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Properties of increasing ∗-weakly lower semicontinuous (LSC) sublinear functionals on the positive cone
L∞+ are of importance for study miscellaneous non-controlled factors from a unified viewpoint based on

the notion of sublinear expectation [3, 4 and 5]. For every such functional N there are defined the class

AN of closed convex subsets A ⊂ L1
+ satisfying the condition

N(ϕ) = sup{〈ϕ, f〉: f ∈ A} ∀ϕ ∈ L∞+

and the class GN of increasing ∗-weakly LSC sublinear extentions of N from L∞+ to L∞. AN is ordered

for inclusion and GN is ordered in a natural way:

Q1 ≤ Q2 ⇔ Q1(ϕ) ≤ Q2(ϕ) ∀ϕ ∈ L∞,

where Q1, Q2 ∈ GN . The existence of the minimal elements in AN and in GN is proved and their
description is given. The orders induced in L∞∗ by convex cones conjugate to Kε = {ϕ ∈ L∞:ϕ ≥ ε‖ϕ‖},
ε > 0, are of substantial use in proving the theorem.

Keywords: sublinear functionals, closed in measure convex sets in L1, lower semicontinuity, sublinear
expectation, quasi-extremal elements of convex sets.
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1. Introduction

Let (Ω,F , ν) be a finite positive measure space, L1 be the Banach lattice of (classes of
ν-equivalent) integrable functions with the norm

‖f‖ =

∫
|f |dν ∀f ∈ L1, (1)
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and L∞ be the Banach lattice of (classes of ν-equivalent) bounded measurable functions
with the norm

‖ϕ‖ = vrai
ν

max
ω∈Ω
{|ϕ(ω)|} ∀ϕ ∈ L∞. (2)

Let us recall that the Banach lattice L∞ is conjugate to L1 and L1 is a sublattice of L∞∗.
In situations when an element f ∈ L1 is regarded as a functional in L∞∗ we shall use the

notation 〈ϕ, f〉 =
∫
ϕfdν ∀ϕ ∈ L∞ and permit writings of the form g = f + h, where

g, h ∈ L∞∗. For the elements of L∞+ containing the indicators of sets F ∈ F we use the

symbol χF .
The following proposition establishes the equivalence of different conditions of lower semi-
continuity (LSC) for increasing sublinear functionals defined on L∞+ .

Proposition 1.1. Let N :L∞+ → IR1 be an increasing sublinear functional.

The following assertions are equivalent:

(a) N is LSC in measure ν;
(b) N is LSC with respect to the family of prenorms

P = {‖ · ‖f =

∫
| · |fdν: f ∈ L1

+}; (3)

(c) N is continuous on increasing sequences, that is,

N(sup{ϕk}) = sup{N(ϕk)}

if ϕk+1 ≥ ϕk (k = 1, 2, . . .) and sup{ϕk} ∈ L∞+ ;

(d) N is LSC in the ∗-weak topology σ(L∞, L1).

We shall study increasing sublinear functionals N :L∞+ → IR1 satisfying any of the semi-

continuity conditions (a)–(d). Without loss of generality of our considerations we shall
assume that N(1) = 1. Such functionals will be called sublinear expectations (SE). They
have interesting application in operation research [3, 4 and 5], see the last section of the
paper.

With every SE N we connect the class AN of closed convex subsets A ⊂ L1
+ satisfying

the condition

N(ϕ) = sup{
∫
ϕfdν: f ∈ A} ∀ϕ ∈ L∞+ (4)

and the class GN of increasing ∗-weakly LSC sublinear extentions of N from L∞+ to L∞.

AN is ordered for inclusion and GN is ordered in a natural way: Q1 ≤ Q2 ⇔ Q1(ϕ) ≤
Q2(ϕ) ∀ϕ ∈ L∞, where Q1, Q2 ∈ GN . The main result of this paper is the following
theorem.

Theorem 1.2. For any SE N in the classes AN and GN there exist minimal elements.

