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This paper presents necessary and sufficient conditions for the existence of solutions to cone-constrained
linear equations in some function spaces. These conditions yield, in particular, the classical Fredholm
alternative for compact operators. We use a formulation that under some conditions permits to apply
the Generalized Farkas Theorem of Craven and Koliha. The Poissson Equation for stochastic (Markov)
kernels, the Volterra and Fredholm equations for non-compact operators in Lp spaces, are among the
particular cases of potential application.
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1. Introduction

In this paper we are concerned with the existence of solutions to the linear equations

Ax = b (1.1)

and
Ax = b, x ∈ S, (1.2)

where A : X → X is a linear operator, X is a Banach space, and S ⊆ X is a convex cone.
Of course, the unconstrained equation (1.1) is a particular case of (1.2) with S := X .
Other particular cases are the integral-type equations [7, 10, 11], the Poisson Equation
[9] in Lp spaces and the Hilbert-Schmidt-type operators.

The Generalized Farkas Theorem of Craven and Koliha [3] permits to characterize ex-
istence of solutions to (1.1) or (1.2) provided the condition “A(S) is closed” is satisfied
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in some appropriate topology. However, this condition is rarely met in practice. For
instance, consider the Poisson Equation (I −P )h = g for a Markov chain with associated
stochastic kernel P , viewed as an operator on X := Lp(Ω,B, µ) (see [9]). The images

(I − P )(X ) or (I − P )(S) (where S is the positive cone in X ) need not be closed. How-
ever, the case of compact operators P is a notable exception and we will show that the
Fredholm alternative theorem (see e.g. [2, 10]) is an immediate consequence of the Gen-
eralized Farkas Theorem of Craven and Koliha [3]. In addition, we will also show that
our conditions for existence of a solution to (1.1) also reduce to the standard Fredholm
alternative for compact operators when X is a reflexive Banach space.

To circumvent the non-closedness of A(S), and in the same spirit but differently from [12],
we formulate the problem in such a way that, by introducing some appropriate constraint,
one may apply the Generalized Farkas Theorem to the modified system, which yields a
new Generalized Farkas Theorem without this closure condition (see Theorem 2.4). We
then apply this result to the particular case of Lp(Ω,B, µ) spaces.

The case X := L1(Ω,B, µ) needs a special treatment and interestingly enough, although
the proof is different, the resulting (necessary and sufficient) conditions of existence can
be represented in a single theorem (Theorem 3.2) that covers all the spaces Lp(Ω,B, µ),

1 ≤ p ≤ ∞. Another slightly different Farkas-like theorem is also given for L1(Ω,B, µ)
when identified with a subspace of M(Ω), the space of bounded signed Borel measures
on Ω.

The paper is organized as follows. In Section 2, after some preliminary results, we present
the new Farkas Lemma without a closure condition. We also consider the special case of
compact operators and show that our conditions then reduce to the Fredholm alternative.
In Section 3, we consider cone-constrained linear equations in the spaces Lp(Ω,B, µ), and

particularize the results obtained in Section 2 in a single theorem (Theorem 3.2 below)
that covers all the cases. In Section 4, we present the proof of Theorem 3.2 with special
attention to the case L1. Finally, Section 5 is an appendix summarizing some basic results
that we extensively use.

2. Notation, Definitions and Main Result

Let X be a separable Banach space with topological dual X ∗. The duality bracket between
X and X ∗ is denoted 〈., .〉. For a convex cone S in X we denote by S∗ its dual cone, i.e.

S∗ := {y ∈ X ∗| 〈x, y〉 ≥ 0 ∀x ∈ S}, (2.1)

and for a convex cone Ω in X ∗ we define

Ω∗ := {x ∈ X ∗∗| 〈x, y〉 ≥ 0 ∀y ∈ Ω} (2.2)

and
Ω+ := {x ∈ X | 〈x, y〉 ≥ 0 ∀y ∈ Ω} (2.3)

Remark 2.1. Note that with the natural embedding of X into X ∗∗, Ω+ = Ω∗ ∩ X . In

addition, if S is strongly closed, then (S∗)+ = S (see e.g. [3]). Moreover, (X ×R,X ∗×R)
is viewed as a dual pair with duality bracket 〈(x, r), (y, ρ)〉 := 〈x, y〉+ rρ.
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2.1. A preliminary result

In the sequel we will use the following lemma:

Lemma 2.2. Let Γ ⊂ (X ∗ × R) be the cone {(y, r) ∈ X ∗ × R| ||y|| ≤ r}. Then Γ is a

weak* closed convex cone, and Γ+ = Ω, where

Ω := {(x, z) ∈ X ×R| ||x|| ≤ z}. (2.4)

We also have

(Γ+)∗ = Γ, i.e. Ω∗ = Γ. (2.5)

Proof. The fact that Γ is a convex cone is trivial. Now, to prove that it is weak* closed,
from Theorem 5.2 (d), consider a sequence (yn, rn) in Γ such that (yn, rn) converges in
the weak* topology to (a, b) in X ∗ ×R, i.e.,

yn
w∗→ a, rn → b as n→∞, (2.6)

where
w∗→ denotes the σ(X ∗,X ) (weak*) topology in X ∗. We want to show that (a, b) ∈ Γ.

