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This work is devoted to the study of the existence of “regular” solutions for a one-dimensional problem
with unilateral constrained gradient in Perfect-Plasticity.

The particularity of this problem consists in the fact, that the tools usually employed to prove the Inf-Sup
equality between the displacement problem and the stress problem do not work.

In a first part, we establish this equality by the mean of a penalty method which employs the theory of
the convex functions of measures.

In a second part, we find the regular limit loads, between which the displacement problem possesses at

least a solution which is in W171, verifiyng the boundary conditions and the constraint on the gradient.
We give an example where these loads are infinite.

Ce travail est consacré & I’étude de I'existence de solutions régulieres pour un probléme unidimensionnel,
avec un gradient contraint unilatéral en Plasticité Parfaite.

La particularité de ce probleme réside en ceci que, les outils habituellement employés pour montrer
I’égalité entre les problémes en déplacement et en contrainte ne fonctionnent plus.

Dans une premiére partie, on établit cette égalité au moyen d’une méthode de pénalité, qui utilise la
théorie des fonctions convexes de mesure.

Dans un deuxiéme temps, on trouve les charges limites réguliéres, en deca desquelles le probleme en

déplacement admet des solutions qui sont dans Wl’l, et qui vérifient les conditions aux bords et la
contrainte sur le gradient. On donne aussi un exemple ol ces charges limites sont infinies.

1. Introduction

This paper is devoted to the study of the regularity of the solutions of perfect-plastic
problems, for a one-dimensional model with a unilateral constrained gradient. For previ-
ous works on plasticity, the reader can consult Suquet [16], Temam [17], Strang Temam
[18] and Kohn Temam [13].

In these works, the authors have proved, for a model without constraint on the gradient
that, when the load is not “too large”, there exists a solution to the displacement problem

in some weak sense. In particular, u belongs to BD = {u € L*(Q,R"Y), ¢;j(u) € M'}

— M is the space of bounded measures on €2, and €(u) is the symmetric part of the
gradient — In the one-dimensional case, it reduces to BV (]0, 1[). Until now, only very
few things are known about regularity or uniqueness.
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258  T.Astruc / Ezistence of regqular solutions for a perfect-plastic problem

The first original result in that direction concerns the two dimensional case with a load
A = 0 and was proved by P. Sternberg, G. Williams and W. Ziemer [15]. Let us note that
Kohn and Strang [12] have previously been able to construct a “regular” solution for the
antiplane shear, in the two dimensional case, and for particular shape of €2 and particular
boundary data. Moreover, the load A was zero.

In a previous work [1,2], the author of this paper has established the existence of regular
solutions for

1 1
MRy~ If { /0 B (1)) dt — A /0 () di
u(0)=a

u(1)=8

for A small enough; more precisely, he has proved the existence of regular limit loads
A, Ar such that, for every X in the segment A, = |— A, \.[, Inf(P)) possesses a solution
in W%1(]0, 1[), which verify the boundary conditions.

Here we consider the following one-dimensional problem:

1 1
WP = mt { /0 W (1)) dt — A /0 F(tyu(t) dr) (1)
u(o)=a
u(1)=p

where W is a convex continuous function which is at most linear at infinity and coercive
on L', f is the load and ) is a parameter.

The relaxed form of this problem has been investigated by Bouchitte Suquet [3], and
Buttazzo Faina [4,5].

The main result of this paper concerns the existence of regular limit loads for this problem.

Theorem 1.1. 3(\,,\) € (R1)2/
1. VX € ]= A, M, Inf(Py) has at least a solution in WL1(]0,1[), which verifies the
boundary condition and the constraint on the gradient.

2. Ag={Ng€ A, \[/ Inf(Py) have at least one regular solution.} is at most countable.

In what follows, we will denote by “regular solution” of Inf(P)), a solution in W1(]0, 1[),
which verifies the boundary conditions and the constraint on the gradient.

The plan of this paper is as follows:

In Section 2, we precise the assumptions on W, and recall the variational formulations of
the displacement and the stress problem.

In Section 3, we establish the Inf-Sup equality between the dual problems. Let us point
out, that this result is not a direct corollary of the theory of Convex Analysis, and can
be obtained by the mean of a penalty method.

In Section 4, we look for necessary and sufficient conditions to have a solution u in
Wh1(]0,1[) which verifies the boundary conditions. For that aim, we use a change of
variable in the stress problem. We give a sufficient condition on U* and f to ensure the
existence of a “regular” solution u of the problem.

