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We consider the functional
∫

Ω
[h(γK(∇u(x))) + u(x)] dx u(x) ∈ W 1,1

0 (Ω)

where γK is the gauge function of a convex set K and h : [0,∞[ → [0,∞] is a possibly non convex
function. In the case K ⊂ R2 is a closed polytope and Ω ⊂ R2 is a bounded convex set we provide a
sufficient condition for the existence of the minimum.
Besides, as a corollary, we give conditions on Ω ⊂ R2 and f : R2 → [0,∞] that are sufficient to the
existence of a minimizer of

∫

Ω
[f(∇u(x)) + u(x)] dx u(x) ∈ W 1,1

0 (Ω).

1. Introduction

Cellina has recently proved an existence result for functionals of the type

∫

Ω

[h(‖∇u(x)‖) + u(x)] dx u(x) ∈ W 1,1
0 (Ω)

with no convexity assumptions (see [4]) on the function h. The first paper dealing with
functionals of this type is a paper by Kawohl, Stara and Wittum [16] on a problem of
shape optimization. They consider the case in which Ω is a two dimensional square and
they prove that the minimum problem has no solutions.

It is well known that, when the convexity is not assumed, the limit of a minimizing
sequence is not always a solution of the minimum problem. Then, in many cases, to
obtain existence results one has to provide a construction yielding the solution.

Several authors [2], [6], [7], [8], [18], used this approach to study functionals depending only
on the gradient. The technique they developed is the following: they solve the problem
locally and, then, using covering arguments, they build a solution of the minimum problem.
Simple examples show that this technique is not useful when the function depends both
on ∇u and on u.
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The problem considered in [4] is the minimization problem stated above, where h :
[0,∞[ → [0,∞] is a lower semicontinuous function and Ω is any bounded open con-
vex set of R2 with piecewise smooth boundary. The result presented in [4] states that if
the set Ω is not too large with respect to a property of the function h, a solution to the
problem does exist. In this case the solution is built without passing through a covering
argument.

In this paper we make a first attempt to consider the more general functional
∫

Ω

[h(γK(∇u(x))) + u(x)] dx u(x) ∈ W 1,1
0 (Ω)

where γK is the gauge function of a convex set K.

We obtain an existence result in the case K ⊂ R2 is a polytope and Ω ⊂ R2 is not too
large with respect to a property that involves both the function h and the set K. This
property is of the same type of the property presented in [4]. We want to underline that,
due to the hypothesis on K, no regularity assumption is required on the boundary of Ω.

Besides, as a Corollary, we present an analogous existence result for the functional
∫

Ω

[f(∇u(x)) + u(x)]dx u(x) ∈ W 1,1
0 (Ω)

where f : R2 → [0,+∞] is a lower semicontinuous function that vanishes on the boundary
of a polytope K.

2. Preliminaries, notations and basic assumptions

Given a set A we denote by C(A) its complement, by int(A) its interior, by A its closure,
and by ∂A its boundary. Given a convex set C ⊂ Rn, we denote by C◦ the polar set of
C, by extrC the set of the extremal points of C, by ri(C) the relative interior of C. The
gauge function of C will be denoted by γC(·).
For every locally lipschitz convex function f : Rn → R, let ∂f(x) be the subgradient of f
at x.

Following [1] and [9], given a point x ∈ Rn we set dC(x) = inf { |x − y| : y ∈ C }. We
define the tangent cone to C at x as

TC(x) = { v ∈ Rn : lim
t→0+

dC(x+ tv)− dC(x)

t
= 0 } (2.1)

and the normal cone to C at x as

NC(x) = { y ∈ Rn : 〈y, v〉 ≤ 0 ∀ v ∈ TC(x) }. (2.2)

The sets TC(x) and NC(x) are closed convex cones in Rn and TC(x) ∩ NC(x) = {0}. In
addition, for C is convex, NC(x) coincides with the cone of normals to C at x in the sense
of convex analysis, namely

NC(x) = { ξ ∈ Rn : 〈y − x, ξ〉 ≤ 0 ∀y ∈ C } (2.3)

(see [9, proposition 2.4.4]).
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We consider the problem

minimize

∫

Ω

[h(γK(∇u(x))) + u(x)] dx u(x) ∈ W 1,1
0 (Ω). (P)

Let us suppose that Ω is any bounded, open convex set contained in R2, K is a closed
polytope of R2 such that 0 ∈ int(K) and, according to the notations introduced above,

γK : R2 → R is the gauge function associated to K.

As in [4] the map h : [0,+∞) → [0,+∞] is a non–negative lower semicontinuous extended
valued function with minimum value 0. Moreover we suppose that sup{r ≥ 0 : h(r) = 0}
is finite and we denote it by ρ. Let A be the set of supporting linear functions at ρ, i.e.
A = {a ∈ R : h(s) ≥ a(s− ρ), for every s ≥ 0}. We recall that 0 ∈ A and let Λ = supA.

We define
v(x) = inf

y∈∂Ω
sup

x∗∈−K
〈x− y, x∗〉 (2.4)

and the width of Ω w.r.t. K to be W(Ω,K) = supx∈Ω v(x).

