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In this paper, the existence of solutions to a class of non-standard sweeping processes of the form −u′(t) ∈
∂δC(t)(Au(t)) is established. In contrast to the “classical” sweeping process with A = id, these problems

may be degenerated, since there might be no solutions at all.
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1. Introduction

As a motivation of our work, we consider the evolution differential inclusion

−q′(t) ∈ ∂δΓ(g(t, q(t))) a.e. in [0, T ] , q(0) = q0 , (1)

where Γ is a closed and convex subset of the real Hilbert space H and ∂δΓ denotes the
cone of normals to Γ. Moreover, g is assumed to be a continuous function with some
additional properties. Inclusions of the type (1) arise in plastic flow problems, i.e. in
quasistatic elastoplasticity, where one often encounters problems of the form

− ∂q

∂t
(t, x) ∈ ∂δE(x)

(∂W
∂q

(t, x, q(t, x))
)
, (2)

cf. e.g. [4], and also [11]. In this formulation, every E(x) ⊂ IRn is a closed convex set
(sometimes called the ”rigidity set”), t ≥ 0 denotes the process time, x ∈ Ω ⊂ IRn is
the material point, q ∈ IRn an internal variable (like plastic strain or hardening), and W
denotes a (modified) stored energy function. For our purpose of motivation, the main
thing to note is that for every fixed x, the inclusion (2) is of type (1).
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In fact (1) may be reduced to an autonomous problem, as is shown by the following lemma
(the proof of which is given in Section 2 below).

Lemma 1.1. If q : [0, T ] → H is a solution of (1), then u : [0, T ] → IR × H =: H,
defined by u(t) = (t, q(t)), is a solution of

−u′(t) ∈ ∂δC(t)(Au(t)) a.e. in [0, T ] , u(0) = (0, q0) (3)

in the Hilbert space H, where C(t) := [t,∞[×Γ for t ∈ [0, T ] and A(t, x) := (t, g(t, x)) for
(t, x) ∈ H. Conversely, if u = (θ, q) : [0, T ] → H solves (3), then q : [0, T ] → H solves
(1).

Observe that C(·) is Lipschitz with constant L = 1 w.r.t. dH (the Hausdorff-distance)
in the previous lemma. Hence the differential inclusion (3) is a generalization of the
well-known sweeping process

−u′(t) ∈ ∂δC(t)(u(t)) , (4)

cf. e.g. [12, 10], which corresponds to A = id. However, contrary to this “classical”
sweeping process, the problems (1) or (3) may be degenerated, i.e. there are simple
examples showing that it is possible that there are no solutions at all (cf. Example 4.1 in
Section 4 below).
To obtain positive results about the existence of solutions, we will consider, more generally
than (3), non-standard evolution equations of the form

−u′(t) ∈ ∂δC(t)(v(t)) , v(t) ∈ Au(t) a.e. in [0, T ] , u(0) = u0 ∈ D(A) , (5)

with some (possibly multivalued) operator A : D(A) → 2H \ {∅} and a Lipschitz-
continuous moving set C(·) with nonempty closed convex values C(t) for t ∈ [0, T ]. Note
that (5) also requires v(t) ∈ C(t) a.e. in [0, T ], and we will additionally suppose that

v0 := A0u0 ∈ C(0). Here A0x ∈ Ax is defined through |A0x| = min{|y| : y ∈ Ax} for
x ∈ D(A).
It is interesting to note that problems falling under a similar general scheme as (5) were
arrived at in [8] or [9] (cf. also the references therein for additional information), but in
those papers the authors quite differently had in mind elliptic-parabolic partial differential
equations as a motivation for the study of

−u′(t) ∈ ∂ϕt(v(t)) , v(t) ∈ Au(t) a.e. in [0, T ] , u(0) = u0 ∈ D(A) , (6)

with a maximal monotone and strongly monotone A = ∂ψ. Moreover, ϕt had to depend
on t in a somehow regular way, and also some compactness and coercivity assumptions
like (a1) and (a2) of [9, p. 1183] had to be satisfied. Both these conditions stated that

each of the sublevel sets {z ∈ H : ϕt(z) ≤ r} should be compact and that ϕt(z) ≥ c |z|2.