In Section 5, we introduce the regular limit loads. We will remark that they can be
bounded or not, illustrating this by presenting classical mechanical examples.
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2. Notations

Let us consider the problem:

1 1
mip)= It { /0 U (1)) dt — A /0 F(tyu(t) dt} 2)
u(o)=a
u(l)=p

where f € L*°(]0,1[) and

Co(l¢] = 1) <¥(§) < Ci(l¢] +1), (Hy)

¥ is convex (Hg)

T(E) ~ —vE vE R**. (Hs)
Let us introduce

g:-R — R

U(X) ifX<1
X +—
400 elsewhere,

and

1
sun(P) = Sup { = [ g"(o(0)di + o(1) a0 )} ®)

Remark 2.1. This problem is the weak variational formulation of the following formal
equations and inequations of perfect plastic unilateral problem:

=5
u' € dg* (o)
o =-\f

3. Convex Duality

Theorem 3.1. Under the assumptions (Hy)-(Hs), (Py) is the dual of (Py). Further-
more,

Sup(P}) = Inf (Py). (4)

Proof. For the convenience of the reader, the proof of this theorem is divided into six
steps:

First Step:

This first step consists in establishing that (Py) is the dual problem of (Py).

For that purpose, we will use the notations of I. Ekeland and R. Temam (cf. [10]):
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Let V and V*, Y and Y* be two couples of dual spaces, A : V — Y be a linear continuous
operator, F' and G be two convex functions:

F:V—R
G:Y —R

and F* and G* be their conjugate functions in the sense of Fenchel:

vp* € V*, F*(p*) =Sup {< p*,p > —F(p)}
peV

let (P) and (P*) be the two following conjugate problems:

(P) =Inf {F(v) + G(AW))}

and
(P*) = Sup {-F*(A"p") — G*(—p")}.
p*EY*
Theorem 3.2.
—o0 < Inf(P) < Sup(P*) < 4o0. (5)

Furthermore, if there exists ug € V' such that F(ug) < +o00, and if G is continuous at the
point A(ug), then
Inf(P) = Sup(P").

In order to apply Theorem 3.2, we take V- = Wb (0, 1[), Y = L! (]0, 1[), and the operator

AV —Y

u— .
The set of admissible displacement is
Upg = {u € V/u(0) = o and u(1) = g},

and the functionals are

F:V—R
1
u—s 4 —A ; f@u(t)dt ifue€ Uy
400 elsewhere,
G:Y —1R

With these notations, problem (1) may be written as

Inf(Py) =Inf {F(u) + G(Au)}.
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Remark 4.2 in Chapter III of [10] gives us that the dual problem is

Sup(Py) = Sup { — F*(A*p*) — G*(—p*)}.
preEY*

The computation of F*(A*o) is classical (cf [2]);

{ﬁa(l) —ao(0) if —o € Suq(N)

+00 elsewhere,

F*(A*0) =

where Syq(\) = {0 € L*®/o’ + \f = 0}.
We use then Proposition 2.5 of [17] to obtain

Finally, we get

1
Sup(P}) = Sup { - /0 g*(01)) dt + Bo(1) - a0 (0) .

Indeed, it is easy to verify that, if Y < —v, then ¢*(V) = +oc.

Second Step:
This step consists in introducing the penalty method.
Applying Theorem 3.2, we obtain that

—o00 < Sup(Py) < Inf(Py) < 4o0.
Since the set of admissible stresses is non-empty, we can write

—o00 < Sup(Py) < Inf(Py) < +o0. (6)
A first attempt to prove the equality (4) consists in using the following criterion of the
above-mentionned theorem of [10]:

(7)

{ There exists ug € V such that F(up) < 400,

G(Aug) < 400 and G being continuous in point Aug.

Unfortunately, this criterion is not verified here. We overcome the difficulty by using a
penalty method:
Let n be a positive real and let us introduce the function:

g R— R
Amawm+%m—w.
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gy verify the following properties:

1 X)=g9(X X
lim gy (X) = g(X), VX €R (8)
gT] S ga (9)
which implies that
VX eR gn(X) > ¢*(X).

Now we define the penalized problem

1 1
mfPg) = ot A [ a@o)a- [ vosoa), o)
B
u/<1

whose dual problem is
1
Sup(Pry) = Sup { - /0 gi(o(1)) di +o(1)3 — o (0)a}. (11)