From (2.6), b ≥ lim infn ||yn|| ≥ ||a|| (see e.g. [2]) so that (a, b) ∈ Γ. Since Γ is weak*

closed, then (Γ+)∗ = Γ (see e.g. Proposition 1 in [1]) which yields (2.5). We shall now

prove that Γ+ = Ω.

1. Ω ⊆ Γ+. It is obvious that

(x, z) ∈ Ω⇒ 〈(y, r), (x, z)〉 = 〈x, y〉+ rz ≥ 0 ∀(y, r) ∈ Γ,

since (note that both r and z are nonnegative)

|〈x, y〉| ≤ ||x||.||y|| ≤ zr,

yields 〈x, y〉+ rz ≥ 0.

2. Γ+ ⊆ Ω.
(x, z) ∈ Γ+ ⇒ 〈x, y〉 + rz ≥ 0 for all (y, r) ∈ Γ. For any x ∈ X , ∃y(x) ∈ X ∗
such that ||x|| = 〈y(x), x〉 and ||y(x)|| = 1 (see e.g. [2]). Thus, for any (x, z) ∈ Γ+,
(±y(x), 1) ∈ Γ so that

〈x,±y(x)〉+ z.1 ≥ 0⇒ |〈y(x), x〉| (:= ||x||) ≤ z ⇒ (x, z) ∈ Ω,

which is the desired result.

Remark 2.3. Note that if X is a reflexive Banach space, then in Lemma 2.2, (Γ∗)∗ =

Γ. Let H be a locally convex space with topological dual H ′ equipped with the weak*

topology σ(H ′, H). If C and D are two convex cones in H with closures C and D, then

(C ∩D)∗ = C∗ +D∗ (see e.g. [1]).
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2.2. A Farkas Lemma without a closedness condition

In this section, we consider the general linear system

Ax = b, x ∈ S∗ (2.7)

where A : X ∗ → Z is a linear mapping, X and Z are Banach spaces and S is a convex cone
in X . W is another Banach space such that (Z,W ) is a dual pair. Existence of solutions to
(2.7) can be characterized via e.g. the Generalized Farkas Theorem of Craven and Koliha
[3] (see Theorem 5.1 below). However, in addition to the usual continuity assumptions on
the mapping A, a (restrictive) closure assumption is required on A(S). The purpose of
this section is to present a new Farkas-like theorem without such a restrictive assumption.

Theorem 2.4. Let X be a separable Banach space with dual X ∗, equipped with the weak
topology σ(X ,X ∗) and the weak* topology σ(X ∗,X ) respectively. Let (Z,W ) be a dual
pair of Banach spaces, Z (resp. W ) being equipped with the weak topology σ(Z,W ) (resp.
σ(W,Z)). Let A : X ∗ → Z be a weakly continuous linear mapping and S ⊂ X a strongly
closed convex cone in X . Let A∗ : W → X be the adjoint mapping of A, and let Γ be the

convex cone {(x, r) ∈ X ∗ ×R+| ||x|| ≤ r}. Then,

(a) the following two propositions are equivalent for b ∈ Z:

(i) the system Ax = b has a solution x ∈ S∗ ⊂ X ∗.
(ii) [w ∈ W, z ∈ R and (A∗w, z) ∈ (Γ∩ (S∗×R))+]⇒ 〈b, w〉+Mz ≥ 0, for some

M > 0.

(b) If, in addition, X is reflexive, or if the cone Ω + (S × {0}) is strongly closed (where

Ω := {(x, r) ∈ X ×R+| ||x|| ≤ r}), then the following two propositions are equivalent
for b ∈ Z:

(i) the system Ax = b has a solution x ∈ S∗ ⊂ X ∗.
(ii) w ∈ W, s ∈ S ⇒ 〈b, w〉+M ||A∗w − s|| ≥ 0, for some M > 0.

Proof. (a) The system {Ax = b, x ∈ S∗} has a solution if and only if the system

Ax = b; r = M ; ||x|| ≤ r; x ∈ S∗ (2.8)

has a solution for some M > 0, or equivalently, if and only if

T (x, r) = (b,M), (x, r) ∈ Γ ∩ (S∗ × R) (with T (x, r) := (Ax, r)) (2.9)

has a solution for some M > 0.

We first prove that T (Γ ∩ (S∗ × R)) is weakly-closed. Let (xα, rα) be a net (α ∈ D for
some directed set (D,≥)) in Γ ∩ (S∗ × R) such that T (xα, rα) converges weakly to some
(a1, a2) in Z × R, i.e.,

Axα converges weakly to a1, and rα converges to a2. (2.10)

If a2 = 0, then obviously, since (xα, rα) ∈ Γ, ||xα|| converges to zero so that Axα converges
weakly to a1 = 0, and T (0, 0) = (0, 0).
Now, if a2 6= 0 then, from (2.10) and the fact that (xα, rα) ∈ Γ there exists some α0 ∈ D
such that for all α ≥ α0, ||xα|| ≤ 2a2. Since X ∗ is the dual of a separable Banach space,
the set {x| ||x|| ≤ 2a2} is weak* sequentially compact (see Theorem 5.2 (b),(c)). Thus,
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from the net {xα}, one can extract a sequence {xαi} that converges to some x in the weak*

topology σ(X ∗,X ). Moreover, since A is weakly continuous, Axαi converges weakly to