2. Lower semicontinuity of increasing sublinear functionals on L∞+

At first let us prove the equivalence of conditions (a), (b) and (c) in Proposition 1.1. The
topology P is stronger than the topology of convergence in measure ν, hence (a) implies
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(b). Let ϕ ∈ L∞+ , ϕk ∈ L∞+ , k = 1, 2 . . .. If ϕk ↑ ϕ then ϕk → ϕ in any space L1(Ω,F , µ),

where dµ = fdν, f ∈ L1
+. Therefore the condition (b) and the increase of N imply

N(ϕ) ≤ lim
k→∞

inf N(ϕk) ≤ lim
k→∞

supN(ϕk) ≤ N(ϕ),

that is, the condition (c) holds. Let ϕk → ϕ in measure ν; N(ϕk) ≤ a <∞ ∀k ≥ 1. To
prove (a) it suffices to obtain the inequality N(ϕ) ≤ a. Choose a subsequence ϕkn → ϕ

ν−a.e. and put ψm = inf{ϕkn:n ≥ m}. Then ψm ↑ ϕ ν−a.e. Taking into account that

N(ψm) ≤ N(ϕkm) ≤ a we obtain Nϕ) = limN(ψm) ≤ a.

The equivalence of (b) and (d) follows from Proposition 2.1.

Proposition 2.1. The space L1 is topologically conjugate to (L∞,P).

Proof. By the definition of the locally convex lattice (LCL) (L∞,P) all elements of L1

are continuous linear functionals. Let g be an arbitrary continuous linear functional on
(L∞,P). Since g is continuous in the norm (2), by the Yosida-Hewitt theorem [6] there

exist functionals f ∈ L1, h ∈ L∞∗, Sn ∈ Ω (n = 1, 2, . . .), satisfying the conditions
g = f + h, Sn ↑ Ω, 〈ϕχSn, h〉 = 0 ∀ϕ ∈ L∞ ∀n = 1, 2, . . .. Suppose h 6= 0 and choose

ϕ ∈ L∞ from the condition 〈ϕ, h〉 = 1. Then the sequence ϕ(1− χSn) converges to 0 in
the topology P but the number sequence

〈ϕ(1− χSn), g〉 = 〈ϕ(1− χSn), f〉+ 〈ϕ(1− χSn), h〉 =

= 〈ϕ(1− χSn), f〉+ 〈ϕ, h〉 − 〈ϕχSn, h〉 = 〈ϕ(1− χSn), f〉+ 1

converges to 1 which contradicts the choice of g. Thus g = f ∈ L1.

Let us prove the equivalence of (b) and (d) in Proposition 1.1. Since the LCLs (L∞,P)

and (L∞, σ(L∞, L1)) have the same set of continuous linear functionals, see Proposition
2.1, the classes of closed convex sets in them also coincide. Therefore, if a convex set
{ϕ ∈ K:N(ϕ) ≤ a} is closed in one of these topologies it is closed in the other one.
Proposition 1.1 has been proved.

3. Decompositions of sublinear expectations

Throughout we fix (Ω,F , ν) and a SE N :L∞+ → IR1.

Definition 3.1. A subset A ⊂ L1
+ satisfying the condition (4) is called a decomposition

of the SE N .

The P-subdifferential ∂Q(0) of the extension

Q(ϕ) = N(sup{ϕ, 0}) ∀ϕ ∈ L∞ (5)

is the maximal for inclusion decomposition Amax(N). Theorem 0.29 and Corollary 3

of Theorem 0.31 [6] imply that Amax(N) is convex, σ(L1, L∞)-weakly closed and hence

closed in L1. Since N(1) <∞ the maximal decomposition is bounded in L1.

Proposition 3.2. The maximal decomposition Amax(N) is closed in measure ν.
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Proof. Let fk ∈ Amax(N) ∀k = 1, 2, . . . , fk → f ∈ L1
+ in measure ν. Let fkm → f

ν−a.e. Set an arbitrary ϕ ∈ L∞+ . By the Fatou lemma applied to fkm and the measure µ

with dµ = ϕdν we obtain
∫
fϕdν ≤ lim

k→∞
inf
∫

(fkm)ϕdν ≤ N(ϕ). Thus f ∈ Amax(N).

For any subset D ⊂ L1
+ we put

R(D) = {f ∈ L1
+: ∃g ∈ D, g ≥ f}, (6)

R(D) is the closure of R(D) in L1. (7)

If A is an arbitrary decomposition of N then [3]

Amax(N) = R(conv(A)), (8)

where conv(A) is the convex hull of A.