Gesad()\)
o>—v

[10] ensures that Sup(Py,*) < Inf(Py,). It is easy to remark that for this problem,
criterion (7) is verified; we have then

Sup(P)\,T]*) = Inf(P)\,n)a (12)
from which we deduce
—o0 < Inf(Py,) (13)
= Sup(Py,*) < Sup(Py) < Inf(Py) < 400,
o
Third Step:
This step consists in introducing a penalized form of (Py) on BV:
Inf(PE) = (14)
1
Inf U(u') + Woo (B — u(17)) + Uoo(u(0F) — /
ettt [0+ 98— u17)  Teou0) =) =2 [ 1)
w'<1
u(oT)<a
w(l7)>p
and establishing the following inequality:
Inf(PR) < lim Inf(Py,). (15)

n—0+
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For n > 0 we define:
1 1
Do) = [ antaty =2 [ pu (16)

Using the definition of Inf(P),), we can choose uy; in U,q such that
Iag(ug) < Inf(Pyy) + 1. (17)

Lemma 3.3. The three following assertions hold :

(up)p>0 is bounded in Wh(]0, 1]). (18)
1
/O\I’(u;?) is bounded in R. (19)
11
—(ul — 1)t is bounded:
o 2n° "
. (20)
3Cs > 0, / (u' — 1)t < Con.
0
Proof of Lemma 3.3. For \; > A\, we write:
A /1 . Aot A 1
Ig(u) = (1 - Uu')+ (1 -~ —(u —-1)t = = u
M) == ) [y a- 3 [ e -0t - S | s
At AR
+— [ v —/ — (' -1t
A1 Jo (®) At Jo 277( )
A A1 AR
J 1-) [ vW)+(1-) [ =@ -1 21
i+ (=) [ 0= [ -t e

From this last equality, we can deduce that

1
Tl = 3T al) = (1= ) [ wtw),

Furthermore, Jy ,(uy) < Inf(Pyy,) +n < Inf(P\) +n and Jy,(u,) > Inf(Py,) >
Inf(P)\l’l).
Then, since 1 — )\—)‘1 > 0, we deduce that

1
/0 U (uy) is bounded in IR.

Using the assumption (H;), we conclude that u% is bounded in L!. This fact, joined with

the boundary conditions, ensures that u,, is bounded in W11(]0, 1).
This result, joined to (21), gives (20). O
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Let us now introduce
iy : R — R
a ift<0

t— { uy ifte0,1]
B ift>1.

Properties (18) and (20) still hold for the sequence (i;),>0. Since it is bounded in BV (RR),
we can extract from it a (weakly) converging subsequence which has a limit v in BV (IR).
Moreover, the subsequence (¥ (uy))y>o is bounded in M L(IR); so we can once more extract
a (weakly) converging subsequence. Let us denote by g its limit and by (v’ (77))’7>0 the

sequence after this double extraction. One can remark that v verifies v(t) = « for ¢ < 0
and v(t) = g for t > 1.
Let us denote by u the restriction of v to [0, 1].

v = u'xj01p+ (B — u(17))0gy + (u(0T) — @)dygy-

The theory of functions of measures gives then

1
/Rw )= /0 B(u') + Voo (B — u(17)) + Voo(u(0F) — a),

where 4(17) = lim u(z), u(0%) = lim u(z), and ¥oo(z) = lim

z—1- z—0t to+oo ¢
Using Lemma 2.1 in [8], we have

T') < p< lim U@ ,,). (22)
(m)
n—0t

Furthermore, (20) ensures that v' < 1. Let us verify that u(17) > 3 and u(0") < a, i.e.
that u is allowed to have only negative jump.

Choosing (e, ), a sequence which has 0 as limit, so that v has no mass in 1—e,, we have, for
1+en
alln >0, —v(l—¢,)+ 0 = v'(t) dt < 2¢,,. Hence, we find that u(17) = v(17) > 8.
l—en

Similarly, u(0%) = v(0%) < a.