Ax = a1. In addition, since rαi converges to a2 and lim inf i ||xαi|| ≥ ||x|| (see e.g. [2]),

we get ||x|| ≤ a2 i.e. (x, a2) ∈ Γ. Finally, noting that S∗ is weak* closed, then x ∈ S∗
so that (x, a2) ∈ (Γ ∩ (S∗ × R+)). This combined with T (x, a2) = (a1, a2) implies that
T (Γ ∩ (S∗ ×R)) is weakly closed.
Since T ((Γ ∩ (S∗ ×R)) is weakly-closed, we can appply the Generalized Farkas Theorem
(Theorem 5.1 below) which states that the system {T (x, r) = (b,M), (x, r) ∈ Γ∩(S∗×R)}
has a solution if and only if

[(w, z) ∈ W ×R, T ∗(w, z) ∈ (Γ ∩ (S∗ × R))+]⇒ 〈b, w〉+Mz ≥ 0, (2.11)

where T ∗(w, z) = (A∗w, z), which yields part (a).

(b) To prove part (b), note that from Lemma 2.2, Γ is the dual cone of the strongly closed
convex cone Ω := {(x, z) ∈ X × R| ||x|| ≤ z}. Note also that S∗ × R is the dual cone of
the strongly closed convex cone S × {0}. Thus, as (0, 0) ∈ Ω ∩ (S × {0}),

Γ ∩ (S∗ × R) = (Ω + (S × {0}))∗. (2.12)

As X is reflexive, the cone Ω + (S × {0}) is strongly closed in X × R. Indeed, consider
any sequence (xn, sn, rn) with (xn, rn) ∈ Ω and sn ∈ S, such that

xn + sn → a and rn → r (2.13)

for some (a, r) ∈ X × R and where the first convergence is in the strong topology of
X . From (2.13) and the fact that ||xn|| ≤ rn we conclude that both xn and sn are
uniformly bounded. From the weak* sequential compactness of the unit ball in X (since

X is reflexive), there is a subsequence (xni , sni , rni) such that xni
w∗→ x and sni

w∗→ s. Both

Ω and S are weak* closed (as dual cones of Γ and S∗ respectively) so that (x, r) ∈ Ω and
s ∈ S. Combining this and (2.13) yields (a, r) = (x, r) + (s, 0), i.e. (a, r) ∈ Ω + (S×{0}),
which proves that Ω + (S × {0}) is strongly closed.
Thus, by (2.12) and Remark 2.3,

(Γ ∩ (S∗ × R))+ = (Ω + (S × {0}))∗∗ = Ω + (S × {0}). (2.14)

Hence, (2.11) reads

(w, z) ∈ W ×R, (A∗w, z) = (u+ s, z), ||u|| ≤ z, s ∈ S
⇒ 〈b, w〉+Mz ≥ 0

(2.15)

for some M > 0, or, equivalently,

w ∈ W, s ∈ S ⇒ 〈b, w〉+M ||A∗w − s|| ≥ 0,

since it suffices to check (2.15) for z := ||A∗w − s||.
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2.3. Compact operators

Let A := (I − P ) where P : X ∗ → X ∗ is a compact operator, i.e. P maps the unit ball of
X ∗ into a relatively compact set in X ∗. We show that the Fredholm alternative (see e.g.
[2]) is a particular case of the (Generalized Farkas) Theorem 5 of Craven and Koliha in
[3]. We then show that our condition in Theorem 2.4 (b)(ii) also reduces to the Fredholm
alternative when X is reflexive.
Note that if P is a compact operator then range(A) is closed (see e.g. [2] Th. VI.6). In
addition, A is also strongly continuous. Thus, one may apply Theorem 5.1 below, with
X := X ∗, Y = X ∗, S := X ∗, A := (I − P ) so that, since S∗ = {0}, we obtain

Corollary 2.5. Assume that P : X ∗ → X ∗ is compact. Let A := (I − P ). Then

Ax = b has a solution x in X ∗ iff [A∗w = 0, w ∈ X ]⇒ 〈b, w〉 = 0, (2.16)

which is the Fredholm alternative.

We now prove that our condition in Theorem 2.4 (b)(ii) also reduces to (2.16), assuming
that X is reflexive.

Corollary 2.6. Assume that X is reflexive and let P and A be as in Corollary 2.5.
Then the condition in Theorem 2.4 (b)(ii) reduces to (2.16).