By the hypothesis on K, the set extrK contains finitely many vectors. We fix one of
them and we denote it by k1; we denote the others by ki, assuming that the index i
is increasing when we move counter-clockwise from k1. Then extrK = {k1, . . . , kn}.
To simplify the notations, we define kn+1 = k1. For i ∈ {1, . . . , n} let li be the set
{k ∈ ∂K : ∃λ ∈ [0, 1] such that k = λki + (1− λ)ki+1}.
The Corollary 19.2.2 [20] imply that extrK◦ contains exactly n vectors. Applying Corol-
lary 23.5.3 [20] we can check that, for every x belonging to the interior of the convex cone
generated by ki and ki+1, ∂γK(x) contains exactly one vector, we denote it by ξi, and
ξi ∈ extrK◦. With respect to the notations introduced we have that ξn = ∂γK(x) for ev-
ery x in the interior of the convex cone generated by kn and k1. As before, we set ξn+1 = ξ1.
For i ∈ {1, . . . , n} let ζi be the set {ξ ∈ ∂K◦ : ∃λ ∈ [0, 1] such that ξ = λξi+(1−λ)ξi+1}.
Using again Corollary 23.5.3 [20] we have that for every x = µki, µ > 0, ∂γK(x) = ζi−1.

We list some properties that will be useful in the following.

(a) NK◦(ξi) is the closed convex cone generated by ki and ki+1;

(b) TK◦(ξi) is the closed convex cone generated by (ξi−1 − ξi) and (ξi+1 − ξi);

(c) for every j ∈ {1, . . . , n}, (ξj − ξi) ∈ TK◦(ξi);

(d) for every ξ ∈ ri(ζj), NK◦(ξ) = {λkj+1;λ ≥ 0};
(e) for every ξ ∈ ri(ζj), TK◦(ξ) = {x ∈ R2 : 〈kj+1, x〉 ≤ 0};
(f) for every ξ ∈ ri(ζj), for every i ∈ {1, . . . , n}, (ξi − ξ) ∈ TK◦(ξ);

(g) for every i ∈ {1, . . . , n}, 〈ki, ξi−1〉 = 〈ki, ξi〉 > 0.

3. Preliminary results

In this section we study the properties of the function v(x) defined by (2.4). These
properties will be useful to prove the existence theorem of the following section.

In [18] it has been proved that the function defined in (2.4) belongs to the Sobolev space

W 1,∞
0 (Ω,R) and satisfies ∇v(x) ∈ ∂(−K) for almost every x ∈ Ω.

Here we remark that, for every convex set C the function supx∗∈C〈·, x∗〉, defined in Rn,
is the conjugate of the indicator function of C. This function is also said the support
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function of the set C. When C is a closed convex set containing the origin, Theorem 14.5
[20] says that this function is the gauge function of C◦, then supx∗∈C〈·, x∗〉 = γC◦(·) and
we have that {x ∈ Rn : γC◦(x) ≤ ρ} = ρC◦.

From now on, we suppose that K ⊂ R2 is a closed polytope, 0 ∈ intK, and that Ω ⊂ R2

is an open bounded convex set.

Lemma 3.1. Let x be a point in Ω such that v(x) = c. Then x+ cK◦ ⊂ Ω.
Moreover there exist y ∈ ∂Ω and ξi ∈ extrK◦ such that γ−K(x − y) = v(x) = c and
x = y − cξi.

Proof. The boundedness assumption on K implies that 0 ∈ int(−K◦) (Corollary 14.5.1
[20]), and then γ−K◦(·) is a convex function finite on R2. For this reason we can say
that γ−K◦(·) is continuous and that there exists y ∈ ∂Ω such that γ−K◦(x − y) =
infz∈∂Ω γ−K◦(x − z) = c. It is equivalent to say that, for any z ∈ ∂Ω, x − z ∈ C{y ∈
Rn : γ−K◦(y) < c} and there exists y ∈ ∂Ω such that x − y ∈ ∂{z ∈ Rn : γ−K(z) ≤ c},
i.e. y ∈ ∂(x+ cK◦) and x+ cK◦ ⊂ Ω. Now, arguing by contradiction, let us suppose that
for any y ∈ ∂Ω such that γ−K(x− y) = v(x) = c we have that y /∈ extr(x+ cK◦). If this
is the case we have that there exist z1, z2 ∈ extr(x + cK◦) ⊂ Ω and λ ∈ (0, 1) such that
y = λz1 + (1− λ)z2. By the convexity of Ω, we get y ∈ Ω, that is a contradiction.

Lemma 3.2. For every c > 0, we have that {v(x) ≥ c} = Ω ∩ (∩i=1,...,n(Ω− cξi)).

Proof. When x ∈ Ω ∩ (∩i=1,...,n(Ω − cξi)) we have that, for every i ∈ {1, . . . , n}, there
exists yi ∈ Ω such that x = yi − cξi. Remarking that co{x+ cξi; i = 1, . . . , n} = x+ cK◦,

we have that x+ cK◦ ⊂ Ω and then minz∈∂Ω γ−K◦(x− z) = v(x) ≥ c.

On the other hand if we suppose that v(x) ≥ c we have that γ−K◦(x − z) ≥ c for every

z ∈ ∂Ω and then x + cK◦ ⊂ Ω. If we choose yi = x + cξi ∈ extr(x + cK◦) we get that

x ∈ Ω ∩ (∩i=1,...,n(Ω− cξi)).