1 1
Then, from (15) and noticing that / fgm = / fu, we get:
0 0

. - 1 1 1
lz_m ]nf(P)\,n) > ll_m 0 \I]( o'(n) / f’LL (n) + 277/ (u;(n) - 1)+

n—0t n—0t

1
> [ W)+ Vool = u17) + Feolu(0) — ) /f

> Inf (PE)
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We now introduce the relaxed form of (Py) on Wh!
Inf(PY) = (23)

1
Inf {/ W) + Uy (B — u(17)) + Voo (u(0™) — a) / ()
uew (]0,1]) 0
u'<1

u(oM<a

u(17)>p
Fourth Step:
This step consists in establishing the equality between Inf(Pg ) and Inf (P}év ).
Proposition 3.4. VYu € BV(]0,1]) such that v' < 1, u(0%) < «a and u(17) > S,
I(un)pew € W0, 1DV, w!, <1, up(01) < @ and up(17) > 8 such that

up = u L' strongly

un, = u M vaguely,

and

1
/0 U (ul) + Voo (un(07) — @) + Uoo (8 — un(17))

1
— [ W) + B (%) = @) + Uan(B ~ u(17))),
0

Proof.
We establish first the following lemma.

Lemma 3.5. Let u be in BV (]0,1]), such that v’ < 1, u(0%) < a and u(17) > 3, then
there exists (un)per € (W0, 10)N such that
un(0+) < q,

Un(l_) >
up — u in L' strongly

lul,| — |u'| in M vaguely,
1
[ 9 + sl = 0 (17) + B 0) = )

1 (24)
= [ )+ V(8- u(17)) + Vaafu(0F) — )
0

Proof. Let pin C*°(IR) be non-negative, even function with support in ]0, 1[, such that

/Rp _1 (25)
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and py, be defined as pp(z) = np(nz). We extend u as follows
a on|—o00,0]
=14 u on]0,1] (26)
B on [1,+00],
Then @ € BV(R), @ <1 and @ = 0 outside [0,1]. We define u,, = py, * . Since @’ <1,
uﬁl = pp * < 1.

In addition,
pn * % — uin L! strongly and

pn * U — @' in M vaguely.

¥ being convex, proper, and having a linear growth at infinity (H;-Hs), the theory of
convex functions of measures ensures that

v~ [ v@), (27)

which is equivalent to (24). (cf. [8] or [17]).
Furthermore, Vz € R,

£
3
&

I

t/pax—omnm
R

vz € [0, 3],

0 x
up(z) = /x—l np(n(xz —t))a(t) dt + /0 np(n(z — t))a(t) dt.

Using the assumptions on the boundary conditions verified by u, let € > 0 be such that
@(0T) <a—e€ and 4(17) > B —e. Let & be a positive real such that
€

Vt €]0,6],u(t) < a — 3

Vt e [1—6,1],a(t) >ﬁ+%.

For n > %,
0 T
up(z) < /x_% np(n(z —t))adt + /0 np(n(x — t))adt.

<«

Hence, u,(07) = lim up(z) < a.
z—0t
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Let us take now z =1 — y, with y < g,

1—
w(t=p)= [ " npla(1—y - 0)ato)

Y+u
= / np(n(t —y))u(l — 1) dt.
y

For ng > %, we have Vt € [y,y + %], a(l—1t) > .

Then up(l —y) > f and u,(17) = lim uy(l —y) > B 0
y—0+

Let us assume now that v € BV(]0,1[),«' < 1, and »(0") = a or u(17) = 3. We want to
generalize the result above to this assumption.

Let u be in BV (]0,1[),v < 1, u(0") = a and u(17) = 3. Let us introduce ¢ > 0 and
d > 0 such that

[w(0™) —al +u((1-6)7) = Bl <, (28)

‘ [+ [ e

<€ (29)

We can then define

[« on |— o0, 0[
%< on|0,4]
Ue =4 U on |§,1 —4[

ﬂ—i-% on [1 —46,1]

L O on |1, 4+o0l.

Then ue — @ in BV strongly.
Furthermore,

[ty [w

+ | oo(—ue(1= 0)7) + (8+ 5))|

€+ 4 |Wsol(e)]
(4C + 1)e.

IN A
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We obtain then the convergence of
1
W) + Ve (ue0) ~ @) + Vool -u17) 4 6) 0
0

1
/0 W () + Voo (u(0™) — @) + Woo(—u(17) + B).

We are then lead to conditions of the Lemima 6.
If only one of the boundary conditions holds, we proceed in a similar way, adapting the
construction of .. O

Let us prove now that
Inf(PR) = Inf (Pg). (30)

We have
Inf(PY) < Inf(PR).

In order to prove the reverse inequality, let us introduce (uy),>0 as a sequence of admissible
functions for Inf(Pg), such that

1
T () = /0 () + oo (1 (0F) — @) + Tao(—ty(17) + )

< Inf(Pg) +n

(31)

According to Proposition 4.5, there exists a sequence (v,) of W11(]0, 1[) such that Vn > 0,
v7'7 S 1a qu(0+) S «, U’O(]'_) Z ﬂa and

[T (vg) = J(uy)| <.