In applications, see the last section, for generalization of some concepts, for example, com-
pleteness of statistical structures [1] it is desirable to operate with minimal sets generating
by (4) the given sublinear expectation. Since in general the maximal decomposition is not
compact extremal and extreme elements [8] need not exist (the maximal decomposition is

compact with respect to σ(L1, L∞) if and only if [3] we have the implication ϕk+1 ≤ ϕk
(k = 1, 2, . . .) ⇒ N(inf{ϕk}) = inf{N(ϕk)}). The attempt to define the “minimal” de-
composition as the set of maximal elements of Amax(N) is not fruitful: the example in

Section 5 shows that among maximal elements of R(conv(A)), where
∫
fdν = 1 ∀f ∈ A,

there exist elements with norm less than one. The problem is solved by the proof of the

existence of the minimal closed in L1 convex decomposition Amin(N), which implies the
assertion of Theorem 1.2 about the class AN .

4. Thin decompositions and quasi-extremal elements

Being a bounded sublinear functional on the normed space L∞ a SE is continuous in the
norm on L∞. Therefore it is determined uniquely by its values on the open positive cone

L∞++ = {ϕ ∈ L∞: ∃c ∈ IR1, c > 0, c · 1 ≤ ϕ} = intL∞+ . (9)

Definition 4.1. Let ε ∈ IR1, 0 < ε < 1. The ε-thin decomposition of a SE N is the set

in L1 of the form

Aε(N) =
⋃

ϕ∈L∞++

{f ∈ Amax(N):

∫
fϕdν > N(ϕ)− ε · vrai min(ϕ)} (10)

where vrai min(ϕ) = sup{α ∈ IR1:α1 ≤ ϕ} is the essential minimum of ϕ.

Proposition 4.2. Let A be an arbitrary closed convex decomposition of a SE N , and let

Gε(A) =
⋃
f∈A
{g: ‖g − f‖ < ε} be the ε-neighbourhood of A. Then conv(Aε(N)) ⊂ Gε(A)

∀ε > 0.
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Proof. Take an arbitrary positive ε. Let f ∈ R(A)\Gε(A), where R is defined by

(6). Choose g ∈ A, g ≥ f . The inequality ‖g − f‖ ≥ ε implies
∫
fϕdν ≤

∫
gϕdν −

ε · vrai min(ϕ) ≤ N(ϕ) − ε · vrai min(ϕ) ∀ϕ ∈ L∞++, that is, f 6∈ Aε(N). Hence

R(A) ∩ (Gε(A))c ⊂ (Aε(N))c. Moreover since (Aε(N))c is closed in the restriction of the

topology of L1 to Amax(N) we have R(A) ∩ (Gε(A))c ⊂ (Aε(N))c. Taking into account
the inclusion Aε(N) ⊂ Amax(N) and the formula (8) we obtain Aε(N) ⊂ Gε(A). Now
the assertion of Proposition 4.2 follows from convexity of the set Gε(A).

Corollary 4.3. The intersection of convex closures of all ε-thin decompositions is a
subset of any closed convex decomposition.

Corollary 4.4. If a decomposition T of N is a subset of any ε-thin decomposition then
the closed convex hull of T is Amin(N).

Let X,X∗ be a normed vector space and its conjugate space.

Definition 4.5. An element x0 of a set A ⊂ X is called quasi-extremal with respect to
a cone C ⊂ X∗ if ∀δ > 0 ∃f ∈ C: 〈x0, f〉 > sup{〈x, f〉: x ∈ A}− δ‖f‖.

Quasi-extremal elements are useful in the work with bounded sets whose weak closures are
not compact in weak topologies, when there exist insufficiently many extremal elements
or they do not exist at all.

For every ε ∈ IR1, 0 < ε < 1, we define the cone of ε-separated from zero positive elements
of L∞ by the formula

Kε = {ϕ ∈ L∞:ϕ ≥ ε‖ϕ‖ · 1}. (11)

The family of cones {Kε: ε ∈ (0, 1)} increases monotonically as ε ↓ 0, and then
⋃
ε>0

Kε =

L∞++

⋃{0}.