(In fact, one should also have v0 = A0u0 ∈ D(ϕ0) in (6), cf. (17) below.) Since these

conditions do not hold for (5), which corresponds to the case ϕt = δC(t), they had to be

replaced by suitable substitutes in case of the sweeping processes (5).
After giving some preliminaries in Section 2, we will prove the corresponding theorem on
the existence of solutions to (5) in Section 3. Afterwards this result will be applied in
Section 4 to obtain solutions also for (1).



M.Kunze, M.D.P.Monteiro Marques / Solutions for degenerate sweeping processes 167

Let us finally remark that there are other non-standard variants of the classical sweeping
process. In [5] the author considered problems of the type −Atu′(t) ∈ ∂f(t, u(t)), u(t) ∈
Γ(t), in C(X) instead of the Hilbert space H, whereas in [4] the problem d

dt [A(t, u(t))] +

f(t) 3 −∂ϕ(u(t)) will be investigated under conditions similar to the ones of Theorem 4.2
below. Furthermore, in [14] and [2] the modification was neither in the underlying space
nor in the left-hand side of (4), but in the fact that C(t) was not necessarily assumed to
be convex.

2. Preliminaries

Let H be a Hilbert space with norm |x| and inner product x · y or 〈x, y〉. For sets
C1, C2 ⊂ H

dH(C1, C2) = max
{

sup
x∈C2

dist(x, C1), sup
x∈C1

dist(x, C2)
}

with dist(x, C1) = inf {|x− y| : y ∈ C1}
is the Hausdorff-distance between C1 and C2. For ∅ 6= C ⊂ H closed and convex,
proj(x, C) denotes the projection of x ∈ H onto C, i.e. y = proj(x, C) iff y ∈ C and
〈x − y, y − z〉 ≥ 0 for all z ∈ C. Moreover, NC(x) = ∂δC(x) = {y ∈ H : 0 ≥ 〈y, z −
x〉 for all z ∈ C} is the normal cone at x ∈ C, and δ∗(x, C) = sup {x · y : y ∈ C} stands
for the support function of C.

If A : D(A)→ 2H \ {∅} is a maximal monotone operator (mmop), then Jλ = (I + λA)−1

resp. Aλ = λ−1(I − Jλ) will denote the resolvent resp. the Yosida-approximation of A
for λ > 0. For properties and other terminology related to mmops (and also to convex
functionals) we refer to standard references like [1], [3] or [6]. In particular, it will be
repeatedly used that Aλx ∈ AJλx for x ∈ H.

We start with the definition of solutions.

Definition 2.1. (a) Let q0 ∈ H be given such that g(0, q0) ∈ Γ. A function q ∈
W 1,2([0, T ];H) is called a solution of (1) if g(t, q(t)) ∈ Γ for a.e. t ∈ [0, T ] and if (1) is
satisfied.
(b) Let u0 ∈ D(A) be given such that v0 = A0u0 ∈ C(0). A pair (u, v) is called a solution

of (5) if u ∈ W 1,2([0, T ];H), v ∈ L∞([0, T ];H), v(t) ∈ Au(t) ∩ C(t) for a.e. t ∈ [0, T ] and
if (5) is satisfied.

We remark that one is not forced to define solutions with the regularity as we have above

(an alternative is e.g. to require only u ∈ W 1,1([0, T ];H) and v measurable), but since
the solutions we obtain in Theorem 3.1 below have the stated regularity, we prefer this
definition.

Next we carry out the

Proof of Lemma 1.1. By (1) for a.e. t ∈ [0, T ] and all (s, y) ∈ [t,∞[×Γ

0 ≤ 〈q′(t), y − g(t, q(t))〉
≤ (s− t) + 〈q′(t), y − g(t, q(t))〉 = 〈(1, q′(t)), (s, y)− (t, g(t, q(t)))〉H ,

and that means (3). On the other hand, let u = (θ, q) be a solution of (3). Then for
a.e. t ∈ [0, T ] we have Au(t) ∈ C(t), i.e. θ(t) ≥ t and g(θ(t), q(t)) ∈ Γ, and for s ≥ t and
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y ∈ Γ

0 ≤ θ′(t)(s− θ(t)) + 〈q′(t), y − g(θ(t), q(t))〉 . (7)

In particular 0 ≤ θ′(t)(t− θ(t)) for a.e. t ∈ [0, T ]. Hence ϕ(t) = θ(t)− t ≥ 0 is continuous

and has ϕ(0) = 0 as well as ϕ′(t)ϕ(t) ≤ −ϕ(t) ≤ 0 a.e., and therefore θ(t) = t in [0, T ].
Consequently, (7) with s = t shows that q is a solution of (1).