Proof. As P : X ∗ → X ∗, in Theorem 2.4 let (Z,W ) be the dual pair (X ∗,X ).
With S := {0}, the condition (b)(ii) in Theorem 2.4 now reads

〈b, w〉+M ||A∗w|| ≥ 0 ∀w ∈ X , (2.17)

for some M > 0, with A∗ = I − P ∗.
Let V := N(A∗) = {w ∈ X | A∗w = 0}. As P is compact then so is P ∗ (see Schauder
Theorem in e.g. [2]) and thus V has finite dimension (see [2] p. 90). Therefore, it admits
a topological supplement V c such that V c is closed, V ∩ V c = {0} and X = V + V c.
Note that if w ∈ V , then −w ∈ V so that from (2.17) we must have 〈b, w〉 = 0. Hence it
remains to show that

〈b, w〉+M ||A∗w|| ≥ 0 ∀w ∈ V c (2.18)

is always satisfied for some M > 0, so that (2.17) reduces to the Fredholm alternative.
Without loss of generality we may and will assume that ||w|| = 1 in (2.18). Let δ :=
inf{||A∗w|| | ||w|| = 1, w ∈ V c} and consider a minimizing sequence {wn} in V c such
that ||wn|| = 1 and ||A∗wn|| ↓ δ. We prove that δ > 0.
By the weak* sequential compactness of the unit ball in X (recall that X is separable

and reflexive, and see Theorem 5.2 (c)), ∃w and a subsequence {ni} such that wni
w∗→ w

and also A∗wni
w∗→ A∗w, where

w∗→ denotes the (weak* or weak) σ(X ,X ∗) convergence.

As V c is closed, it is also weakly-closed (i.e. σ(X ,X ∗)-closed). Thus w ∈ V c. Let us now
consider the two cases, w 6= 0 and w = 0.

• If w 6= 0 then A∗w 6= 0 and as A∗wni
w→ A∗w we have δ = lim inf i ||A∗wni|| ≥

||A∗w|| > 0.
• Consider now the case where w = 0. Since P ∗ is compact and ||wni || = 1 for all

i, {P ∗wni} is in a relatively compact set for the strong topology in X . Thus, for a
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subsequence again denoted {wni}, P ∗wni
s→ q in X . Moreover, P ∗wni

w∗→ P ∗w = 0

and thus q = 0, which implies ||P ∗wni || ↓ 0. Now, from

||A∗wni || ≥ ||wni|| − ||P ∗wni ||

we conclude that ∃ε > 0 such that for i large enough

||A∗wni || ≥ ||wni || − ε = 1− ε

so that δ > 0.

Moreover, |〈b, wni〉| ≤ ||b||.||wni|| = ||b|| so that for M large enough, and w ∈ V c

〈b, w〉+M ||A∗w|| ≥ 0.

Hence, in Theorem 2.4, the condition (b)(ii)

〈b, w〉+M ||A∗w|| ≥ 0 ∀w ∈ X

for some M > 0 reduces to

w ∈ X , A∗w = 0⇒ 〈b, w〉 = 0,

and the proof is complete.

3. Linear systems in Lp spaces

General assumption. (X,B, µ) is a σ-finite complete measure space, with X a topo-
logical space, and B the completion (with respect to µ) of the σ-algebra of Borel subsets
of X. In addition, for the particular case of L1, we assume that X is a locally compact
separable metric space.

For 1 ≤ p ≤ ∞, let q be the exponent conjugate to p, i.e. (1/p) + (1/q) = 1. We write Lp
for Lp(X,B, µ), and L+

p denotes the convex cone of nonnegative functions in Lp. Recall

that Lp is a Banach space for every 1 ≤ p ≤ ∞, with topological dual Lq when 1 ≤ p <∞,
the corresponding “inner product” being

〈u, v〉 :=

∫

X
uvdµ, u ∈ Lp, v ∈ Lq.

In this section, we are concerned with the existence of solutions h ∈ Lp to the equation

(I − P )h = b, (3.1)

and
(I − P )h = b, h ∈ S, (3.2)

where P : Lp → Lp is a linear operator, b ∈ Lp a given function, and S a convex cone in
Lp.
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For instance, in solving equation (3.2) with S := L+
p , one looks for nonnegative solutions

h ∈ Lp to (3.1). The following examples show that (3.1), (3.2) include well known
equations in analysis and probability.

3.1. Examples

P : Lp → Lp is a linear operator and there exists a measurable function K(x, y) on X×X
such that

Pu(x) =

∫

X
K(x, y)u(y)µ(dy) x ∈ X, ∀u ∈ Lp.

Among particular cases of the above type of linear operators, let us mention:

Fredholm-type kernel. In this case, take for instance X := [a, b] a closed interval on
the real line, and µ the Lebesgue measure. Then, define

Pu(x) := λ

∫ b

a
K(x, y)u(y)dy, x ∈ X (3.3)

where λ is some fixed scalar.

Volterra-type kernel. Again, take for instance X := [a, b] a closed interval on the real
line, and µ the Lebesgue measure. Then, define

Pu(x) := λ

∫ x

a
K(x, y)u(y)dy, x ∈ X (3.4)

The Poisson Equation. Let P be a stochastic kernel on (X,B), i.e. P (x, .) is a
probability measure on X for every x ∈ X, and P (., B) is a measurable function on X
for every B ∈ B. Let

Pu(x) :=

∫
P (x, dy)u(y), x ∈ X, (3.5)

and suppose that P (x, .) is absolutely continuous with respect to µ, with density K(x, .),
i.e.

Pu(x) :=

∫

X
K(x, y)u(y)µ(dy), x ∈ X. (3.6)

3.2. Existence of solutions in Lp

With P as in (3.1), (3.2), we suppose that for some given p ∈ [1,∞]:

Assumption 3.1.

(a) P maps Lp into itself.

(b) The adjoint P ∗ of P maps Lq into itself.