Then
J(vy) < Inf (PE) + 21,

i.e.
Inf(PY) < Inf(PE) + 2n Vi > 0,

which is equivalent to (30).

Fifth Step:
This steps consists in establishing the equalities:

Inf(PY) = Inf(Pg) = Inf(P))
Thanks to step 4, it is sufficient to prove that
Inf(Pg) = Inf(Py) (32)

holds. The inequality
Inf(PY') < Inf(P) (33)
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is immediate. For the reverse one, let u in W11(]0,1[) be such that v’ < 1, u(0%) < «
and u(17) > 3, and u, be defined as

o+ nx(u(%) - a) if x € 0, %]
up = u(x) ifz el 1-1]

B+nl—z)(u(l-1)—p) ifze[l-11]

n

We get u,(0) = a and uy (1) = . Furthermore, n being large enough, u), < 1. Indeed, n
being large enough, u(%) — a < 0 —(since u(0") < a)-, and u(1 — %) — 3 > 0. Thus, uy,
is an admissible displacement for (Py).

The computation of [ W(uj,) gives

1

1 1-1
/0 U(ul) = SU(n(u(E) - ) + / () + 20 (=nu(l — 1) - B)),

n n n n
1
which is converging to Woo (u(01) — ) + / U(u) + Uoo (B —u(l17).
0
On the other hand, the assumptions on f ensure that A [ fu, — A [ fu.

Now, if only one of the boundary conditions holds, the construction of u,, must be slightly
modified.
For example, if u(0%) = o and u(17) > £,

{u on[O,l—%]
"B+l —2) w1 —=1)—8) ifze[l—1L1).

n n

Let then (u;) be a minimizing sequence of Inf (P%V ), such that
J(up) < Inf(PF) + .

Then there exists v, in W11(]0, 1[) such that vy <1, vy(0) = @, vy(1) = B, and
| (un) = J ()| < ;

thus J(vy) < Inf(PF') + 2n, for all n > 0. Finally, from (33), we get (32).

Sixth Step:
Using (14), (15) and (30), we get the following inequalities:

Inf(Py) < liminf(Py,) < Sup(Py) < Inf(Py). (34)

which induces
Inf(Py) = Sup(Py). (35)
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4. Optimization of the Stress Problem

This section is devoted to the study of the solutions of the stress problem, from which we
will derive solutions of the displacement problem, under particular conditions.
First, we will establish some useful relations.

4.1. Expression of ¥*

Proposition 2.5 of [17] is equivalent to Krasnosels’kii theorem and permits to give an
expression of U*. We can notice that ¢g* is finite and continuous on [—v, +oo[ and that g*
has an upper bound on its domain.

Let us compute g* for the standart examples studied in [2].

1. The rigid-plastic model.
Here ¥(X) = |X|, and

+o00 X >1
9(X) = ,
|X| if X <1.
Then
Y-1 ifY>1
gY)=<0 if Y| <1

+00 elsewhere.

2. The strictly convex function.
U(X) =+1+ X2 We have then

+00 ifX>1
9(X) =
V1I+X?2 if X <I1.

Then
. 1
Y — 2 ify > 7
g(¥)=1-vVI-Y? itYe[-1, 7]
+o00 elsewhere.

3. The elasto-plastic model.

X2 X[ <1
U(X) =

|X| -5 elsewhere.

Thus
+o0 ifX>1

g(X) = HXP x| <1

-X — % elsewhere.
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Then
+00 ifYy <—-1

gY)={3Y* if|y|<1
Y — % elsewhere.
4.2. The Extremality Relation

Let (u, o) be solution of (Inf(Py), Sup(Py)).

Proposition 4.1. The three following assertions hold and are equivalent

V' () +g*(c(t) — o) u'(t) =0 ae on[0,1]. (36)
u'(t) € 0g*(a(t)) ae on [0, 1]. (37)
o(t) € 9g(u'(t)) ae on|0,1]. (38)

Proof. From the Inf-Sup equality, we obtain that

1 1 1
/0 g(u! (1)) dt — A /0 F(0) ult) dt = Bo(1) - ao(0) - /0 g*(o(t)) dt.

