgi and Luigi Ambrosio for some
useful discussions.
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