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The paper deals with a smoothing procedure for parametric minimax-functions, arising from parameter
dependend convex-concave games. In this framework generalized max-functions (i.e. maximum value
functions of parametric, concave programming problems) are most important special cases of parametric
minimax-functions. In general, these functions are non-differentiable and, moreover, non-locally Lips-
chitzean.

In this paper we suggest to smooth these functions by means of a regularization approach and prove dif-
ferentiability properties and error estimates of the regularized approximations of the parametric minimax-
functions. Uniform convergence (w.r.t. the parameter) of the regularized solutions to the normal solutions
is shown. In particular, for generalized max-functions uniform convergence of the regularized solutions
to the normal solutions of the corresponding primal and dual parametric optimization problem can be
concluded.

This approach gives the possibility to work without directional derivatives for these non-smooth functions
and to use the usual differential calculus.
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1. Introduction

There exist a couple of optimization problems
f(z) — min, s.t. z € Q, (1.1)
where () is a closed set in the Euclidean space X and the function f has the form

f(z) := inf sup F(z,y,2), = € G, (1.2)
yeY ez

with Q@ C G C X; G,Y and Z closed sets in the Euclidean spaces X, Yand Z, respectively.
The function F': X X Y x Z — R is supposed to be continuous. Functions f of type (1.2)
we shall call parametric minimaz-functions.
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In the sequel only such functions are considered, where ) and Z are convex sets in Y, Z,
respectively and, for each = € G, F(z,-,-) is convex-concave w.r.t. {y,z} on Y x Z, i.e.
F(z,-,z) is convex w.r.t. y on the set ) and F(z,y,-) is concave w.r.t. z on Z.

Under these conditions Problem (1.1) generates a parametric convex-concave game with
the papameter x € G. This game can be interpreted as a two-level optimization problem,
where in the lower level a (non-cooperative) convex-concave game has to be solved. Indeed,
for a ressource-vector x € G, given from the upper level, two players on the lower level
ask for a saddle point of the function F' on the sets of strategies ) and Z, respectively.
After that, on the upper level the function F' has to be minimized on the set of all
(parameter dependend) equilibrium states. This kind of problems occur by modeling
several hierarchical systems [9].

It is obvious that Problem (1.1) with function f of the form (1.2) is equivalent to the
following semi-infinite programming problem (SIP) in the Euclidean space R! x X x Y:

t—min, st. teR, 2 €Q, ye Y, F(z,y,2)—t<0 VzeZ. (1.3)

The most important partial case of a function like (1.2), generated by a parametric convex-
concave game, is the following kind of max-function:

f(@) ::{ P hzente) Az 2) iigg; i g (1.4)
with
D(z):={z€ ZCZ: hs(r,2z) <0 (s €S51), hs(z,2) =0 (s € S9)}. (1.5)

Indeed, if for the Problem (with fixed )
h(z,z) — max, s.t. z € D(z), (1.6)

the strong duality theorem (cf., for instance, [10], [17]) is valid (for all z € G with
D(z) # ), then F is the Lagrange function of Problem (1.6):

F(z,y,2):=1(x,y,2)" (1.7)
with II(z,y, 2) = h(z,2) — > ,cs Yshs(2,2), (S =S51US,), where
Y=RY Y={yeY:y,>0(seS)}. (1.8)
This is true because of

f(z) = min p(z,y), where p(z, ) = maxTI(z,y, 2). (1.9)
yey 2€EZ

If S = 0, i.e. the set D(z) = Z does not depend on z, then f is called a simple
maz-function. In the general case, we shall call functions of type (1.4), (1.5) generalized
maz-functions.

for convenience we change here the sequence of the arguments, usually one has to write II(z, z, y).
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In this paper we shall deal only with generalized max-functions f, for which the function
IT is concave w.r.t. z € Z and the duality relation (1.9) is satisfied for each z € G. In
this case the function F(z,y, z) := II(z, y, 2) is convex-concave w.r.t. {y,z} on Y x Z.