Proposition 4.6. Let Dε(N) be the set of quasi-extremal with respect to Kε elements
of Amax(N). Then

⋃

0<ε<1

Dε(N) ⊂
⋂

0<ε<1

Aε(N). (12)

Proof. Take an arbitrary ε ∈ (0, 1). Let f ∈ Amax(N)\Aε(N). Then
∫
fϕdν ≤ N(ϕ)−

ε · vrai min(ϕ) ∀ϕ ∈ L∞++ and in particular
∫
fϕdν ≤ N(ϕ) − ε‖ϕ‖α−1 ∀ϕ ∈ Kα

∀α ∈ (0, 1), that is, f 6∈ ⋃0<α<1 Dα(N). Hence
⋃

0<α<1
Dα(N) ⊂ Aε(N) ∀ε ∈ (0, 1).

For the proof of existence of Amin(N) it is sufficient to construct for an arbitrary SE a
decomposition consisting of Kε-quasi-extremal elements. Such a decomposition will be
constructed with the help of the Zorn lemma and the orders in L∞∗ induced by the cones
Kε.
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5. Order induced by the cone of ε-separated from zero positive measurable
functions

First let us study the set of maximal elements in Amax(N) for the usual order in the

Banach lattice L1. Since the maximal decomposition is bounded and closed in measure ν

in L1, it contains the suprema of all included chains. The Zorn lemma implies that the set
of maximal elements in Amax(N) is a decomposition for the SE N . The following example
shows that this decomposition contains elements which do not belong to Amin(N).

Example 5.1. Let Ω = {1, 2, . . .}, F = 2Ω and ν({ω}) = 2−ω ∀ω ∈ Ω. We
define the SE N by the decomposition A = {fn:n = 1, 2, . . .} with fn = gn + hn, gn =

(1− 2−n)δ(1, ω), hn = (1 + 2n)δ(n + 1, ω), where δ(n,m) is the Kronecker symbol. Note
that ‖fn‖ = 1 ∀n. The element g = δ(1, ω) is the limit of the increasing sequence

gn ∈ Amax(N). It is maximal in Amax(N) and besides ‖g‖ = 2−1. By many reasons, it is
inadmissible that the “minimal decomposition” would contain such elements. If Amin(N)
exists it does not contain g because all elements of the convex closure of A have the unit

norm. Let us show that the natural order in L1 can be “corrected” so that the element g
should not be maximal. Fix ε ∈ (0, 1) and choose an arbitrary nonzero element ϕ in the
cone (11). Then

∫
ϕfndν −

∫
ϕgdν = −2−n−1ϕ(1) + 2−1(1 + 2−n)ϕ(n+ 1) ≥

≥ −2−n−1‖ϕ‖+ 2−1(1 + 2−n)ε‖ϕ‖ > 0 ∀n > log2(ε−1 − 1).

Hence for the order, defined in L1 by the rule

f1 ≤ f2 ⇔
∫
ϕf1dν ≤

∫
ϕf2dν ∀ϕ ∈ Kε,

the element g is not maximal.

For every ε ∈ IR1, 0 < ε < 1, we define a cone in L∞∗ by the formula

K∗ε = {g ∈ L∞∗: 〈ϕ, g〉 ≥ 0 ∀ϕ ∈ Kε}, (13)

where Kε is defined by (11). Since Kε is a closed convex cone it follows from (13) that

Kε = {ϕ ∈ L∞: 〈ϕ, g〉 ≥ 0 ∀g ∈ K∗ε} ∀ε ∈ (0, 1). (14)

Obviously Kε −Kε = L∞ and hence (−K∗ε ) ∩K∗ε = {0}, that is, the cone K∗ε is proper.
Therefore the space L∞∗ with the order relation

g1 ≤ g2 ⇔ g2 − g1 ∈ K∗ε (15)

is an ordered vector space with the positive cone K∗ε [8].
To avoid confusion with the natural order in L∞∗ we use terms: K∗ε -chain, K∗ε -majorant,
K∗ε -maximal element, and so on.

Theorem 5.2. Let B be a bounded closed convex subset of L1
+, ε ∈ IR1, 0 < ε < 1.