Let us define the following subsets of ∂Ω:

Ii = {y ∈ ∂Ω : ki ∈ NΩ(y)}
Ji = {y ∈ ∂Ω \ (∪j=1,...,nIj) : ∃λ ∈ (0, 1) such that λki + (1− λ)ki+1 ∈ NΩ(y)}

Definition 3.3. We fix y and z on ∂Ω, y 6= z. ∂Ω is divided in two arcs. We say that
x 6= y, x 6= z is between y and z, and we write y ≺ x ≺ z, if x belongs to the arc that can
be covered moving counter-clockwise from y to z.

Proposition 3.4. The following properties hold true.

(i) For every k ∈ ∂K there exists y ∈ ∂Ω such that k ∈ NΩ(y).

(ii) ∪i=1,...,n(Ii ∪ Ji) = ∂Ω.

(iii) For every i ∈ {1, . . . , n} the set Ii is nonempty; moreover either Ii containes exactly
one point or it is a line segment.

(iv) When Ii ∩ Ii+1 6= ∅, then Ji = ∅.
(v) When Ii ∩ Ii+1 = ∅, we have Ji = {x ∈ ∂Ω : ∀y ∈ Ii,∀z ∈ Ii+1 it is y ≺ x ≺ z}.
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Proof. (i) Ω is a bounded open set, then for any k ∈ ∂K there exists a real number β
such that 〈k, x〉 < β for every x ∈ Ω. Let β∗ be the infimum of the set {β ∈ R : 〈k, x〉 <
β for every x ∈ Ω}. The halfspace Hβ∗ = {a ∈ Rn : 〈k, a〉 > β∗} is a convex open set such
that Hβ∗ ∩ Ω = ∅. Then the hyperplane ∂Hβ∗{a ∈ Rn : 〈k, a〉 = β∗} separates properly
Hβ∗ and Ω. Moreover we have that there exists y ∈ ∂Ω such that 〈k, y〉 = β∗, otherwise
we can get a contradiction with the definition of β∗. Hence k ∈ NΩ(y).

(ii) It is sufficient to remark that, by the assumption 0 ∈ intK, for every v ∈ R2 \ {0}
there exist λv > 0 and k ∈ ∂K such that λvk = v.

(iii) Ii is nonempty by virtue of (i). Let us suppose that x1 and x2 are two different
points in Ii. For every λ ∈ [0, 1] we have

〈x− (λx1 + (1− λ)x2), ki〉 = λ〈x− x1, ki〉+ (1− λ)〈x− x2, ki〉
≤ max{〈x− xj, ki〉, j = 1, 2}.

We remark that, by the definition of normal cone, the last term is less or equal to zero for
every x ∈ Ω, hence ki ∈ NΩ(λx1+(1−λ)x2). Recalling that, for every y ∈ Ω, NΩ(y) = {0}
we get that, for every λ ∈ (0, 1), λx1 + (1− λ)x2 ∈ ∂Ω.

(iv) As a trivial consequence of the part (iii) of this proposition we have that whenever
Ii∩ Ii+1 6= ∅ there exists only one point y ∈ Ii∩ Ii+1. By the convexity of the cone NΩ(y),
for every λ ∈ (0, 1), we have λki+(1−λ)ki+1 ∈ NΩ(y). Let λ be in (0, 1) and let us suppose
that there exists a point z 6= y, z ∈ ∂Ω, such that λki + (1− λ)ki+1 ∈ NΩ(z). Arguing as
above we get that the line segment joining y and z is contained in ∂Ω. Moreover we have
that

0 = 〈λki + (1− λ)ki+1, z − y〉 = λ〈ki, z − y〉+ (1− λ)〈ki+1, z − y〉. (3.1)

The last term in (3.1) is less or equal to zero because both ki and ki+1 are in NΩ(y). For
the same reason if we have λ〈ki, z − y〉 + (1 − λ)〈ki+1, z − y〉 = 0 we get 〈ki, z − y〉 =
〈ki+1, z− y〉 = 0 and then there exists µ ∈ R \ {0} such that ki = µki+1. This contradicts
the fact that 0 ∈ intK.

(v) We fix y ∈ Ii and z ∈ Ii+1. As a first case, we suppose that {x ∈ ∂Ω : ∀y ∈ Ii,∀z ∈
Ii+1 it is y ≺ x ≺ z} = {λy + (1 − λ)z;λ ∈ (0, 1)}. It is easy to see that there exists
k ∈ ∂K such that for every x in the set considered, NΩ(x) = {λk;λ ≥ 0}, k ∈ NΩ(y),
k ∈ NΩ(z) and the cone NΩ(y) ∪ NΩ(z) contains the convex cone generated by ki and
ki+1. Then x ∈ Ji. In the other case we can proceed as follows. The line joining y and
z divides R2 in two halfplanes. Let H be the one that does not contain x. We define

C = co((H ∩ Ω) ∪ x). It is C ⊂ Ω and x ∈ C ∩ Ω It follows immediately by (2.3) that
NΩ(x) ⊂ NC(x). Moreover, if µ, ν are the vectors in ∂K that generate NC(x), it is not
difficult to check that µ ∈ NC(y) and ν ∈ NC(z), and that µ and ν are contained in
the convex cone generated by ki and ki+1. It remains only to prove that every x ∈ Ji is
between y and z for every y ∈ Ii and z ∈ Ii+1. Repeating the same arguments used above,
we see that it can not happen that there exists j ∈ {1, . . . , n}, j 6= i, such that y ≺ x ≺ z
for y ∈ Ij and z ∈ Ij+1.