It should be noted that Problem (1.1), (1.4) is equivalent to the following generalized STP
in R! x X:

t — min,
st. z€Q,D(z) #£0, (1.10)
h(z,z) —t < 0Vz € D(z)
Finally, let us consider the following optimization problem:
fo(z) — min, (111)

st.x e X, filr) <0 (iel), gi(x)=0(j €J),
with X C X a closed convex set, I and J finite sets of indices and, for each i € {0} U I,

] — SUPz;eD;(x) hi(x: Zi): if Dz(x) # (Z):
fiz) = { _OO,ED if Di(z) - 0. (1.12)

DZ(QJ) = {Zi €eZ,C4Z; : h,-s(:v,zi) <0 (S € Sil), his(m,zi) =0 (8 € SZ'Q)}, (1.13)

where h;, hi, (i € {0} UI,s € S;; USi), g; (j € J) are continuously differentiable
functions.

It is obvious that Problem (1.11) is equivalent to the following generalized SIP in R! x

X X H Zz :
ie{o}ur
t — min,
st. x € X, Di(z) #0 (i € {0}UI),
ho(z,20) —t <0  Vzy € Dy(z), (1.14)
gi(z) =0 (j€J).

In particular, Problem (1.14) can be obtained from an optimization model under uncer-
tainty:

ho(z, z9) — min,
s.t. x € X,
gi(x)=0  (j€J),

(1.15)

if the “principle of guaranteed results” (see [9]) is considered, where z; are the vectors of
uncertained parameters belonging to the known sets D;(z) (i € {0} UI), given via (1.13).

There exists a way to reduce the Problems (1.1), (1.2) or (1.1), (1.4), (1.5) to minimization
problems with simple max-functions. This way consists in the embedding (or enlargement)
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of the space X of sought variables of the initital problem into the space X x Y and it is
based on the following obvious formula:

inf inf sup F(z,y,2) = inf{p(u) : v = {z,y} € Q x YV}, (1.16)
TEQYEY ez

with ¢(u) = sup{F(u,z) : z € Z} a simple max-function. Note that we actually have
used formula (1.16) in order to apply the equivalence between Problem (1.1), (1.2) and
SIP (1.3).

The embedding approach can be used to investigate optimality conditions and stability
results (perturbation theory) for the Problems (1.1), (1.2) or (1.1), (1.4), (1.5). In some
cases this approach is suitable for constructing numerical methods, solving Problem (1.1)
(see [24]).

However, if dimX >> dimY, this approach leads to an essential enlargement of the
dimension of the vector of sought variables. Conversely, if dim X << dimY, and one has
to minimize ¢(u) = sup{F(u,2) : z € Z} on the set U = @ x ), and for each z € Q,
the determination of a saddle point of the function F(z,y,2) on Y x Z can be performed
relatively easy, then this problem is transformed frequently into the minimization of f on

Q.

This approach with a succeeding approximate smoothing of the function f is especially
natural in case Problem (1.1) has a block-structure, i.e. the spaces Y and Z are Euklidean
products of the spaces Yy and Zj, respectively (k € K, K a finite set)

V=[] 2:=1[ 2 O Y 2 CZ)

keEK keK

and for each x € Q,y = {yk}keK ey, z= {zk}keK € Z the function F' is supposed to
be block-separable:

F(LE,y,Z) = ZFk(xaykazk)'

keK

Indeed, in this case x is the vector of binding variables and the following decomposition
formula is obvious:

f(z) = ka(ac), with fy(z) = inf sup Fi(z,y",2").

kek YREYE 2keZ,

However, in this paper we don’t draw attention to this embedding approach.

Optimization problems (1.1), (1.2), or Problems (1.11) with functions f; of the form (1.12),
(1.13), have always a complicated inner structure, in particular, we refer to

e parametric minimax problems (see [3], [4], [9], [10], [21], [22]);
e  generalized semi-infinite problems (see [12], [13], [15], [16], [20], [22], [24], [28], [29])-

Analogous optimization problems with parametric minimax-functions or generalized max-
functions appear in decomposition methods, when upper level problems are considered
(see [1], [2], [18], [21], [22]).
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In all these problems differentiability properties of parametric minimax functions or gen-
eralized max-functions play an important role.