Then every element of B is K∗ε -majorized by some K∗ε -maximal element of B. If besides
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B is closed in measure ν then every K∗ε -maximal element of B remains K∗ε -maximal in
the closure of B in the (∗)-weak topology σ(L∞∗, L∞) and is quasi-extremal with respect
to the cone Kε.

Proof. Let {gα} be a K∗ε -chain in B, and let B be the closure of B in the (∗)-weak

topology σ(L∞∗, L∞). The (∗)-weak compactness of B implies existence of the (∗)-weak

limit g = limα gα ∈ B. Let us prove that g ∈ B, and then the first assertion of the
theorem will follow from the Zorn lemma.
According to the Yosida-Hewitt theorem [6] g can be represented uniquely in the form

g = f + h, where f ∈ L1
+, h ∈ L∞∗+ , and there exists a sequence of sets Sn ↑ Ω whose

indicators satisfy 〈χSn, h〉 = 0 ∀n = 1, 2, . . .. Take arbitrary δ ∈ IR1, ε < δ < 1, and

ϕ ∈ Kδ. Put ϕn = ϕχSn+ε‖ϕ‖(1−χSn) ∈ Kε. Note that ϕn ↑ ϕ, 〈ϕ, g〉 = 〈ϕ, f〉+〈ϕ, h〉 ≥
〈ϕ, f〉+ δ‖ϕ‖‖h‖, 〈ϕn, g〉 = 〈ϕn, f〉+ 〈ε‖ϕ‖(1− χSn), h〉 ≤ 〈ϕn, f〉+ ε‖ϕ‖‖h‖.
By uniting these inequalities we obtain

〈ϕ, g〉 − 〈ϕn, g〉 ≥ 〈(ϕ− ϕn), f〉+ (δ − ε)‖ϕ‖‖h‖ ≥ (δ − ε)‖ϕ‖‖h‖. (16)

Suppose ‖h‖ > 0. Continuity of the functional sup
α
〈(·), gα〉 on increasing sequences in

L∞ implies sup
α
〈ϕn, gα〉 ↑ supα〈ϕ, gα〉 = 〈ϕ, g〉. Therefore there exist α, n for which

〈ϕn, gα〉 > 〈ϕ, g〉 − (δ − ε)‖ϕ‖‖h‖/2. The relation ϕn ∈ Kε implies 〈ϕn, g〉 ≥ 〈ϕn, gα〉.
By uniting the last two inequalities we obtain 〈ϕn, g〉− 〈ϕ, g〉 > −(δ− ε)‖ϕ‖‖h‖/2 which

contradicts (16). So ‖h‖ = 0 and g ∈ L1
+. Since the restriction of the (∗)-weak topology

in L∞∗ to L1 coincides with the weak topology σ(L1, L∞) and closed convex sets in L1

are weakly closed we have g ∈ B.
Assume that B is closed in measure ν. Let f be an arbitrary K∗ε -maximal element of
B. Since the cone K∗ε is proper we have B ∩ (f + K∗ε ) = {f}. By Theorem 7.1 [6], see

also [2 and 7], B = P1(B), where P1 is the positive operator of projection of L∞∗ onto

L. Therefore any element of the intersection B ∩ (f +K∗ε ) can be represented as the sum
f + h, where h is a positive element of the algebraic complement of the subspace L in

L∞∗. Suppose that some element f + h of B ∩ (f + K∗ε ) K∗ε -majorizes f and besides
‖h‖ > 0. We exclude from the analysis the trivial case B = {f}. Choose q ∈ B, q 6= f ,

β ∈ IR1, 0 < β < ε‖h‖ · (ε‖h‖+ ‖q − f‖)−1 and put g = βq + (1− β)(f + h) ∈ B. Since

P1(g) = βq + (1 − β)f 6= f the element g cannot majorize f in B. This contradicts the
inequality

〈ϕ, g〉 − 〈ϕ, f〉 = (1− β)〈ϕ, h〉+ β〈ϕ, q − f〉 ≥ (1− β)ε‖ϕ‖‖h‖−
− β‖q − f‖‖ϕ‖ ≥ 0 ∀ϕ ∈ Kε.