Lemma 2.2. Let A be a mmop in H such that 〈Ax − Ay, x − y〉 ≥ c |x− y|2 in
D(A)×D(A) for some c > 0. Then

(a) λx+ A−1x = A−1
λ x for x ∈ H and λ > 0, and

(b) for x, y ∈ H and λ > 0

〈Aλx− Aλy, x− y〉 ≥
c

1 + λ c
|x− y|2 .

Proof. Ad (a): Since A−1 is locally bounded, A is onto by [3, Thm. 2.3]. Thus A−1 :
H → D(A) is single-valued and monotone. Moreover, because Aλ : H → H is a single-
valued mmop, the cited result and part (b) of this lemma imply that Aλ is bijective. As

a consequence of Aλy ∈ AJλy for y ∈ H we have A−1(Aλy) = Jλy, and therefore, with

y = A−1
λ x for x ∈ H, we obtain A−1x = Jλ(A−1

λ x) = A−1
λ x−λx, the latter following from

Jλ + λAλ = I.
Ad (b): Cf. [9, Lemma 2.1(iii)]. The proof did not rely on A being a subdifferential.

The following result from [3, Ex. 2.8.2] will be useful later.

Lemma 2.3. For t ∈ [0, T ] let ϕt = δC(t). Then ∂ϕt = NC(t) and for λ > 0 and x ∈ H

ϕtλ(x) =
1

2λ
|x− proj(x, C(t))|2 and (∂ϕt)λ(x) = ∂ϕtλ(x) =

1

λ
[x− proj(x, C(t))] .

From this we obtain

Lemma 2.4. Let (H2) below be satisfied, i.e. C(·) is Lipschitz-continuous with constant
L w.r.t. dH and has nonempty closed convex values. Then for λ > 0 and x ∈ H the

function t 7→ ϕtλ(x), with ϕt as in Lemma 2.3, is differentiable a.e. on [0, T ] and

d

dt
ϕtλ(x) ≤ L |∂ϕtλ(x)| a.e. on [0, T ] .

Proof. The proof is an appropriate modification of [9, Lemma 2.3]. For s, t ∈ [0, T ] with
s ≤ t and y ∈ C(t) we obtain from Lemma 2.3 and from the properties of a projection

ϕtλ(x)− ϕsλ(x) =
1

2λ
|x− proj(x, C(t))|2 − 1

2λ
|x− proj(x, C(s))|2

≤ 1

2λ
|x− y|2 − 1

2λ
|x− proj(x, C(s))|2

=
1

λ
〈 proj(x, C(s))− y, x− proj(x, C(s))〉+

1

2λ
|y − proj(x, C(s))|2

≤ |y − proj(x, C(s))| |∂ϕtλ(x)|+ 1

2λ
|y − proj(x, C(s))|2 . (8)



M.Kunze, M.D.P.Monteiro Marques / Solutions for degenerate sweeping processes 169

Since proj(x, C(s)) ∈ C(s) we find y ∈ C(t) such that |y − proj(x, C(s))| ≤ L|t − s|.
Inserting this into (8) we arrive at

ϕtλ(x)− ϕsλ(x) ≤ L|t− s| |∂ϕtλ(x)|+ L2

2λ
|t− s|2 . (9)

This implies that the function t 7→ ϕtλ(x) may be written as a sum of a nonincreasing

function and an a.c. function, and therefore is differentiable a.e. Dividing (9) by (t − s)
and taking the limit s→ t− at a.e. fixed t thus yields the claim.

Lemma 2.5. Let ψ : H → IR ∪ {∞} be lsc, convex and proper.

(a) If u : [0, T ]→ H is differentiable at t ∈ ]0, T [ and u(t) ∈ D(∂ψ), then

d

dt
[ψ ◦ u](t) = (u′(t), z) for all z ∈ ∂ψ(u(t)).

(b) If λn → 0+, xn → x ∈ H and {∂ψλn(xn) : n ∈ IN} ⊂ H is bounded, then ψλn(xn)→
ψ(x).

Proof. Ad (a): Cf. [3, Lemma 3.3] and formula (ψ8) of [9, p. 1187]. Ad (b): This is
(ψ6) in [9, p. 1187].