Definition 3.5. For every x ∈ Ω we define the following set:

Π(x) = {y ∈ ∂Ω : if v(x) = c it is y ∈ extr(x+ cK◦)}.
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Remark 3.6. Thanks to Lemma 3.1 and to the definition of the function v(·), Π(x) is
well defined for every x ∈ Ω.

Lemma 3.7. Let x ∈ Ω be such that v(x) = c and let y ∈ ∂Ω be such that y ∈ Π(x) and
y = x− cξi. Then there exists λ ∈ [0, 1] such that λki + (1− λ)ki+1 ∈ NΩ(y).

Proof. By Lemma 3.1 we have that x+ cK◦ ⊂ Ω and that y = x+ cξi ∈ (x+ cK◦) ∩Ω.
Then NΩ(y) ⊂ Nx+cK◦(x+ cξi) = NK◦(ξi) and, by (a) of Section 2, we get the proof.

Proposition 3.8. The following properties hold for every i ∈ {1, . . . , n} such that Ji is
nonempty and for every j ∈ {1, . . . , n} for which Ij has nonempty relative interior.

(i) Let x ∈ Ω and y ∈ Ji be such that v(x) = c, y ∈ Π(x) and x = y − cξi. Then, for
every b ∈ (0, c), z = y − bξi is such that Π(z) = y.

(ii) Let ξ be an arbitrarily fixed vector in ζj−1, let x ∈ Ω and y ∈ ri(Ij) be such that
v(x) = c, x = y − cξ and {y − c(ξ − ξj−1), y − c(ξ − ξj)} ⊂ Π(x). Then, for every
b ∈ (0, c), z = y − bξ is such that Π(z) = {y − b(ξ − ξj−1), y − b(ξ − ξj)}.

(iii) For every y ∈ Ji there exists c > 0 such that Π(y − cξi) = y.

(iv) For every y ∈ ri(Ij) and for every ξ ∈ ζj−1 there exists c > 0 such that Π(y − cξ) =
{y − c(ξ − ξj−1), y − c(ξ − ξj)}.

Moreover, for every i ∈ {1, . . . , n} and for every y ∈ Ii \ ri(Ii),
(v) there exists x ∈ Ω, such that y ∈ Π(x) if and only if v(x) = c and there exist

z ∈ Ii and ξ ∈ ζi−1 such that z 6= y, x = z − cξ and either y = z + c(ξi−1 − ξ) or
y = z + c(ξi − ξ).

Proof. (i) We recall that by the hypothesys on x we have that x+cK◦ ⊂ Ω. Remarking
that extr(x+ cK◦) = {y− c(ξi − ξj); j = 1, . . . , n} we have that, for every j ∈ {1, . . . , n},
y − c(ξi − ξj) ∈ Ω. By (v) of Proposition 3.4, we have that NΩ(y) is contained in
int(NK◦(ξi)) and then int(TΩ(y)) contains TK◦(ξi). For this reason and also by property
(c) stated in Section 2, we can say that, for every λ ∈ (0, 1) and for every j 6= i, λy+(1−
λ)(y − c(ξi − ξj)) ∈ Ω. Now, choosing λ ∈ (0, 1) such that b = (1− λ)c, we have
y − bξi = λy + (1− λ)(y − cξi),
extr(y − bξi + bK◦) = {y − b(ξi − ξj); j = 1, . . . , n},
y − b(ξi − ξj) = λy + (1− λ)(y − c(ξi − ξj)) ∈ Ω for every j 6= i,
and this concludes the proof.

(ii) In this case we observe that
extr(y − cξ + cK◦) = {y − c(ξ − ξi); i = 1, . . . , n},
y − c(ξ − ξj) and y − c(ξ − ξj+1) belong to Ij;

y − c(ξ − ξi) ∈ Ω \ Ii for i /∈ {j, j + 1};
Then, arguing as above, keeping in mind the property (e) of Section 2, for every b ∈ (0, c),
we have that y − b(ξ − ξi) ∈ Ω for i /∈ {j, j + 1} and y − b(ξ − ξi) ∈ Ii, for i ∈ {j, j + 1}.
(iii) As observed in (i), for every y ∈ Ji, int(TΩ(y)) containes TK◦(ξi). Then, by (c) of
Section 2, by the convexity and the boudedness of Ω we can define, for every j ∈ {1, . . . , n},
λj =

1
2
sup{λ ≥ 0 : y − λ(ξi − ξj) ∈ Ω}. Now, choosing c = min{λj; j = 1, . . . , n} we have

extr(y − cξi + cK◦) \ {y} = {y − c(ξi − ξj); j 6= i} ⊂ Ω.
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(iv) Let us consider first the case in which ξ ∈ ri(ζj). By Lemma 3.1, we have NΩ(y) =