Since o € Sgq(A), o’ (t) = =\ f(t) and Vt € [0, 1],

1 1
/ (90 (8)) + ¢ (o(1))) dt + / o/ (1) u(t) dt = Bo(1) — ac(0).
0 0

Hence, intregrating by parts,

1 1
/ o (t)ult) dt = — / o ()i (1) dt + Bo (1) — ao(0).
0 0

Therefore, we obtain

1
/0 [9(d' (1)) + g7 (0 (1)) — o ()u'(t)] dt =0 (39)
Using the definition of g*,
g9*(o(t)) = Supxer{Xo(t) — g(X)}
> u'(t)o(t) — g(u' (1))

We derive from this inequality that g(u/(t)) + ¢*(o(t)) — o(¢)u/(¢) has a constant sign for
almost all ¢ in [0, 1]. Therefore, (39) implies that

g(u'(t)) + g"(o(t)) — o (t)u'(t) = 0,

for almost every t in [0, 1].

The three assertions are equivalent since g is convex, lower semi-continuous and proper
(see [10]). O



272 T.Astruc / Ezistence of regular solutions for a perfect-plastic problem
4.3. Limit Loads

The main difference between this problem and the non-constrained problem is that here,
there is no finite limit load. In other words, for every A in R, there exists indeed an
admissible stress for (P5), i.e. a stress which is in Sgq()) and verifies o > —v.

— A > 0. Let o1 be defined as
(@) =-v=x [ fo
b

where b € By = {z € [0, 1]. /iﬂ f(t) dt is maximum }. (Bps # () Then
0

vz € [0, 1], / F(t)dt < 0. (40)
b

— A <0. Let o9 be defined as
X
o9(x) = —v — )\/ f(t)dt
a

where a € By, = {z € [0, 1]/ f(t) dt is minimum}.
0

We can easily check that in both cases 0 € S,4(\) and 0 > —v a.e, and since o is bounded,

/g*(o) < 00.

4.4. Stress problem Optimization

As we did in [2], we now take o)(b) as a new parameter that we denote by X. Then

t
oxX,t) =X — )\/ f(s)ds. (41)
b
We introduce the functional
1
GA(X) = /0 g (0r(X, 1)) dt + o(X, 1)8 - o1 (X, 0)a (42)
which is defined and continuous on Dg, = [—v, +-00[. Maximizing the functional in (F5)

is equivalent to look for the “critical” points of G.

Proposition 4.2. G s right and left differentiable on Dg, and
1 !/
i) =B - [ g (43)

1
Gh,(X) = — o - /0 6" (oa(X, 1)) dt. (44)
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Proof. g having the same properties than ¥, this proof is identical to the corresponding
one in [2]. O
4.4.1. Behaviour at infinity of G /(X)

Let X > W/(1). Then V¢ € [0,1], ox(X,t) > ¥/(1), and g*(or(X,t)) = 1. Finally, we
obtain

Gh\y(X)=B—-a—1. (45)
We must distinguish three cases:
1. B—a>1:
G* is non decreasing, and Sup(Py) = +o0. In fact, there are no admissible displace-
ments

{u e WH(10,1))/%0=2 and o' < 1} )

when u(1) — u(0) > 1.
2. f—a=1:
It is easy to see that only u defined by

u(t) =a+ (8 —a)t

is admissible and
1 1
Inf(Py) = /0 W+ (B — a)t)dt — )\/0 FO) (o + (8= a)t) dt.
3. f—a<l: (46)

We have then

lim G4 (X)<0 47
X—1>I£oo )\,g( ) ( )

4.4.2. Behaviour near —v of G} ;(X)

We must distinguish three cases according to the sign of lim | G 4(X).
X—=—v ’

) lim Gy y(X)>0 (48)

Proposition 4.3. Under (48), Inf(Py) has at least one reqular solution.

Proof. We will need the following lemma:

Lemma 4.4. Let f be a continuous function on [a,+o00[, everywhere right and left
differentiable on |a,+ool, such that:

fj et f are non-decreasing,
lim fi(x) <0,
z—at

lim fg(x) > 0.

r—r+00
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Then there ezists xg €]a, +oo[ such that

{ fo(z0) <0
fizo) > 0.

Proof. This lemma is a generalized version of Lemma 2.3 from [2]. O

(47)—(48) being verified, we can apply Lemma 4.4, and find Xy in |— v, +o0[, such that
%,¢(X0) < 0and G) 4(Xo) > 0. Then G achieves its upperbound on Xj.