3. Existence of solutions of (5)

In this section we generally will assume that the following hypotheses are satisfied:

(H1) A : D(A)→ 2H \ {∅} is a mmop such that for some c > 0

〈Ax− Ay, x− y〉 ≥ c |x− y|2 for all x, y ∈ D(A). (10)

Moreover, for some function M : [0,∞[→ [0,∞[ which maps bounded sets into
bounded sets,

‖Ax‖ := sup{|y| : y ∈ Ax} ≤M(|x|) for x ∈ D(A). (11)

(H2) C(·) is Lipschitz-continuous with constant L > 0 w.r.t. dH and C(t) is nonempty,
closed and convex for every t ∈ [0, T ],

and we intend to prove

Theorem 3.1. Let (H1) and (H2) be satisfied, and fix T > 0. Suppose further that in
addition

(H3a) A = ∂ψ for some lsc, convex and proper ψ : H → IR ∪ {∞}, or

(H3b) If µn → 0+, un → u in C([0, T ];H) and vn = Aµnun ⇀ v in L2([0, T ];H), then

even vn → v in L2([0, T ];H),

and

(H4) C(t) ∩Br(0) is compact for all t ∈ [0, T ] and r > 0.

Then (5) has a solution on [0, T ] in the sense of Definition 2.1 for every u0 ∈ D(A) with

v0 = A0u0 ∈ C(0).
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We remark that some of the assumptions might be relaxed by using a complete discretiza-
tion instead of Yosida-Moreau regularization as below. But since we are mainly interested
in an application of Theorem 3.1 to the finite-dimensional problem (1), but not to PDEs,
the above assumptions are easily seen to be satisfied in this case, cf. Theorem 4.2 below.
The proof of the theorem will be carried out along the lines of [8] or [9], with appropriately
modified arguments, since (as was already explained above) we neither can assume the

uniform coercivity of ϕt = δC(t) nor the compactness of the sublevel sets in the present

case of the sweeping process.
Firstly, we will derive uniform bounds for a sequence (uλ,µ) of approximate solutions,

obtained by Yosida-approximation of A through Aµ and by approximation of ∂ϕt =

∂δC(t) = NC(t) through ∂ϕtλ (cf. Lemma 2.3). To get these uniform bounds, only (H1)

and (H2) will be needed. Then a solution u of (5) will be obtained by letting jointly

λ → 0+ and µ → 0+. Conditions (H3a) or (H3b) and (H4) will be made use of to prove
this convergence.
So, we assume that (H1) and (H2) hold and choose for every fixed λ, µ > 0 a solution

uλ,µ ∈ C1([0, T ];H) of

−u′λ,µ(t) =
1

λ
[Aµuλ,µ(t)− proj(Aµuλ,µ(t), C(t))] for all t ∈ [0, T ], uλ,µ(0) = u0

µ, (12)

where Aµu
0
µ = v0. Note that u0

µ exists since Aµ : H → H is single-valued and onto,

cf. Lemma 2.2 and [6, Thm. 11.6]. Thus by Lemma 2.2 (b)

|u0
µ| ≤ |u0|+ |u0

µ − u0| ≤ |u0|+
(1 + cµ

c

)
|Aµu0

µ − Aµu0|

≤ |u0|+
(1 + cµ

c

)
(|v0|+ |A0u0|) =: c1

(13)

for every µ > 0, in particular for µ ∈ ]0, 3/2c] (this condition will be needed below),
because u0 ∈ D(A). Moreover, since the right-hand side of the differential equation (12)

is continuous, (12) in fact has a C1-solution on [0, T ].

Lemma 3.2. There exists a constant c2 > 0 (which depends only on T , L, and c) such
that for all µ ∈ ]0, 3/2c] and all λ > 0

|uλ,µ|∞ + |u′λ,µ|L1([0,T ];H)
+ |u′λ,µ|L2([0,T ];H)

≤ c2

and
| vλ,µ(t)− proj(vλ,µ(t), C(t))|2 ≤ c2 λ

for t ∈ [0, T ], where vλ,µ = Aµuλ,µ.