(c) In addition, if p = 1, P ∗ maps C0(X) into itself, where C0(X) is the separable Banach
space of real-valued continuous functions on X that vanish at infinity, endowed with
the sup-norm (see e.g. [4] or [13]).

We now state the following main result:
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Theorem 3.2. Suppose that Assumption 3.1 holds for a given p ∈ [1,∞]. Then:

(a) the equation (3.1) has a solution in Lp if and only if

〈b, w〉+M ||(I − P ∗)w||q ≥ 0 ∀w ∈ Lq, (3.7)

for some M > 0.
(b) The equation (3.1) has a solution in L+

p if and only if

〈b, w〉+ M ||min[0, (I − P ∗)w]||q ≥ 0 ∀w ∈ Lq, (3.8)

for some M > 0.

The proof of Theorem 3.2 requires different arguments depending on whether p = 1 or
1 < p ≤ ∞. The proof is given in the next section.

4. Proof of Theorem 3.2

4.1. The case 1 < p ≤ ∞
Suppose that p ∈ (1,∞] is fixed and b is a given function in Lp, and we wish to find a

solution h in Lp (case (a)) or a nonnegative solution h in Lp to (3.1) (case (b)).
Then, Theorem 2.4 with the identification

X ∗ := Lp; X := Lq; Z := Lp; W := Lq; A := (I − P )

and S∗ := X ∗ (case (a)) yields Theorem 3.2 (a) in the case 1 < p ≤ ∞. Similarly, to
obtain part (b) for 1 < p <∞, let S∗ be the positive cone in Lp with dual cone S = the
positive cone in Lq, and recall that the spaces Lp are reflexive when 1 < p <∞.

For the case p =∞, although L∞ is not reflexive, the cone Ω + (S×{0}) in Theorem 2.4,
is strongly closed when X := L1.
Indeed, let (fn, gn, rn) be a sequence in L1 such that

||fn||1 ≤ rn, rn → r, gn ≥ 0 and lim
n
||fn + gn − u||1 = 0.

Then, using the standard notation u+ := max[u, 0] and u− := max[−u, 0], we wish to

prove that u = u+− u− is in the cone Ω + (S×{0}), for which (as u+ ≥ 0) it is sufficient

to show that ||u−||1 ≤ r. To prove this, let {m} be a subsequence of {n} such that
fm + gm converges to u µ-a.e., so that, in particular,

(fm + gm)− → u− µ -a.e..

This, in turn (as gm ≥ 0 implies (fm + gm)− ≤ f−m), yields

u− ≤ lim inf f−m,

and we get ||u−||1 ≤ r since, by Fatou’s Lemma,

||u−||1 ≤ lim inf ||f−m||1 ≤ lim inf ||fm||1 ≤ r.
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This proves that Ω + (S×{0}) is strongly closed and, therefore, Theorem 2.4 (b) is valid.
To see that (3.8) in Theorem 3.2 is equivalent to Theorem 2.4 (b)(ii), note that if S is the
positive cone in Lq, then 2.4 (b)(ii) with b ∈ Lp is true if and only if

〈b, w〉+M ||min[0, A∗w]||q ≥ 0 ∀w ∈ Lq,

since for any s ∈ S, ||A∗w − s||q ≥ ||min[0, A∗w]||q and thus it suffices to check the

condition for s := max[0, A∗w].

4.2. The case p = 1

We now consider the special case of L1 where (X,B, µ) is a σ-finite complete measure
space, X is a locally compact separable metric space, and B is the completion (with
respect to µ) of the σ-algebra of Borel subsets of X.
As L1 is not the dual of L∞, we cannot use the weak* topology as we extensively did in
the proof of Theorem 2.4.
Suppose that b is a given function in L1, and we wish to find a nonnegative solution h in

L1 to (3.1). Then, (3.1) has a solution in L+
1 if and only if the following system

(I − P )h = b, 〈h, 1〉 ≤M, h ∈ L+
1 (4.1)

has a solution for some M > 0, or equivalently, if and only if the system

(I − P )h = b, 〈h, 1〉+ r = M, (4.2)

has a solution (h, r) in L+
1 × R+ for some M > 0.

The dual pair (L1 ×R,L∞ ×R) is endowed with the inner product

〈(h, r), (u, ρ)〉 := 〈h, u〉+ rρ

where 〈h, u〉 :=
∫
hudµ for h ∈ L1 and u ∈ L∞.

Thus we now consider the linear operator A1 : L1 × R → L1 × R and its adjoint
A∗1 : L∞ × R→ L∞ × R given by

A1(h, r) := ((I − P )h, 〈h, 1〉+ r), (4.3)

A∗1(u, ρ) := ((I − P ∗)u+ ρ, ρ). (4.4)

Note that, by Assumption 3.1 (b), A1 is weakly continuous and, on the other hand, (4.1)
is equivalent to

A1(h, r) = (b,M) has a solution (h, r) in L+
1 × R+ (4.5)

for some M ≥ 0. Similarly, if we wish to find solutions h = h+ − h− in L1, we consider
the operators

A1 : (L1)2 × R→ L1 × R, and A∗1 : L∞ × R→ (L∞)2 × R

given by
A1(h1, h2, r) := ((I − P )(h1 − h2), 〈h1 + h2, 1〉+ r), (4.6)
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A∗1(u, ρ) := ((I − P ∗)u+ ρ, ρ− (I − P ∗)u, ρ). (4.7)

Again, A1 is weakly continuous, and (3.1) has a solution in L1 if and only if

A1(h1, h2, r) = (b,M) has a solution (h1, h2, r) ∈ (L+
1 )2 ×R+ (4.8)

for some M ≥ 0. Thus Lemma 4.2 below and Theorem 5.1 yield the following proposition
≡ Theorem 3.2 for p = 1.