NK◦(ξ) and TΩ(y) = TK◦(ξ). Now, we define, for every i ∈ {1, . . . , n}, λi =
1
2
sup{λ ≥ 0 :

y − λ(ξ − ξi) ∈ Ω} and c = min{λi; i = 1, . . . , n}. Hence we get
extr(y − cξ + cK◦) \ {y − c(ξ − ξj), y − c(ξ − ξj+1} = {y − c(ξ − ξi); i 6= j, i 6= j + 1} ⊂ Ω
and {y − c(ξ − ξj), y − c(ξ − ξj+1} ⊂ Ij. If ξ = ξj, recalling that NΩ(y) = kj+1 ⊂ NK◦(ξj)
we can proceed exactly as in the case studied above substituting ξj to ξ. The last case
ξ = ξj+1 can be treated analogously.

(v) First of all we notice that one of the two implications is obviously true. For the other
one we remark that, by Lemma 3.7, if y ∈ Ii and y ∈ Π(x) it is that either x = y − cξi−1

or x = y − cξi. Without loss of generality we can assume that x = y − cξi−1. We have

that x+ cK◦ ⊂ Ω and let us suppose that x+ cξi ∈ Ω. Then, there exists c̃ > c such that
x+ c̃ξi ∈ Ω and, by (g) of Section 2, we get

〈ki, (x+ c̃ξi)− (x+ cξi+1)〉 = 〈ki, (c̃− c)ξi − c(ξi − ξi+1)〉 = (c̃− c)〈ki, ξi〉 > 0.

This contradicts the fact that ki ∈ NΩ(y). Then we can conclude that x+ cξi ∈ ∂Ω. With
the same argument we can prove that, for every ξ ∈ ζi−1, x + cξ ∈ ∂Ω. Then the line
segment joining y and x + cξi is contained in Ii. To conclude the proof it is sufficient to
fix ξ ∈ ζi−1 and z = x+ cξ.

Definition 3.9. For every y ∈ Ji we define

c(y) = sup{c > 0 : Π(y − cξi) = y}.

For every i ∈ {1, . . . , n} such that Ii is a line segment, we fix a ξ ∈ ζi−1 and for every
y ∈ ri(Ii) we define

c(y) = sup{c > 0 : Π(y − cξ) = {y − c(ξ − ξi−1), y − c(ξ − ξi)}}.

Lemma 3.10. For every y ∈ Ji it is

c(y) = min
j∈{1,...,n}

sup{λ ≥ 0 : y − λ(ξi − ξj) ∈ Ω}

and for every y ∈ ri(Ii) and for every ξ ∈ ζi−1, it is

c(y) = min
j∈{1,...,n}

sup{λ ≥ 0 : y − λ(ξ − ξj) ∈ Ω}.

Proof. Let us consider the case y ∈ Ji, Let us define c̃ = minj∈{1,...,n} sup{λ > 0 :

y − λ(ξi − ξj) ∈ Ω}. If c̃ < c(y) there exists j 6= i such that y − c̃(ξi − ξj) ∈ ∂Ω. Then
{y, y − c̃(ξi − ξj)} ⊂ Π(y) a contradiction with the definition of c(y). On the other hand
if c̃ > c(y), recalling that (ξi − ξj) are in the interior of TΩ(y), we get the contradiction
y−c(ξi−ξj) ∈ Ω for every j 6= i and for every c ∈ (c(y), c̃), i.e. y = Π(y−cξi). In the case

y ∈ ri(Ii), if c̃ < c(y) for every c ∈ (c̃, c(y)) there exists j such that y − c(ξ − ξj) /∈ Ω and
then v(y− cξ) 6= c. If c̃ > c(y), for every c ∈ (c(y), c̃), we have y− c(ξ− ξj) ∈ Ω for every
j /∈ {i, i+1} and y−c(ξ−ξj) ∈ ri(Ii) for j ∈ {i, i+1}. Hence {y−c(ξ−ξi), y−c(ξ−ξi+1)} =
Π(y − cξ), a contradiction.

Remark 3.11. As immediate consequences of Lemma 3.10 and Proposition 3.8 we have
the following properties.
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(1) 0 < c(y) ≤ W(Ω,K) for every y ∈ Ji and for every y ∈ ri(Ii).

(2) y ∈ Π(y − c(y)ξi) for every y ∈ Ji; for every y ∈ ri(Ii) and for every ξ ∈ ζi−1 we
have {y − c(y)(ξ − ξi−1, y − c(y)(ξ − ξi} ∈ Π(y − c(y)ξ).

(3) For every y ∈ Ji there exist z ∈ ∂Ω, z 6= y, and j 6= i such that z ∈ Π(y − c(y)ξi)
and z = y − c(y)(ξi − ξj). Moreover c(z) = c(y). Analogously, for every y ∈ ri(Ii),
for every ξ ∈ ζi−1, there exist z ∈ ∂Ω, z /∈ ri(Ii), and j ∈ {1, . . . , n} such that
z ∈ Π(y − c(y)ξ), z = y − c(y)(ξ − ξj) and c(z) = c(y).

Lemma 3.12. The function c(·) is continuous.