Proof. To differentiate ψ(t) = 1
2 dist2(Aµuλ,µ(t), C(t)) = λϕtλ(Aµuλ,µ(t)) a.e. on [0, T ]

note first that Aµuλ,µ is differentiable a.e., since Aµ is Lipschitz continuous. Moreover,

for a fixed closed and convex C ⊂ H we have 1
2(ρ2)′(x) = x − proj(x, C), where ρ(x) =

dist(x, C), cf. e.g. [7, Prop. 7.1], which does not depend on dimX < ∞. Next, as a
consequence of Lemma 2.4, we obtain that for all x ∈ H and a.e. t ∈ [0, T ]

d

dt
ϕtλ(x) ≤ L |∂ϕtλ(x)| . (14)
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Because vλ,µ = Aµuλ,µ is differentiable a.e., it follows from Lemma 2.2 (b) (take x =

uλ,µ(t+ h) and y = uλ,µ(t) there, and let h→ 0+) that a.e.

( c

1 + cµ

)
|u′λ,µ(t)|2 ≤ 〈v′λ,µ(t), u′λ,µ(t)〉 .

Thus we obtain a.e. on [0, T ] by means of (12) and (14)

ψ′(t) = λ
( d
dt
ϕtλ

)
(vλ,µ(t)) +

〈
v′λ,µ(t), vλ,µ(t)− proj(vλ,µ(t), C(t))

〉

= λ
( d
dt
ϕtλ

)
(vλ,µ(t))− λ 〈v′λ,µ(t), u′λ,µ(t)〉

≤ λL
∣∣∣∂ϕtλ(vλ,µ(t))

∣∣∣− λ
( c

1 + cµ

)
|u′λ,µ(t)|2

= λL |u′λ,µ(t)| − λ
( c

1 + cµ

)
|u′λ,µ(t)|2 ,

(15)

so that ψ′(t) ≤ λL2(1 + cµ)/4c, since αw2 + β ≤ γ|w| for α, γ > 0 and β, w ∈ IR implies

β ≤ γ2/4α. Hence ψ(0) = 0, integration, and ϕtλ ≤ ϕt yield, cf. Lemma 2.3,

| vλ,µ(t)− proj(vλ,µ(t), C(t))|2 = 2λϕtλ(vλ,µ(t)) = 2ψ(t)

≤ 2TλL2(1 + cµ)/(4c) ≤ R1 λ
(16)

for some R1 > 0 independent of µ ∈ ]0, 3/2c] and λ > 0. For such µ we also find α > 0

with c/(1 + cµ)− 1/2α = c/4. Therefore, since L|w| ≤ αL2/2 + w2/2α for w ∈ IR, (15)
implies a.e. on [0, T ]

c

4
|u′λ,µ(t)|2 + λ−1 ψ′(t) =

( c

1 + cµ
− 1

2α

)
|u′λ,µ(t)|2 + λ−1 ψ′(t)

≤ α

2
L2 =

( 1 + cµ

c (3− cµ)

)
L2 ≤ 5L2/3c .

Because ψ ≥ 0 we may integrate this inequality and use ψ(0) = 0 to obtain a uniform

L2-bound for u′λ,µ with µ ∈ ]0, 3/2c] and λ > 0. Hence in particular the L1-norms of

those u′λ,µ are uniformly bounded, and thus by (13) we also obtain a uniform bound for

|uλ,µ|∞, so that the proof is complete by (16).

Lemma 3.3. There exists a constant c3 > 0 (again dependent only on T , L, and c)
such that for all µ ∈ ]0, 3/2c] and λ ∈ ]0, 1]

|vλ,µ|∞ + |wλ,µ|∞ ≤ c3,

with wλ,µ = proj(vλ,µ(·), C(·)) ∈ C([0, T ];H).
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Proof. Since u0 ∈ D(A) we have

|Jµu0| = |u0 − µAµu0| ≤ |u0|+ µ |Aµu0| ≤ |u0|+ 3 |A0u0|/2c ,

so that by Lemma 3.2 for t ∈ [0, T ]

|Jµuλ,µ(t)| ≤ |Jµuλ,µ(t)− Jµu0|+ |Jµu0| ≤ |uλ,µ(t)− u0|+ |Jµu0|
≤ c2 + |u0|+ |u0|+ 3|A0u0|/2c =: R2 .

By assumption (H2), M([0, R2]) ⊂ [0, R3] for some R3 > 0. Thus we obtain

|vλ,µ(t)| = |Aµuλ,µ(t)| ≤ ‖A(Jµuλ,µ(t))‖ ≤M(|Jµuλ,µ(t)|) ≤ R3

for t ∈ [0, T ]. Consequently, by Lemma 3.2, we may choose c3 appropriately.