Proposition 4.1. Suppose that b ∈ L1 and Assumption 3.1 holds. Then:

(a) The equation (3.1) has a solution in L1 if and only if

[u ∈ L∞, ρ ∈ R+, and − ρ ≤ (I − P ∗)u ≤ ρ]⇒ 〈b, u〉+Mρ ≥ 0

for some M ≥ 0, or, equivalently, if and only if

〈b, u〉+M ||(I − P ∗)u||∞ ≥ 0 ∀u ∈ L∞
for some M ≥ 0.

(b) The equation (3.1) has a solution in L+
1 if and only if

[u ∈ L∞, ρ ∈ R+, and (I − P ∗)u ≥ −ρ]⇒ 〈b, u〉+Mρ ≥ 0

for some M ≥ 0, or, equivalently, if and only if

〈b, u〉+M ||min[0, (I − P ∗)u||∞ ≥ 0 ∀u ∈ L∞
for some M ≥ 0.

Lemma 4.2.

(a) With A1 as in (4.3), A1(L+
1 × R+) is weakly closed.

(b) With A1 as in (4.6), A1((L+
1 )2 ×R+) is weakly closed.

Proof. The proof of Lemma 4.2 requires in particular Lemma 5.3 (a) in the appendix,
which is an extension of the Vitali-Hahn-Saks theorem.

Remark 4.3. We use below the following notation: M(X) denotes the Banach space
of finite signed measures on (X,B), endowed with the total variation norm. By the Riesz
theorem (see e.g. [13] p. 130) M(X) is the dual of the separable Banach space C0(X) in
Assumption 3.1 (c).

Proof of Lemma 4.2 (b). We first give the proof of part (b), and then show that it

also contains the proof of (a). Let us write the convex cone (L+
1 )2×R+ as S1, and for some

directed set (D,≤), let {(vα, wα, rα), α ∈ D} be a net in S1 such that A1(vα, wα, rα),
with A1 as in (4.6), converges to (a, b) ∈ L1×R in the weak topology σ(L1×R,L∞×R);
that is, for all (u, ρ) in L∞ × R:

〈(I − P )(vα − wα), u〉+ (〈vα + wα, 1〉+ rα)ρ→ 〈a, u〉+ bρ. (4.9)

We wish to show that (a, b) is in A1(S1), i.e. there is (h1, h2, r) in S1 with

(I − P )(h1 − h2) = a, and 〈h1 + h2, 1〉+ r = b. (4.10)
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Now, in (4.9) take ρ = 0, and then ρ = 1, u = 0 to get

〈(I − P )(vα − wα), u〉 → 〈a, u〉 ∀u ∈ L∞, (4.11)

and
〈vα + wα, 1〉+ rα → b (4.12)

respectively. If b = 0, then we are done because in such a case rα, 〈vα, 1〉 and 〈wα, 1〉
→ 0 and we may take h1 = h2 = 0 and r = 0 in (4.10) since a has to be 0.
Let us now consider the case b > 0. By (4.10), there is α0 ∈ D such that

0 ≤ ||vα||1 + ||wα||1 + rα ≤ 2b ∀α ≥ α0, (4.13)

where we have used that 〈vα, 1〉 :=
∫
vαdµ = ||vα||1 and similarly for wα. For every

α ≥ α0 consider the (nonnegative) measures ϕα, ψα defined as

ϕα(B) :=

∫

B
vαdµ, and ψα(B) :=

∫

B
wαdµ, B ∈ B, (4.14)

which, by (4.13), are uniformly bounded by 2b. Therefore (see Remark 4.3), by Theorem
5.2 (b),(c), there is a sequence {αi} in D, such that {ϕαi} and {ψαi} converge in the

weak* topology σ(M(X), C0(X)) to measures ϕ and ψ respectively, i.e., ∀u ∈ C0(X):

〈ϕαi, u〉 → 〈ϕ, u〉 and 〈ψαi , u〉 → 〈ψ, u〉. (4.15)

From (4.14)–(4.15) and Lemma 5.3 (together with the Radon-Nikodym Theorem and the
fact that ϕα and ψα are uniformly bounded, finite measures) there exist functions h1 and

h2 in L+
1 such that

ϕ(B) =

∫

B
h1dµ and ψ(B) =

∫

B
h2dµ ∀B ∈ B. (4.16)

Moreover, (4.15)–(4.16) yield ∀u ∈ C0(X):

〈vαi , u〉 → 〈h1, u〉 (4.17)

since

〈vαi , u〉 =

∫
uvαidµ = 〈ϕαi, u〉 → 〈ϕ, u〉 = 〈h1, u〉.