Proof. For every y ∈ ∂Ω and a ∈ R2, a 6= 0 we can define the width of Ω in y in the

direction a to be w(y, a) = sup{λ > 0 : y − λa ∈ Ω}. By the continuity of ∂Ω it is

straightforward that w(y, a) is continuous in the natural topology induced on ∂Ω by R2.
Recalling the characterization of c(y) we get the proof.

To conclude this section we remark that, thanks to the properties proved above, we can
say that the set Ω can be regarded as the union of a certain number of sets in which the
function v(·) can be computed in a more convenient way.

In fact, for every i ∈ {1, . . . , n} such that Ji 6= ∅ and for every j ∈ {1, . . . , n} such that
ri(Ij) 6= ∅, we can define, respectively

Ωi = {x ∈ Ω : ∃y ∈ Ji and 0 < c ≤ c(y) such that x = y − cξi}
Oj = {x ∈ Ω : ∀ξ ∈ ζj−1∃y ∈ Ij and 0 < c ≤ c(y) such that x = y − cξ}

and then we get
Ω = (∪iΩi) ∪ (∪jOj).

Now, if y ∈ Ji and y is a point of differentiability for ∂Ω, by the definition of Ji, there
exists λ ∈]0, 1[ such that λki + (1 − λ)ki+1 ∈ NΩ(y) and, by the results proved in this
section, for every 0 < c < c(y) we have that ∇v(x) = −(λki + (1− λ)ki+1). Analogously,
for every y ∈ Ij and for every 0 < c < c(y), we get ∇v(x) = −ki.

4. Existence theorem

We have the following existence theorem:

Theorem 4.1. Let Ω be an open bounded convex set contained in R2. Let K ⊂ R2 be a
closed polytope such that 0 ∈ R2. Let h satisfy the hypothesis stated in Section 2. Let ρ,
Λ and W(Ω,K) be defined as before. If W(Ω,K) ≤ Λ, the function

u(x) = −ρ inf
y∈∂Ω

sup
x∗∈−K

〈x− y, x∗〉

is a solution to the problem (P).

Proof. (a) First of all we remark that, for every k ∈ ∂ρK, for every vector v ∈ R2 and
for every p ∈ ∂γK(k) we have

h(γK(k + v)) = h(γK(k) + γK(k + v)− γK(k))

≥ h(γK(k)) + α(γK(k + v)− γK(k))

≥ h(γK(k)) + α〈p, v〉
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where α ∈ [0,Λ]. Now, recalling the properties of ∂γK(·) stated in Section 2, we can
consider the restriction of ∂γK(·) to ∂K and we fix an arbirary selection p(·) of this
multifunction. By the very definition of the function u(·), for every ρ ≥ 0,and for almost
every x ∈ Ω, we have ∇u(x) = −ρ∇v(x) and ∇u(x) ∈ ∂ρK. Then we can define

p(∇u(x)) = p(−∇v(x)). For every function η(·) ∈ W 1,1
0 (Ω) and for every function α(x) ∈

L∞(Ω), 0 ≤ α ≤ Λ,we have

∫

Ω

[h(γK(∇u(x) +∇η(x))) + u(x) + η(x)] dx

≥
∫

Ω

[h(γK(∇u(x)) + u(x)] dx+

∫

Ω

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx.

If we prove that for every selection p(·) and for every function η(·) ∈ W 1,1
0 (Ω) there exists

a function α(x) ∈ L∞(Ω), 0 ≤ α ≤ Λ, such that

∫

Ω

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx = 0 (4.1)

we have proved that the function u(x) is a minimum of the functional considered. Using
standard arguments on mollifiers, it is sufficient to show that (4.1) holds true for every
η(·) ∈ C∞

0 .

(b) For every i ∈ {1, . . . , n} such that Ji is nonempty there exists a point Oi ∈ Ji such
that ξi belongs to NΩ(Oi). Let νi be a vector normal to ξi, with norm equal to 1, and
we consider the pair of coordinate axis with origin in Oi and directions defined by (νi)
and (−ξi). There exist an open interval ]ai, bi[ and a non-negative lipschitzean convex

function Φi :]ai, bi[→ R2 such that {(s,Φi(s)); s ∈]ai, bi[} = Ji. We will use the notation
c(s) = c((s,Φi(s))) and we recall that the function c(s) is continuous on ]ai, bi[ and admits
finite limits both for s → ai and for s → bi. We define Si = {(s, c) : s ∈]ai, bi[ and 0 <
c ≤ c(s)} and, for every ε ≥ 0, Sε

i = {(s, c) : s ∈]ai, bi[ and 0 < c < c(s) − ε}. We will

denote by gi : R2 → R2 the function that describes this change of variables. We have that
gi(Ωi) = Si and denote by Ωε

i the set such that gi(Ω
ε
i) = Sε

i

Now, for every i ∈ {1, . . . , n} such that ri(Ii) is non empty and for every ξ ∈ ζi−1, we
can fix a point Pi ∈ Ii and consider a pair of coordinate axis with origin in Pi and
directions defined by (ν) and (−ξ), where ν is a vector, normal to ξ, with norm equal
to 1. By (ii) of Proposition 3.4, there exist a closed interval [ci, di] and a linear function

Ψi : [ci, di] → R2 such that {(s,Ψi(s)); s ∈ [ci, di]} = Ii. As before we will use the notation
c(s) = c(s,Ψi(s)) and we remark that the function c(s) is continuous on [ci, di]. We define
Ri = {(s, c) : s ∈ [ci, di] and 0 < c ≤ c(s)} and, for every ε ≥ 0, Rε

i = {(s, c) : s ∈
[ci, di] and 0 < c < c(s)− ε}. We will denote by hi : R2 → R2 the function that describes
this change of variables. In this case we have that hi(Oi) = Ri and we denote by Oε

i the
set such that hi(Oε

i) = Rε
i .