To obtain a solution of (5) in the limit, we fix sequences (λn) ⊂ ]0, 1] and (µn) ⊂ ]0, 3/2c]

with λn → 0+ and µn → 0+, and denote by un resp. vn resp. wn the functions uλn,µn
resp. vλn,µn resp. wλn,µn . The following lemma corresponds to (3.12)–(3.14) and (4.1)–

(4.3) in [9].

Lemma 3.4. Let (H4) be satisfied. Then there exists a subsequence, again indexed with

n ∈ IN, and functions u ∈ W 1,2([0, T ];H) and v ∈ L∞([0, T ];H) such that u(0) = u0,

v(0) = v0, un → u in C([0, T ];H) and vn ⇀ v in L2([0, T ];H). In particular, Jµnun → u

in C([0, T ];H).

Proof. By Lemma 3.2 and Lemma 3.3 we find a subsequence (w.l.o.g. the whole

sequence), an a.c. u ∈ W 1,2([0, T ];H) and v ∈ L∞([0, T ];H) such that un ⇀ u in

L2([0, T ];H), un(t) ⇀ u(t) in H for all t ∈ [0, T ], u′n ⇀ u′ in L2([0, T ];H) and vn⇀
∗v

in L∞([0, T ];H), hence in particular vn ⇀ v in L2([0, T ];H). Moreover, {wn(t) : n ∈
IN} ⊂ C(t) ∩ Bc3(0) for every t ∈ [0, T ] by Lemma 3.3. So by (H4), a diagonal argument

and Lemma 3.2, cf. (16), we may also assume that vn(t) → v(t) for every t ∈ [0, T ] ∩ Q.

Thus vn(0) = Aµnu
0
µn = v0 yields v(0) = v0. Because A−1 is 1/c-Lipschitz by (10),

and because Lemma 2.2 (a) implies µz + A−1z = A−1
µ z for µ > 0 and z ∈ H, hence

µnvn(t) + A−1vn(t) = un(t), we also obtain un(t) → u(t) for t ∈ [0, T ] ∩ Q by Lemma
3.3. Therefore un → u in C([0, T ];H) by Arzelà-Ascoli’s theorem, since Lemma 3.2 im-

plies supn∈IN |un(t)− un(s)|2 ≤ c2 |t − s| for s, t ∈ [0, T ]. Consequently, in particular

Jµnun = un − µnvn → u uniformly. Finally, by Lemma 2.2 (b) and since u0 ∈ D(A),

|un(0)− u0| = |u0
µn − u0| ≤

(1 + cµn
c

)
|Aµnu0

µn − Aµnu0| → |v0 − A0u0|/c. (17)

Because of v0 = A0u0 we consequently obtain u(0) = u0.

Lemma 3.5. Let (H3a) or (H3b) and (H4) be satisfied. Then (u, v) from Lemma 3.4 is
a solution of (5).
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Proof. Let Aū = {v̄ ∈ L2([0, T ];H) : v̄(t) ∈ Aū(t) a.e. in [0, T ]} for ū ∈ L2([0, T ];H).
Then A is a mmop by [3, Ex. 2.3.3], and we have (Jµnun, vn) ∈ A by definition of vn.

Therefore (u, v) ∈ A by Lemma 3.4 and [3, Prop. 2.5], i.e. v(t) ∈ Au(t) a.e. in [0, T ]. To
show that v(t) ∈ C(t) for a.e. t ∈ [0, T ], we fix δ > 0 and define

Mδ = {z ∈ L2([0, T ];H) : |z(t)− proj(z(t), C(t))|2 ≤ δ for a.e. t ∈ [0, T ] }.

Since ϕtλ (cf. Lemma 2.3) is convex and Mδ = {z ∈ L2([0, T ];H) : ϕtλ(z(t)) ≤ δ/2λ for a.e.

t ∈ [0, T ]} for all λ > 0, Mδ is convex. Because Mδ is also closed, it is weakly closed in

L2([0, T ];H), and vn ∈ Mδ for all sufficiently large n ∈ IN by (16). Therefore Lemma 3.4
yields v ∈ Mδ for all δ > 0. Thus by definition of Mδ we obtain v(t) = proj(v(t), C(t)) ∈
C(t) on the complement of some null set. Hence it remains to verify the differential
inclusion from (5). For that, we will use (H3a) or (H3b). By the defining property of a

projection we have u′n(t) · [z − vn(t)] ≥ 0 for all n ∈ IN, t ∈ [0, T ] and z ∈ C(t) from (12).