As known (see [10], [22]), a parametric minimax-function is differentiable at a point z € G,
if the sets

V*(z) = Argmin{p(z,y) : y € Y} and Z*(z) = Argmax{y(z,2) : z € Z},
with
ol,9) = up{F (2,4, 2)  # € Z} and $(z, 2) = inf{F(z,y,7) : y € V}

are non-empty and consist of a single point, respectively. In particular, a generalized
max-function, for which II is concave w.r.t. z € Z and the duality relation (1.9) holds,
is differentiable at a point z € G if the set of optimal solutions of Problem (1.6) and of
its dual are non-empty and consist of a single point. However, already in case of linear
programs, there may be no uniqueness of the solutions of the primal or dual problem. Even
if the function 1 is strongly concave w.r.t. z and, hence, Z*(z) consists of the unique
point z*(x), this assumption does not suffice for the existence of a unique optimum for
the dual to Problem (1.6). This non-uniqueness appears almost everywhere if

card[Sy(z, 2" (x))] + card[Sy] > dim Z,

with Si(z,2*(z)) the set of active indices of constraints (1.5) at the point {z,z*(z)}.
Therefore, without relatively strong assumptions, it is impossible to ensure a-priorily that
the optimal set of Problem (1.6) and of its dual consist of one point only.

In general, parametric minimax-functions and generalized max-functions are non-differen-
tiable functions and, moreover, they are non-locally Lipschitzean. Usually, such a function
has only a directional derivative and, in the generic case, this direction is the minimum
of a parametric sublinear or the maximum of a parametric superlinear function (see [5],

[10], [22]).

Under quite general assumptions the differential expansions and, in particular, the direc-
tional derivatives and quasi-subdifferentials for parametric minimax-functions and gener-
alized max-functions, have been considered in a series of publications (see [3] - [7], [10],
[20], [22], [23], [25], [26], [28], [29]).

However, the computation of these derivatives is sufficiently complicated and, moreover,
as a rule these derivatives are not continuous w.r.t. the variable z. Therefore, to handle
with this calculus in numerical algorithms, one deals with several difficulties. This fact
makes the theoretical and numerical investigation of optimization problems, involving
such functions, much more complicated.

Concerning regularization procedures in convex optimization (also SIP) we refer to [14],
[19] [27], [31].

In this paper we suggest to smooth the function f by means of such a regularization
procedure for the function F in (1.2) w.r.t. the variables {y, z}. In particular, in case
of generalized max-functions the smoothing procedure is performed by means of regu-
larization of the Lagrange function of Problem (1.6) w.r.t. the variable z as well as to
the multiplier y. So we can use the usual differential calculus to investigate regularized
approximations of non-differentiable minimax-functions.
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This idea is not new. For non-parametrized problems a similar approach was considered
in [30]. The same problem can be studied in [11] in connection with the treatment of
modified Lagrange functions, too. However, in the papers mentioned, Problem (1.6) and
its dual are considered for fixed x only, i.e. for unperturbed problems. Here we are
interested in similar differentiability properties depending uniformly on the parameter x.

The paper consists of six sections. After introducing in Section 2 the main assumptions
and some preliminary results, in Section 3 the regularization approach is considered and
some properties of the regularized primal and dual functions, corresponding to Problem
(1.1), are proved. In particular, for ¢ — 0 and fixed z € G, convergence of the regularized
approximations f(g, x) to the original function f(x) is shown. Section 4 deals with differ-
entiability properties of the regularized functions and in Section 5 the convergence of the
uniquely defined e-normal solutions to the normal solutions of the regularized Problem
(1.1) and of its dual is investigated. Finally, in Section 6 error estimates for regularized
parametric minimax and max-functions and a statement on the exactness of the minimum
point of a regularized parametric max-function is proved.

All the results, obtained for parametric minimax-functions, are true also for generalized
max-functions if they satify the Assumptions 2.4-2.6 below. However, it should be noted
that, if F' is the Lagrange function of Problem (1.6) and Y = ]R'jfl‘ x RI%2l then the
affinity w.r.t. y of the function F' and the simple form of the set ) permit to specify
some properties of the regularized, generalized max-function. In particular, in this case
this max-function is a parametrized (with parameter z € G) modified Lagrange function
for the parametric convex programming problem (1.6).

2. General assumptions and preliminary results

Some general assumptions are formulated and discussed for which we suppose that they
are satisfied throughout the whole paper.