Introducing (a,b) € (R*)? such that

a+b=1
{ aGl)\,g(Xo) + bGl)\,d(Xo) =0,

we define
v: [0,1] = R

t = agy(oA(Xo,1) + by (0a(Xo,1)).
One can then verify that

v(t) € g™ (ox(Xo,t)), Vtelo,1], (49)
v e LY(o,1]). (50)

We define
u: [0,1] - R

t
t r—)a—i—/ v(s) ds.
0

u e Wh(jo, 1)), (51)

and verify the boundary conditions since

! / ! !
u(l) = a—i—a/o g; (oA (Xo, 1)) dt+b/0 g; (oA (X0, 1)) dt
= aG) ¢ (Xo) + bG) 4(Xo) + (a +b) B
— 8.

Moreover, Vz € [—v, +o0], g;' < 1land g5 < 1. Thus

vt e [0,1], /(t) =wv(t) < 1. (52)

Hence u is an admissible displacement and u and oy (X, .) verify the extremality relation
(49). Finally, u is a solution of Inf(Py). O
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II) lim Gl)\ 4JX)=0 (53)

Proposition 4.5. Under (53), Inf(P\) has at least one regular solution.

Proof. The proof needs the following lemma:

Lemma 4.6.
1

1
lim | g5 (on(X, 1)) dt = /0 g3 (oA(~v, 1)) dt. (54)

z—=—vt Jo

1
Proof. From (52), we get lim+ 95/ (ox(X,t))dt = B — a. Moreover, the func-
0

Tr——v
tion g;'(oA(X ,t)) being monotonous with respect to X, one can apply the Lebesgue’s
monotonous convergence Theorem from which derives the result. O

Under the assumption (53), G is maximized in Xy = —v.
Let o
v : [0,1]] > R

t lim+g§I(0A(X;t)),

T——rv

and
v [0,1] = R

1
t i—>a+/ v(s) ds.
0

We can easily obtain that v is an admissible displacement and (u,05(—v,.)) verify the

extremality relation. O
) lim Gy 4(X)=—€;e>0 (55)
X——vt ’

Proposition 4.7. Assume (55) and let Bys be defined by
X
By = {x € |0, 1],// f(t)dt is mazimum }.
0
a) If Mes(By) =0, Inf(Py) has at least one regular solution if and only if

1
/ Inf{Bg* (ox(~v, 1)) di} < f— a
’ (56)

1
< /0 Sup{dg* (ox(—, 1)) dt}.

b) If Mes(Byr) # 0, Inf(Py) has at least one regular solution if and only if Wq is linear.
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Proof. This proof is similar to the proof of Proposition 2.5 in [2]. Let us recall the steps
that we established for it.
Let (X;);er be the points of discontinuity of ¢*', and T;, T, b, b, and ); be defined as:

IR

Ty ={t€[0,1]/or(-v,t) = X3}, T = U T;, by = g¥'(Xs), b = g3/ (Xa)
el 9
and \; = Mes(T;).
(47)-(46) et (55) ensure that G achieves its upperbound in Xy = —
a) Mes(By) =0
ve € [0,1\{Bx UT}, lim g3 (ox(X,1)) = g5 (or(-=1,1))
X——vt
We have then

gy (oa(-v,t))dt =B —a+e— ) Nib.

1€l

/[0:1]\{BM uT}

If u is solution of Inf(Py), from (47) we get

Vit € T;, by <u(t) < b
vt € [0, 1\{Byn UT}, (1) = g (oa(=1,1) = g (or (=1, 1))
and
1
ﬂ—oz—i—e—z/\i(bf—bi_)ﬁfu'(t)dtgﬂ—oz-l-e (57)
iel 0
> b —b) <e (58)
i€l

We can easily verify this is a necessary and sufficient condition, by introducing
v:[0,1]] >R
g (oa(=v,1)  Vte [0, I\{Bx UT}
t o= Q ubf + (1—pb; VEeT,
0 Vt € By

where = ———,
Do -b))
iel
and
u: [0,1] > R

t
t l—>a+/ v(s)ds
0

Since, for every t € T;, Inf{0g*(or(—v,t)) = b; , Sup{9g*(or(-v,t)) = b;’,

1 1
(57) == /0 Inf{0g"(oa(-v,1)) dt} <3 —a < /0 Sup{0g*(oA(—v, 1)) dt}.