Thus 0 ≥ δ∗(−u′n(t), C(t)) + 〈u′n(t), vn(t)〉 for n ∈ IN and t ∈ [0, T ], and therefore

0 ≥
∫ T

0
δ∗(−u′n(t), C(t)) dt+

∫ T

0
〈u′n(t), vn(t)〉 dt

=

∫ T

0
δ∗(−u′n(t), C(t)) dt+ 〈u′n, vn〉L2([0,T ];H)

(18)

for n ∈ IN. To take lim infn→∞ of this inequality, first note that as a consequence of [13,
Corollary p. 227] and of Lemma 3.4

lim inf
n→∞

∫ T

0
δ∗(−u′n(t), C(t)) dt ≥

∫ T

0
δ∗(−u′(t), C(t)) dt. (19)

In case that (H3b) is satisfied, this condition and Lemma 3.4 imply vn → v in L2([0, T ];H),

and therefore 〈u′n, vn〉L2([0,T ];H) → 〈u′, v〉L2([0,T ];H). But this also holds, if (H3a) is sat-

isfied. Indeed, because of A = ∂ψ, Lemma 2.5 (a) applied to u = un and z = vn(t) =
Aµnun(t) = ∂ψµn(un(t)) gives

∫ T

0
〈u′n(t), vn(t)〉 dt = ψµn(un(T ))−ψµn(un(0))→ ψ(u(T ))−ψ(u0) =

∫ T

0
〈u′(t), v(t)〉 dt,

since the convergence follows from (11), Lemma 3.2 and Lemma 2.5 (b), and since the
last equality is obtained again by means of Lemma 2.5 (a), because we already know that
u is a.c., hence differentiable a.e. in [0, T ], and v(t) ∈ ∂ψ(u(t)) a.e. in [0, T ]. Therefore we
may take lim infn→∞ of (18) to find in both cases (H3a) or (H3b)

0 ≥
∫ T

0
[δ∗(−u′(t), C(t)) + 〈u′(t), v(t)〉] dt.

But the integrand is ≥ 0 a.e. on [0, T ], since v(t) ∈ C(t) a.e. Hence we obtain δ∗(−u′(t),
C(t)) + 〈u′(t), v(t)〉 = 0 a.e., and this completes the proof by definition of the normal
cone.
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4. Existence of solutions of (1)

In this section we want to investigate (1). We start with an example showing that in some
situations no solution can exist.

Example 4.1. Let H = IR, Γ = [−1, 1] and g(t, x) = 1 + t − x for (t, x) ∈ IR2. Then

with q0 = 0 the necessary conditions g(0, q0) = 1 ∈ Γ and ∅ 6= g(t, ·)−1(Γ) = [t, 2 + t] are
satisfied, but (1) with q0 = 0 has no (local) solution. Indeed, because of NΓ(1) = [0,∞[

and NΓ(x) = {0} for |x| < 1, the continuity of t 7→ g(t, q(t)) ∈ Γ would imply q′(t) ≤ 0
a.e. in some [0, δ], contradicting q(t) ∈ [t, 2 + t] for t ∈ [0, δ].

Let us also remark that if g = g(t, x) is t-independent, then q(t) = q0 is a stationary
solution of (1) if the necessary condition g(q0) ∈ Γ is satisfied.
To prove existence of solutions of (1), we want to apply Theorem 3.1 with (H3b) and (H4)
in H = IRn by using Lemma 1.1. In this way we obtain

Theorem 4.2. Let g ∈ C(IR × IRn, IRn) and Γ ⊂ IRn be closed and convex. Suppose
that for some α > 0 and β ∈ ]−∞, 1[

〈g(t, x)− g(s, y), x− y〉 ≥ α |x− y|2 − β (t− s)2 for t, s ∈ IR, x, y ∈ IRn. (20)

Then (1) has a solution in the sense of Definition 2.1 on every [0, T ] with T > 0.