The definition of c(y), the properties (i) and (ii) in Proposition 3.8 and the Remarks 3.11
imply for every ε > 0, the sets Oε

i , Ωε
i satisfy the following properties

Oε
i ∩ Oε

j = ∅ ∀i 6= j, Ωε
i ∩ Ωε

j = ∅ ∀i 6= j, Oε
i ∩ Ωε

j = ∅ ∀i ∀j.
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Moreover we have that Si \ Sε
i = {(s, c) : s ∈]ai, bi[ and c(y) − ε ≤ c ≤ c(y)}, then

µ(Si \ Sε
i ) = (bi − ai)‖ξi‖ε and

lim
ε→0

µ(Ω \ (∪i=1,...,n(Oε
i ∪ Ωε

j)) = 0. (4.2)

By the properties proved for the function v(x) we have that, on Si, v(gi(s, c)) = c −
Φi(s). By the convexity of the function Φi there exists at most a countable collection
of points (sn)n∈N ⊂]ai, bi[ in which the function Φi is not differentiable. It is µ({(s, c) :
s = sn and 0 < c ≤ c(y)}) = 0, and then for every (s, c) ∈ Si such that v(gi(·, ·)) is
differentiable in (s, c) and (s, c) /∈ {(s, c) : s = sn and 0 < c < c(y)} we have

∇v(g−1
i (s, c)) = (−Φ′

i(s), 1) ∈ −NΩ((s,Φi(s))). (4.3)

On Ri we have v(hi(s, c)) = c − Ψi(s) and then, for every point of differentiability of
v(hi(·)),

∇v(h−1
i (s, c)) = (−Ψ′

i(s), 1) ∈ −NΩ(s,Ψi(s)). (4.4)

(c) We define the following functions

βi(s, c) =

{

Φi(s) + c(s)− c for (s, c) ∈ Si

0 otherwise

δi(s, c) =

{

Ψi(s) + c(s)− c for (s, c) ∈ Ri

0 otherwise.

We claim that the function

α(x) =
∑

i=1,...,n

βi(gi(x))χΩi
(x) + δi(hi(x))χOi

(x)

satisfies (4.1). We remark that α(·) is measurable and, for almost every x ∈ Ω, 0 ≤
α(x) ≤ WΩ,K . By (4.2) we have

∫

Ω

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx

= lim
ε→0

∑

i=1,...,n

∫

Ωε
i

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx

+ lim
ε→0

∑

i=1,...,n

∫

Oε
i

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx. (4.5)

Let us compute

∫

Ωε
i

η(x)dx =

∫ bi

ai

∫ Φ(s)+c(s)−ε

Φ(s)

η(g−1
i (s, c))‖ξi‖dsdc.
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Integrating by parts and recalling that η(g−1
i (s,Φ(s))) = 0, we obtain that the last term

is equal to

‖ξi‖
∫ bi

ai

[

εη(g−1
i (s,Φ(s) + c(s)− ε))

−
∫ Φ(s)+c(s)−ε

Φ(s)
(Φ(s) + c(s)− c)〈ξi,∇η(g−1

i (s, c))〉dc
]

ds.

Hence
∫

Ωε
i

[αi(x)〈p(∇u(x)),∇η(x)〉+ η(x)dx]

= ‖ξi‖
∫ bi

ai

∫ Φ(s)+c(s)−ε

Φ(s)

βi(s, c)〈p(∇u(g−1
i (s, c))),∇η(g−1

i (s, c))〉dcds

−‖ξi‖
∫ bi

ai

∫ Φ(s)+c(s)−ε

Φ(s)

(Φ(s) + c(s)− c)〈ξi,∇η(g−1
i (s, c))〉dcds

+‖ξi‖
∫ bi

ai

εη(g−1
i (s,Φ(s) + c(s)− ε))dcds. (4.6)

By (4.3), recalling that NΩ(s,Φ(s)) is strictly contained in the convex cone generated by

ki and ki+1, there exists λ ∈ (0, 1) such that ∇v(g−1
i (s, c)) = −(λki + (1 − λ)ki+1) and

then for every selection p(·) we have p(∇u(s, c)) = ξi. Hence (4.6) is equal to

‖ξi‖
∫ bi

ai

εη(g−1
i (s,Φ(s) + c(s)− ε))ds

+‖ξi‖
∫ bi

ai

∫ Φ(s)+c(s)−ε

Φ(s)

[βi(s, c)− (Φ(s) + c(s)− c)] 〈ξi,∇η(g−1
i (s, c))〉dcds

and, by the definition of βi(s, c), it is equal to

‖ξi‖
∫ bi

ai

εη(g−1
i (s,Φ(s) + c(s)− ε))ds.