Hence ‖h‖ = 0 and the element f is K∗ε -maximal in B.
It remains to prove that the element f is quasi-extremal with respect to the cone Kε. Note
that ‖f‖ > 0 because otherwise we would have the trivial situation B = {0} excluded

from the analysis. Take a positive δ ∈ IR1 and choose γ ∈ IR1, 0 < γ < δ‖f‖−1. Since f

is K∗ε -maximal in B and the cone K∗ε is proper we have B ∩ ((1 + γ)f + K∗ε ) = ∅. The
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(∗)-weakly compact set B and the (∗)-weakly closed set ((1 +γ)f +K∗ε ) can be separated

strictly by some element of L∞ and so there exists α, β ∈ IR1, and ϕ ∈ L∞ such that

sup{〈ϕ, g〉: g ∈ B} ≤ α < β ≤ inf{〈ϕ, g}: g ∈ ((1 + γ)f +K∗ε )}.

The right-hand inequality implies 〈ϕ, g〉 ≥ 0 ∀g ∈ K∗ε . Therefore, see (14), ϕ ∈ Kε.
Finally we obtain

〈ϕ, f〉 ≥ β − γ〈ϕ, f〉 > sup{〈ϕ, g〉: g ∈ B} − γ‖ϕ‖‖f‖ >
> sup{〈ϕ, g〉: g ∈ B} − δ‖ϕ‖,

that is, f is quasi-extremal with respect to the cone Kε.

6. Theorem on the minimal closed convex decomposition and minimal ex-
tensions of sublinear functionals

Definition 6.1. The north-eastern boundary (NEB) of the maximal decomposition of
a SE N is the set

neb(N) =
⋃

0<ε<1

Tε(N), (17)

where Tε(N) is the subset of K∗ε -maximal elements in the maximal decomposition
Amax(N).

Theorem 6.2. For any sublinear expectation N the NEB of its maximal decomposition
is a decomposition the closure of whose convex hull is Amin(N).

Proof. Since a SE is determined uniquely by its values on the cone (9) and the maximal
decomposition is norm bounded, closed in measure and convex, by Theorem 5.2 the NEB
of the maximal decomposition is a decomposition consisting of quasi-extremal elements
with respect to the cones Kε (0 < ε < 1). By Proposition 4.6 the NEB of the maximal
decomposition is included in any ε-thin decomposition. It remains to apply Corollary 4.4
of Proposition 4.2.

The assertion of Theorem 1.2 about the class AN is a simple corollary from Theorem
6.2. Let Q be any element of GN . Then Amin(N) ⊂ ∂Q(0) ⊂ Amax(N), where ∂Q(0)
is the P-subdifferential of Q at 0. Hence Q(ϕ) ≥ Q0(ϕ) ∀ϕ ∈ L∞, where Q0(ϕ) =

sup{
∫
ϕfdν: f ∈ Amin(N)} ∀ϕ ∈ L∞. Theorem 1.2 has been proved.

7. Sublinear expectations in operation research

In some applied problems of decision making for adequate description of non-controlled
factors it is necessary to unite several models of different types: it is natural to consider
some non-controlled factors to be random, others to be indefinite, the third to be fuzzy.
There are also indefinite factors with a random set of possible values, random factors
with an indefinite distribution and other more complicated compositions. It turns out
that the most of similar situations can be described from unified positions with the help
of sublinear expectations.
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Let Ω be a set of a priori unknown possible values ω of a non-controlled factor, (Ω,F)
be the measurable space of elementary events (not certainly random). We introduce

the denotations: L0
(Ω,F) — for the lattice of all measurable functions ϕ: Ω → IR1 ∪

{+∞,−∞}; L0(Ω,F) — for the vector lattice of all measurable functions ϕ: Ω → IR1;
L∞(Ω,F) — for its vector sublattice of bounded functions.

Definition 7.1. A sublinear expectation (on L0
) is any functional N :L0

+(Ω,F) →
IR1 ∪ {+∞} with properties:

(a) N(1) = 1;
(b) N(ϕ1) ≤ N(ϕ2) if ϕ1 ≤ ϕ2;

(c) N(αϕ) = αN(ϕ) ∀α ∈ IR1
+;

(d) N(ϕ1 + ϕ2) ≤ N(ϕ1) +N(ϕ2);
(e) N(ϕk) ↑ N(ϕ) if ϕk ↑ ϕ;
(f) there exists a finite positive measure ν defined on (Ω,F) and such that ν(F ) = 0⇒

N(χF ) = 0 ∀F ∈ F .
The triplet (Ω,F , N) will be called a space with a sublinear expectation, a measure ν will
be called a dominating measure for N .