Proof. We define H, C(·) and the single-valued A with D(A) = IR × IRn = H as in
Lemma 1.1, i.e. A(t, x) = (t, g(t, x)). Then for all λ ≥ 0, t, s ∈ [0, T ] and x, y ∈ IRn by
(20)

〈(A+ λIH)(t, x)− (A+ λIH)(s, y), (t, x)− (s, y)〉H
= (1 + λ)(t− s)2 + λ|x− y|2 + 〈g(t, x)− g(s, y), x− y〉
≥ (1 + λ− β)(t− s)2 + (λ+ α)|x− y|2

≥ (1− β)(t− s)2 + α|x− y|2 ≥ c |(t, x)− (s, y)|2H
with c = (1 − β) ∧ α > 0. Therefore (10) is satisfied, and clearly (11) holds with
M(r) = r+ sup {|g(t, x)| : (t, x) ∈ IR× IRn, |(t, x)| ≤ r}. Moreover, A+ IH is onto (cf. [6,
Thm. 11.6]), and thus A is a mmop. Since C(·) is Lipschitz with L = 1 and (H4) holds,
we only have to verify (H3b). For that, we will first show that for µ ∈ ]0, 1]

sup
|z|≤r

|A(z)− Aµ(z)| ≤
√
µ2 r2 + ω2M(

√
2r)

(
µM(

√
2r)
)2

=: ω̃(r, µ) , (21)

where for R > 0 and δ > 0

ωR(δ) = sup {|g(t, x)− g(s, y)| : |t|, |s|, |x|, |y| ≤ R, |t− s| ≤ δ, |x− y| ≤ δ}
is a restricted modulus of continuity of g, which is continuous at δ = 0, since g is uniformly

continuous on [−R,R]× BR(0). Thus ω̃(r, µ)→ 0 as µ→ 0+ for fixed r ≥ 0.
To prove (21), first note that by solving the equation (t, x) = (IH + µA)(s, y) for (s, y),
we find for µ > 0 and (t, x) ∈ IR× IRn

Jµ(t, x) =
( t

1 + µ
,
[
I + µg(

t

1 + µ
, ·)
]−1

(x)
)
,
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and hence

Aµ(t, x) =
( t

1 + µ
,

1

µ

(
x−

[
I + µg(

t

1 + µ
, ·)
]−1

(x)
))
.

To estimate |A(t, x)−Aµ(t, x)|, let y = µ−1(x− [. . .]−1(x)). Then with τ = t/(1 +µ) one

arrives at g(τ, x− µy) = y, and consequently in case that |z| = |(t, x)| ≤ r and µ ∈ ]0, 1]

|A(t, x)− Aµ(t, x)|2 = |(t, g(t, x))− (τ, y)|2 =
∣∣∣
( µt

1 + µ
, g(t, x)− g(τ, x− µy)

)∣∣∣
2

≤ µ2t2 + |g(t, x)− g(τ, x− µy)|2 ≤ µ2r2 + ω2M(
√

2r)

(
µM(

√
2r)
)2
.

For the last estimate we have used |τ | ≤ |t| ≤ r, hence |(τ, x)| ≤
√

2r, and so |g(τ, x)| ≤
M(
√

2r). Thus also |y| = |g(τ, ·)µ(x)| ≤ |g(τ, ·)0x| = |g(τ, x)| ≤ M(
√

2r). Hence we have

shown (21).

To verify (H3b) from this, let µn → 0+, un → u in C([0, T ];H) and vn = Aµnun ⇀ v

in L2([0, T ];H). Since every Aµ is Lipschitz with constant 1/µ, in fact vn ∈ C([0, T ];H).

Because A : H → H is single-valued and continuous, (vn) ⊂ C([0, T ];H) is a Cauchy-
sequence. To see this, choose r > 0 such that |u|C([0,T ];H) ≤ r and |un|C([0,T ];H) ≤ r for

all n ∈ IN. Then for t ∈ [0, T ] and n,m ∈ IN due to (21)

|vn(t)− vm(t)| ≤ |Aµnun(t)− Aun(t)|+ |Aun(t)− Aum(t)|+ |Aum(t)− Aµmum(t)|
≤ w̃(r, µn) + w̃(r, µm) + |Aun − Aum|C([0,T ];H) → 0 as n,m→∞

uniformly in t ∈ [0, T ]. Thus (21) even implies vn → v in C([0, T ];H), so that the proof
of Theorem 4.2 is complete.
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