ForzeG,ye )V, z€ Z let

o(z,y) =sup{F(z,y,2) : 2 € Z}, ®(z,y) := Argmax {F(z,y,2): 2 € Z}, (2.1)
V() := Argmin{p(z,y) :y € V}, (2.2)
Y(z,z) = inf{F(z,y,2) :y € YV}, ¥(z,2) := Argmin {F(z,y,2) : y € Y}, (2.3)

Z*(z) :== Argmax {¢(z,2) : z € Z}. (2.4)

Obviously, f(z) = inf{¢(z,y) : y € V}.

It should be noted that, if z € G,y € Y and ®(x,y) # 0, then the function ¢ as the
supremum of a family of continuous functions is lower semi-continuous on the set G x Y
at the point {z,y}. Further, for each x € G,y € Y it holds that ¢(z,y) < +oc and
®(z,y) is a non-empty and compact subset in Z if Z is compact or F' is coercive w.r.t. z.
Finally note that, if for any z € G there exists a vector z(z) € Z such that F(z, -, z(x))
is coercive, then o(z,-) is coercive, and so Y*(x) is non-empty and compact.
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Analogously, if ¥(z,2) # () for any x € G,z € Z, then 1) is upper semi-continuous on the
set G x Z at the point {z,z}. If F is coercive in y for each fixed x € G,z € Z or ) is
compact, then for any z € G,z € Z it holds ¢(z, z) > —oo and ¥(z, z) is a non-empty
compact subset in Y.

Also analogously, if for any z € G there exists a vector y(x) € Y such that F is coercive
(in the sense F'(z,y(z),:) — —o0), then 9 is coercive (in the sense 9 (z,-) — —oc) and
Z*(x) is a non-empty and compact set.

In the sequel we suppose that for the parametric minimax-function (1.1) the following
assumptions are satisfied.

Assumption 2.1. ) and Z are convex, closed sets in Y and Z, respectively; F'is con-
tinuous in X X Y x Z and continuously differentiable w.r.t. z; F' is convex w.r.t. y € )
forall z € G,z € Z and concave w.r.t. z € Z forallxz € G,y € V.

Assumption 2.2. If for z € G,y € Y ¢(x,y) < +oo, then ®(z,y) is non-empty and
V*(z) is non-empty and bounded in Y.

Assumption 2.3. If for z € G,z € Z 9(z,2) > —o0, then ¥(z,2) is non-empty and
Z*(x) is non-empty and bounded in Z.

Assumption 2.2 is certainly satisfied if, for each z € G,y € Y such that ¢(z,y) < +o0,
the set {z € Z: F(z,y,2) > ¢(z,y) — 6} is bounded in Z for some § > 0 (for example,
F(z,y,2,) — —oo when z € G,y € Y and z, € Z, ||z,]| = o0) and for any z € G there
exists z(z) € Z such that F(x,y,, z(x)) — 400, when y, € Y, ||yn|| = oc.

Analogously, Assumption 2.3 is fulfilled if, for each z € G, z € Z such that ¥ (z, z) > —o0,
the set {y € Y : F(x,y,2) < ¥(zx,2) + J§} is bounded in Y for some 6 > 0 (for example,
F(z,y,2,) = +oo when z € G,z € Z and y, € V,||yn|| = o0) and for any = € G there
exists y(x) € Y such that F(z,y(x), z,) — —o0, when z, € Z,||z,|| — oo.

From Assumption 2.1 it follows that, for all z € G, the function ¢ is convex w.r.t. y € Y
and 1 is concave w.r.t. z € Z. Therefore, for each x € G, the sets Y*(z) and Z*(x) are
convex. Under the Assumptions 2.1-2.3, for each = € G, the sets Y*(z) and Z*(z) are
closed, because ¢ is lower semi-continuous on the set {y € Y : p(z,y) < +oo} and 1) is
upper semi-continuous on the set {z € Z : ¢¥(z,2) > —oo}.

Thus, under the Assumptions 2.1-2.3, for each = € G, the sets Y*(x), Z*(z) are convex and
compact in Y, Z, respectively. The Assumptions 2.1-2.3 ensure in addition that the point-
to-set maps Y*(z) and Z*(z) are upper semi-continuous on the set G (see Theorem 15 in
[10]). Therefore, if z;, € G, z, — ,yx € Y* (1), 2x € Z*(wx), then limy_, | |yx|| < +oo,

limy, 0| |2 || < +00.