Interpretation. Let be given (Ω,F , N). A connected optimization problem is defined

as a pair (U,Φ), where U is some set of strategies u,Φ(u, ω):U × Ω → IR1
+ ∪ {+∞} is

a non-negative measurable at each fixed u ∈ U purpose function constructed in a scale
of negative utility, for example damage function. We shall believe that the space with a
SE (Ω,F , N) gives a correct description of an non-controlled factor if for any connected
optimization problem the rule

u1 is not worse than u2 ⇔ N(Φ(u1, ω)) ≤ N(Φ(u2, ω)) (18)

establishes a prefence relation on U which conform with our intuition.

Example 7.2. Random factor. Let be given a probability space (Ω,F , P ). The SE of
the form

N(ϕ) =

∫
ϕdP (19)

(expectation) corresponds to the model of a random factor.

Example 7.3. Indefinite factor. To construct the model of an indefinite factor we set
a space of elementary events (Ω,F) with a finite positive measure ν. This measure will

be needed only to factorize the lattice L0
+ and so it will be called a factorizing measure.

We define the SE on L0
+ as the essential maximum:

N(ϕ) = vrai
ν

max
ω∈Ω

ϕ(ω)
(def)
= sup{α: ν{ω:ϕ(ω) > α} > 0}. (20)

For a proper choice of the factorizing measure the essential maximum will not differ
from the traditional supremum for a wide class of functions sufficient for the practical
application.
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Example 7.4. Indefinite factor with a fuzzy set of possible values. We set a space
of elementary events (Ω,F) with a factorizing measure ν and a measurable non-negative

function λ(ω) for which vrai
ν

max
ω∈Ω
{λ(ω)} = 1. The SE is defined by the formula

N(ϕ) = vrai
ν

max
ω∈Ω
{λ(ω)ϕ(ω)}. (21)

If λ(ω) is the indicator of some set F ∈ F then we obtain the model of an indefinite factor
taking values in the set F . In the general case the function λ(ω) can be interpreted as
the function of belonging to a fuzzy set of possible values ω.

Example 7.5. Indefinite factor with a random set of possible values. At the same time
with a space of elementary events (Ω,F) let be given a probability space (X,X , P ). We
assume that the set of possible values ω of an indefinite factor is given by its indicator
λx(ω) with a random parameter x ∈ X. The function λx(ω) is believed to be measurable
in the joint arguments. We set a factorizing measure µ on (Ω,F). The construction of
the model is completed by defining the SE by the formula

N(ϕ) =

∫

X
(vrai
µ

max
ω∈Ω
{λx(ω)ϕ(ω)})dP (x). (22)

The proper measurability of the integrand follows from Theorem 6 [3]. The dominating
measure is ν = µ× P .

Example 7.6. Sublinear expectation associated with a statistical structure. Let (Ξ,W)
be a measurable sample space, (Θ,V, µ) be a measurable (parameter) space with a fac-
torizing measure µ and Pθ be a transition probability acting from (Θ,V) to (Ξ,W). The

SE defined on L0
+(Ξ× Θ,W ⊗ V) by the formula

N(ϕ) = vrai
µ

max
θ∈Θ

∫
ϕ(ξ, θ)dPθ(ξ) (23)

will be called the sublinear expectation associated with the statistical structure

(Ξ,W, {Pθ: θ ∈ (Θ,V, µ)}). (24)

The dominating measure is ν(A× B) =
∫
χA(θ)Pθ(B)dµ(θ), where A ∈ V and B ∈ W.

Definition 7.1 implies trivially that a SE is constant on every class of ν-equivalent functions

in L0
+(Ω,F), where ν is a dominating measure. By applying the standard extension

procedure for functionals which are increasing and continuous on increasing sequences

it is not difficult to show that a SE is extended uniquely from L∞+ (Ω,F) to L0
+(Ω,F).

Therefore L∞+ (Ω,F , ν) is a convenient domain for a SE. This was used at the beginning

of the paper.
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