T.Astruc / Ezistence of regular solutions for a perfect-plastic problem 277

b) Mes(Byr) #0
If Wy is strictly convex, dg*(—v) = {—oo}. There are no regular solution to Inf(Py).
If Uy is linear, 0g*(—v) = [—00, ag]. We have already seen that

m g (on(X, 1) = g5/ (oa(=w1)). (59)

We then distinguish two cases:

a) Y N(bF—b7)>e

i€l
Let 4 = ————, v be defined by
>N —b7)
iel
v :[0,1] >R
g (ox(-v,t)  Vte[0,1\{ByUT}
t o= pbt 4+ (1—p)b; VteT,
ag Vt € By,
and
v [0,1] > R

t
t r—>a+/ v(s) ds.
0

Then w is a regular solution of Inf(Py).

B) D NlbF—b7) <e

el
We take =€ — Z Ai(bf —b7). Let
el
v : [0,1]] > R
g (ox(—v,t))  Vte[0,1\{By UT}
t = b;r vVt € T;

ag — —LMeas(BM) Vt € By,

and

v : [0,1] 2R
t
t »—)a-l—/v(s)ds
0

is a solution of Inf(Py).

Of course, we have analogous results if A is negative.
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4.5. The case A =0

Like in [2], the problem with no load play a role which is slightly different. It will ensure
that the set of regular loads will be non-empty.

1
Inf(P))= Inf  {[ U((t))dt}. (60)
uew L1 (J0,1]) 0
u(o)=a
u(1)=p
u/<1

Sup(Fy) =)§;1§V {(8—0a)X —g"(X)}. (61)

Proposition 4.8. Inf(Py) has at least one regular solution.

Proof. We argue as in proof of Proposition 3.1 in [2]. Let us denote by Go(X) =
(B —a) X = g*(X).
Dg, = [-v, +o0]

(G is continuous, everywhere right and left differentiable and
!
06 =8—a—g5(X)

where § denotes g or d. Moreover lim Gf]g(X) = 3 — a — 1. We obtain the natural
X—+4o00 ’

condition that 8 — a must be less than 1.
I) lim Gj 4(X) > 0.
z——vt 7

Arguing as we did in case I and II, we find that there exists a regular solution for
Inf (Py).

1) lim Gj4(X)<O0. (62)
——vt

X
Then G is maximized in —v. ¥y can not be strictly convex, else the sub-differential

of g* in —v would be reduced to {—oo}. It is thus linear, and lim . 95/ (X) = aq.
X——v

We get:
(62) <= B —-—a<a

We can see that u(t) = a+ (8 — a) t is a regular solution of Inf(P). O

5. Regular Limit Loads

In this section, we establish the link between the previous conditions of existence of a
regular solution and A.
Let us suppose that  — a < 1 and denote

Af ={) € RT/(48) or (53) hold } U {0}
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Theorem 5.1. 3(),,),) € (R1)?/

1. VA €] =X, A, Inf(Py) have at least one regular solution.
2. Ag={Ag]=)., A\[/ Inf(Py) have at least one regular solution.} is at most countable.

Remark 5.2.

1. If B —a> 1, Inf(Py) has no regular solution.

2. The countability of A is a sharp condition; it is possible to construct some example,
when 1 is not strictly convex, where A4 is not finite.

Lemma 5.3. Al is a segment of R*.
Proof. 0€ Af. Let A >0, A € A} and \; be in |0, A[.
lim G 4(X) >0,

X——vt

1
where G4 y(X) = f — o — /0 0 (on(X, 1)) dt (cf. (43)).

t

Moreover oy (X,t) = X — )\/ f(s)ds. Using the monotony of g%’ o oy, we claim, pro-
b

ceeding like in [2], that

Thus A; belongs to A}. 0

Proof. The proof of the Theorem 5.1 is exactly the same as those of [2]. O

We can notice that Al is not always bounded in IR. Let us consider the case of the rigid-
plastic bar (cf. section 2.1), under a force which has the value 1 on [0, 3] and 0 elsewhere,
with boundary conditions such that 3 < «.

We have then By =[5, 1] and B, = {0}.

The stress has the following expression

oy(X 1) = X — )\/l LF(s) ds

{X+/\(%—t) if ¢ € [0, 3]
X elsewhere.

We have to dinstinguish two cases

1. A<4
Then Vi, ox(—1,t) < 1 and

lim G} 4(X) =5—a<0.

X——1+

Since meas(Bjys) # 0, Proposition 4.7 ensures the existence of a regular solution to
(Py)-
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2. A>4
We have this time
Aa(—1) :ﬂ—a—/o dt
1 2

which ends to the same conclusion.
We find, in the end, on this example that A;" = [0, +oc].
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