Similarly,
〈wαi, u〉 → 〈h2, u〉 ∀u ∈ C0(X). (4.18)

In addition (as p = 1), Assumption 3.1 (c) yields, ∀u ∈ C0(X):

〈Pvαi, u〉 → 〈Ph1, u〉 (4.19)

since

〈Pvαi, u〉 = 〈vαi , P ∗u〉 = 〈ϕαi , P ∗u〉 → 〈ϕ, P ∗u〉 = 〈h1, P
∗u〉 = 〈Ph1, u〉.
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Similarly,
〈Pwαi, u〉 → 〈Ph2, u〉 ∀u ∈ C0(X). (4.20)

Thus combining (4.18)–(4.20) and (4.11)–(4.12) we see that h1, h2 and the nonnegative

number r := b − 〈h1 + h2, 1〉 satisfy (4.10). As h1, h2 are in L+
1 this completes the proof

of part (b).
In fact, the latter also yields part (a), taking wα = h2 = 0 in (4.9)–(4.20) - - i.e. “deleting”
wα and h2 (in which case note that (4.6) reduces to (4.3)).

4.3. The case p = 1: another Farkas-like lemma

In this section we provide another Farkas-like theorem for linear systems in L1. We now
identify L1 with the linear subspace N of finite signed measures in M(X) which are
absolutely continuous with respect to µ, and we shall use again Remark 4.3.
Note that by Theorem 5.2 (d) and Lemma 5.3, N is weak* closed in M(X). Moreover,
with p = 1, consider the case where P has a kernel K(x, y) on X × X. Let P (B|x) :=∫
B K(x, y)µ(dy), B ∈ B, and assume that Pν(B) :=

∫
P (B|x)ν(dx) is finite for all

B ∈ B, ν ∈M(X).
Then, P may be viewed as a linear operator on M(X) and (3.1) (with p = 1) is equivalent
to

(I − P )ϕ = νb, ϕ ∈ N, (4.21)

with νb ∈ M(X) and νb(B) :=
∫
B bdµ ∀B ∈ B; moreover, if we look for a nonnegative

solution, (3.2) is equivalent to

(I − P )ϕ = νb, ϕ ∈ ∆ ∩N, (4.22)

where now ∆ is the positive cone in M(X).

The orthogonal complement of N , i.e. N⊥ := {f ∈ C0(X)| 〈f, ϕ〉 = 0 ∀ϕ ∈ N}, is

(weakly) σ(C0(X),M(X))-closed and thus strongly closed. In addition, (N⊥)⊥ := {ϕ ∈
M(X)| 〈f, ϕ〉 = 0 ∀f ∈ N⊥} coincides with the (weak*) σ(M(X), C0(X))-closure of N

(see [2] p. 24) and therefore (N⊥)⊥ = N since N is weak* closed. Then, we can apply
Theorem 2.4 with

X := C0(X); X ∗ := M(X); Z := M(X); W := C0(X); A := (I − P )

(X being equipped with the sup norm ||.||) and S∗ := N = (N⊥)⊥ = (N⊥)∗ in the case

of equation (3.1) or S∗ := ∆ ∩N = ∆ ∩ (N⊥)∗ in the case of (3.2), which yields

Theorem 4.4. Suppose that b ∈ L1 and Assumption 3.1 holds. Then:

(a) The equation (3.1) has a solution in L1 if and only if

u, w ∈ C0(X), w ∈ N⊥ ⇒ 〈b, u〉+M ||(I − P )∗u− w|| ≥ 0

for some M > 0.
(b) The equation (3.2) has a nonnegative solution in L1 if and only if

u, w, h ∈ C0(X), w ≥ 0, h ∈ N⊥ ⇒ 〈b, u〉+M ||(I − P )∗u− w − h|| ≥ 0
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for some M > 0, or equivalently, if and only if

u, h ∈ C0(X), h ∈ N⊥ ⇒ 〈b, u〉+M ||min[0, (I − P )∗u]− h|| ≥ 0

for some M > 0.

Proof. Because of Assumption 3.1, the hypotheses of Theorem 2.4 (a) are satisfied. In
the case of (3.2),

S∗ = (∆ ∩N) = (G+N⊥)∗

with G := {f ∈ C0(X), f ≥ 0}. As X is not reflexive, it remains to show that Ω+(S×{0})
is strongly closed in C0(X).

We first consider the case S = N⊥.
Let (fn, gn, rn) be a sequence in C0(X)×N⊥ × R+ such that

||fn|| ≤ rn; gn ∈ N⊥; rn → r and lim
n
||fn + gn − f || = 0,

where ||.|| denotes the sup norm in C0(X).
C0(X) with the sup norm is complete so that f ∈ C0(X). Let B1 := {x ∈ X| f(x) > r}
and B2 := {x ∈ X| f(x) < −r}. Assume that µ(B1) > 0. Then as strong convergence

implies weak convergence, and gn ∈ N⊥, we have

∫
(fn + gn)dϕ =

∫
fndϕ→

∫
fdϕ, ∀ϕ ∈ N.

In particular, take a nonnegative measure ϕ in N with ϕ(B1) = 1 and ϕ(Bc
1) = 0. We

would have
∫
fndϕ→

∫
fdϕ = r+δ for some δ > 0. On the other hand, as ||fn|| ≤ rn ∀n,

for n sufficiently large, ||fn|| ≤ r+ δ/2 so that |
∫
fndϕ| ≤ r+ δ/2 < r+ δ a contradiction.