If we want to compute the integral on Oε
i , first of all we have to notice that ∇v(x) = −ki

for almost every x ∈ Oε
i and then ∂γK(∇u(x)) = co(ki, ki+1). For every selection p(·), it

is p(∇u(x)) = ξ ∈ co(ki, ki+1). We can consider the coordinates introduced in (b) and,
proceeding exactly as above, we get

∫

Oε
i

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx = ‖ξ‖
∫ di

ci

εη(h−1
i (s,Ψ(s) + c(s)− ε))ds.

Hence, by the hypothesis η(·) ∈ C∞
0 (Ω), by (4.5) and by the assumption on Ω, the

conclusion follows.

The following example is in the same spirit of the Example 2 in [4]. It shows that the
condition WΩ,K ≤ Λ can not be improved in the sense that if it is not fulfilled it may
happen that the function u(x) = −ρv(x) is not a solution of the problem (P).
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Example 4.2. Let us consider the function

h(r) =

{

r if 0 ≤ r ≤ 1

+∞ if r > 1.

In this case we have ρ = 0 and Λ = 1. Let K ⊂ R2 be the square {x = (x1, x2) :
maxi=1,2 |xi| ≤ 1}. The functional defined in such a way is weakly lower semicontinuous
and has superlinear growth, then it always admits a solution.

Applying Theorem 4.1 we have that, for every Ω such that WΩ,K ≤ 1, the function
u(x) ≡ 0 is a solution of the problem (P). We show, now, that for every ε > 0 there exists
a set Ω, with WΩ,K = 1 + ε, such that the function u(x) ≡ 0 is not a minimum.

We choose Ω = {x = (x1, x2) : |x1| ≤ a+ ε and |x2| ≤ 1 + ε} and Ω0 = {x = (x1, x2) :
|x1| ≤ a and |x2| ≤ 1}. Let us consider the negative function w(x) that has gradient in
norm equal to one and orthogonal to the sides of Ω on the strip Ω \Ω0 and gradient 0 on
Ω0. The values of the functional computed along the maps u and w are, respectively, 0

and 4(ε + ε2

2
(1− a) + ε3

3
). It is easy to see that if a is sufficiently large with respect to ε

the last value is strictly less than zero.

Now, let us consider the following problem

∫

Ω

[f(∇u(x)) + u(x)] dx u(·) ∈ W 1,1
0 (Ω) (P ′)

where f : R2 → R is a non-negative lower semicontinuous function with minimum value
0. Let K ⊂ R2 be a closed polytope with 0 ∈ int(K). We suppose that f(k) = 0 for every
k ∈ ∂K and f(k) > 0 for every k ∈ C(K).

We can consider the family

H = {h : [0,+∞) → [0,+∞] : h(·) lower semicontinuous and h(γK(k)) ≤ f(k) ∀k ∈ R2},

and we can define

h̃(x) = sup
h∈H

h(x).

We have that h̃(·) ∈ H and h̃(1) = 0. We define Λ̃ = sup{a ∈ R : h̃(s) ≥ a(s −
1) for every s ≥ 0} and W(Ω,K) = supx∈Ω v(x), where v(·) is defined by (2.4). Then we
have

Corollary 4.3. Let Ω, K, f be defined as above. If W(Ω,K) ≤ Λ̃ the function

u(x) = − inf
y∈∂Ω

sup
x∗∈−K

〈x, x∗〉

is a solution of the problem (P ′).

Proof. It is sufficient to remark that for every η(·) ∈ W 1,1
0 (Ω) , for every selection p(·)

of the multifunction ∂γk restricted to ∂K and for α(·) ∈ L∞(Ω), with 0 ≤ α(x) ≤ Λ̃, we
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have
∫

Ω

[f(∇u(x) +∇η(x)) + u(x) + η(x)] dx

≥
∫

Ω

[

h̃(γK(∇u(x) +∇η(x))) + u(x) + η(x)
]

dx

≥
∫

Ω

[

h̃(γK(∇u(x))) + u(x)
]

dx+

∫

Ω

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx

=

∫

Ω

[f(∇u(x)) + u(x)] dx+

∫

Ω

[α(x)〈p(∇u(x)),∇η(x)〉+ η(x)] dx.

The construction of the function α(·) given in the proof of Theorem 4.1 completes the
proof.

Acknowledgements. The author would like to thank Prof. Arrigo Cellina for having

introduced her to this subject and for the stimulating discussions during the preparation of this

paper.

References

[1] J. P. Aubin, A. Cellina: Differential Inclusions, Springer-Verlag, Berlin et al., 1989.

[2] A. Cellina: On minima of a functional of the gradient: sufficient conditions, Nonlinear
Analysis TMA 20 (1993) 343–347.

[3] A. Cellina: On minima of a functional of the gradient: necessary conditions, Nonlinear
Analysis TMA 20 (1993) 337–341.

[4] A. Cellina: Minimizing a functional depending on ∇u and on u, preprint S.I.S.S.A. (1995),
to appear in Ann. Inst. Henri Poincaré, Analyse Non Linéaire.
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