The Assumptions 2.1-2.3 guarantee also that, for each z € G, the minimax theorem (see
for instance, [10], [17])

minmax F'(x,vy, z) = maxmin F'(z, vy, 2
yeY 2€Z2 ( Y ) 2€Z yey ( Y )

1s true.

Now, let us formulate analogous assumptions for generalized max-functions of type (1.4),
(1.5).
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Assumption 2.4. Z is a convex, closed set in Z; the functions h, hs (s € S) are con-
tinuously differentiable in X x Z; h, —h, (s € S;) are concave w.r.t. z € Z for all
x € G; hy (s € S,) are affine w.r.t z € Z for all z € G, i.e., hy(z,2) := (as(x), z) + bs(z),
where a,(-) : X — Z and b,(-) : X — R! are continuously differentiable in X.

Assumption 2.4 ensures that Problem (1.6) is a convex optimization problem for each
z €G.

Assumption 2.5. If sup{Il(z,y,2) : z € Z} < 4oo for x € G,y € Y, then the set
Argmax{Il(z,y, z) : z € Z} is non-empty and Argmin {sup,.z [I(z,y,2) : y € Y} is non-
empty and bounded in Y.

Assumption 2.6. If D(z) # 0 for z € G, then the set Argmax{h(z,z) : z € D(x)} is
non-empty.

As known from the theory of convex analysis, Assumption 2.5 is satisfied if II is coercive
(in the sense I(z,y, z,,) — —oo for each x € G,y € YV, {z,} € Z, with 2, € Z,||z,|| = o0)
and if the following regularity assumption is fulfilled for the set D(z) :

(R) For each z € G the zero vector of the space RI2! is an interior point of the set
{te RS2 : 0, = (a(x),t) + by(x), (s € S,), z € zZ}
and there exists a point Z(z) € D(x) such that hs(x, Z2(x)) < 0 (s € Sy).

Note that, in case Sy = @ (i.e. Problem (1.6) is given without equality constraints in
D(x)), regularity of the set D(z) (for a given = € G) is equivalent to the modified Slater
condition.

Regularity of D(x) ensures that constants ¢;(z) > 0 and co(z) > 0 exist such that

o(z,y) > ci(z) + cox (Z Ys + Z |ys| ) VeeG,Vye)y (2.5)

SEST SESy

(cf. [17], Chapt. 4, Theor. 6.5). From (2.5) it follows that for fixed x € G

¢(z,y) = +oo fory € Y, (Z vt Y Iys\) — +00,

SES SESs

hence, Assumption 2.6 is fulfilled.

Assumption 2.6 is also fulfilled, if Z is compact or h is coercive on D(z) (in the sense
h(z, z,) — —oo for each z € G and any sequence {z,} € Z such that z, € D(x), ||z,|| —
00).

Proposition 2.7. Suppose that the generalized maz-function (1.4), (1.5) satisfies the
Assumptions 2.4-2.6. Let Y = RS, Y = {y € Y : y, > 0Vs € Si}, F(z,y,2) =
h(z,2) = > cqyshs(x,2) for v € X,y € Y,z € Z. Then F satisfies the Assumptions
2.1-2.3.

Proof. Let the functions ¢, and the sets ®(z,y), ¥(z, 2), V*(z), and Z*(z) be defined
by (2.1) - (2.4). Then it is obvious that ¢ is the dual function of Problem (1.6), ®(z,y)
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is the set of maximum points of the Lagrange function II(z,y, z) on the set Z, and Y*(x)
is the set of optimal solutions for the dual problem to Problem (1.6). Moreover, for each
x € G,z € Z, due to the affinity of II(z, -, z) and the form of ) in (1.8), we have

h(z,z) , if z € D(z),
Y(z,2) = { —oo , if z ¢ D(z),

{yeY:ys=0(s€S), hs(z,z) <0} , if z € D(x),
- { P 1ot

Therefore, Z*(x) = Argmax{h(z,z) : z € D(z)}, if D(z) # (. Now, the statement
follows from these facts. O

In the sequel we suppose that for the generalized max-function (1.4), (1.5) the Assump-
tions 2.4-2.6 are fulfilled. Therefore, all statements which can be proved for parametric
minimax-functions under the Assumptions 2.1-2.3 are also valid for generalized max-
functions.