Therefore, we must have µ(B1) = 0 and similarly µ(B2) = 0.
In addition, {x ∈ X| |f(x)| ≥ r} is compact as f ∈ C0(X). Consider the functions
f1(x) := f(x) if |f(x)| ≤ r and sign(f(x))r otherwise, f2(x) := f(x) − r if f(x) ≥ r,

f(x) + r if f(x) ≤ −r and 0 otherwise. Both are in C0(X). In addition, f2 is in N⊥, and
f = f1 + f2. It then suffices to note that ||f1|| ≤ r.

For the case where S = G+N⊥ consider a sequence (fn, hn, gn, rn) in C0(X)×G×N⊥×R+

such that

||fn|| ≤ rn; gn ∈ N⊥; rn → r and lim
n
||fn + hn + gn − f || = 0,

fn = f+
n +f−n with ||f−n || ≤ rn. Rewrite fn+hn as w+

n +w−n so that as hn ≥ 0, ||w−n || ≤ rn.
Again consider the set B2 as above. µ(B2) = 0 for the same reasons. Indeed, with ϕ such
that ϕ(B2) = 1 and ϕ(Bc

2) = 0

∫
(fn + hn + gn)dϕ =

∫
(w+

n + w−n )dϕ→
∫
fdϕ = −r − δ

for some δ > 0. But
∫

(w+
n +w−n )dϕ ≥

∫
w−n dϕ ≥ −r−δ/2 for n sufficiently large. Consider

the functions f1(x) := f(x) if −r ≤ f ≤ 0, −r if f ≤ −r and 0 if f ≥ 0; f2(x) := f(x) + r
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if f ≤ −r and 0 otherwise; f3(x) := max[0, f(x)]. Again fi ∈ C0(X), ∀i; f = f1 +f2 +f3,

f2 ∈ N⊥, f3 ≥ 0, and ||f1|| ≤ r, which proves that Ω + (S × {0}) is closed in C0(X).

Note that with this Farkas-like theorem, one uses functions in C0(X) and the sup-norm
rather than functions in L∞ with ||.||∞ as in Theorem 3.2.

5. Appendix

For ease of reference we collect in this appendix some results used in the paper, including
Theorem 5.1 below that is a special case of the Generalized Farkas Theorem of Craven
and Koliha ([3], Theor. 2).
If X is Banach space with topological dual X ∗, the weak topology on X is denoted σ(X ,X ∗)
and the weak* topology on X ∗ is denoted σ(X ∗,X ). U denotes the closed unit sphere in
X ∗, i.e. U := {f ∈ X ∗| ||f || ≤ 1}. If S is a convex cone in X , its dual cone is

S∗ := {f ∈ X ∗| 〈f, x〉 ≥ 0 ∀x ∈ S}.

Theorem 5.1. (cf. [3] Theor. 2). Let X and Y be Banach spaces with topological duals
X ∗ and Y∗ respectively. Let S be a convex cone in X , and let A : X → Y be a weakly
continuous linear map with adjoint A∗ : Y∗ → X ∗. If A(S) is weakly closed, then the
following are equivalent conditions on b ∈ Y:

(a) The equation Ax = b has a solution x in S.
(b) A∗y∗ ∈ S∗ ⇒ 〈b, y∗〉 ≥ 0.

Theorem 5.2. Let X be a Banach space with topological dual X ∗.
(a) If xn converges to x in the weak topology σ(X ,X ∗), then ||xn|| is bounded and

lim inf ||xn|| ≥ ||x||.
(b) The unit sphere U in X ∗ is compact in the weak* topology.
(c) If X is separable, then the weak* topology of U is metrizable.
(d) If X is separable, then a convex subset K of X ∗ is closed in the weak* topology if and

only if
(x∗n ∈ K and 〈x, x∗n〉 → 〈x, x∗〉 ∀x ∈ X )⇒ x∗ ∈ K.

Theorem 5.2 (b) is the so-called Alaoglu (or Banach-Alaoglu-Bourbaki) theorem. For a
proof of Theorem 5.2 see e.g. [2] or [6].

Lemma 5.3. Let (X,B, µ) be as in Section 3. Let {ϕn} and ϕ be σ-finite measures on
(X,B) such that

〈ϕn, u〉 → 〈ϕ, u〉 ∀u ∈ C0(X), (5.1)

where 〈ϕ, u〉 :=
∫
udϕ. Suppose, in addition, that every ϕn is absolutely continuous (a.c.)

with respect to µ. Then

(a) ϕ is a.c. with respect to µ.
Moreover (by the Radon-Nikodym theorem), let un and u be nonnegative measurable func-
tions such that

ϕn(B) =

∫

B
undµ, and ϕ(B) =

∫

B
udµ ∀B ∈ B.
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(b) If (for a given 1 ≤ p ≤ ∞) un ∈ Lp ∀n, and lim infn ||un||p ≤ M for some constant
M , then u is in Lp.

For a proof of Lemma 5.3 see [8].
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[12] J.B. Lasserre: A Farkas Lemma without a standard Closure condition, SIAM J. Contr.

Optim. 35 (1997) 265–272.

[13] W. Rudin: Real and Complex Analysis, 3rd edition, McGraw-Hill, New York, 1986.