A function ¥ in the Euclidean space T is called strongly convexr on the convex set © C T
with the constant k (k > 0), if

19 (%(tl +t”)> S %ﬂ(t,) + %ﬂ(t”) o K/Htl - t"H2 Vt',t" c (_)

Function 9 is called strongly concave on the conver set ©, if —1 is strongly convex on ©.

The following two statements are essential in order to investigate the smoothing procedure,
suggested below.

Theorem 2.8. Let U be a closed set in the Fuclidean space U, V be a closed convex set
in the Euclidean space V. Assume that 9 is a continuous function on U X'V, continuously
differentiable w.r.t. u and, for each u € U, strongly convexr w.r.t. v on the set V with the
constant k independent of u € U. Then the following statements are true:

(i)  for each u € U the minimum w.r.t. v of the function ¥ on the set V is attained in
the unique point v(u), and

I(u,v) —I(u,v(u) > 4k|lv — v(u)|]* Yo e V; (2.6)

(ii)  the operator v(u) is continuous on U;

(iii) 4f, additionally to the assumptions made above, for each u € U there exist p =
p(u) > 0 and L = L(u) > 0 such that on the set {(v/,v") e U x V : ||u' — u|| <
p, ||[v' —v(u)|| < p} the gradient V,9(u,v) is Lipschitz with the constant L, then for
each u € U the operator v(-) is Lipschitz on the set {u' € U : ||u' — u|| < p} with
the constant (4k)~ L.

Proof. Existence and uniqueness of the point v(u) follows from Theorem 1.15, Chapter 4
in [22] and estimate (2.6) is a consequence of Theorem 2.11, Chapter 4 in [22]. Statement
(ii) follows from (2.6) and the continuity of the function ¥(u,v(u)) on Y. Finally, the
Lipschitz property of the operator v(-) with constant (4x)~'L is due to Theorem 6.1 in
[23]. 0O
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Recall that in the Euclidean space the squared norm is a strongly convex function on the
whole space with the constant £ = ;. Thus, from Theorem 2.8 (i) it follows that, for each
r € G, the function ||z||?> has a unique minimizer on the closed set Z*(z), and ||y|* has
a unique minimizer on the closed set Y*(z).

The vectors
Z(z) = argmin {||2[|* : 2 € 2"(2)} and §(z) == argmin {|ly[|*:y € V*(x)}  (2.7)
are called normal points of the sets Z*(x) and Y*(z), respectively.
From (2.6) with x = ; it follows
Iz = 2@)II* < |l2* = [|2(2)[]* Vz € 2*(z) (2.8)
and
ly — 9@ < llylI* = [[§=)|]* vy € V*(@). (2.9)

Let U be a closed set in the Euclidean space U, uq € U, m be a continuous function on
U. The function m is called U-differentiable at the point ug if there exists a vector £ € U
such that

m (un) = m (ug) + (£, un — o) + o (||un — uol|) V{un} € U, u, — up.
The vector £ is called U-gradient of m in the point uy and it is denoted by V¥m(uyg).
Theorem 2.9. Assume that the hypotheses of Theorem 2.8 are satisfied. Then the func-
tion
m(u) :=inf{d(u,v): veV}

is U-differentiable in each point u € U and its gradient V¥m(u) = V,9(u, v(u)) is contin-
uous on the set U. If, moreover, for each u € U, constants p = p(u) > 0 and L = L(u) > 0
exist such that on the set {(u',v") €U XV : ||u' —u|| < p, ||[v/ —v(u)|| < p} the gradient
V.9(u,v(u)) is Lipschitz with the constant L, then for each u € U the vector-function
Vm(u) is Lipschitz on the set {u' € U : ||u’ — ul| < p}.

Proof. On the one hand, if ux,u € Y and v — u, then

m(ug) <9 (ug,v(u)) = Hu,v(u))+ (VoI (u,v(u)), ur — u) + o (||ur — ul|)
= m(u) + (V.9 (u,v(u)),ur —u) + o (||ug — ul|).

On the other hand, due to the continuous differentiability of J w.r.t. u, and v(ug) — v(u)
(which follows from Assumption (ii) in Theorem 2.8), we obtain

m(ug) = 9 (ug, v(ug)) =9 (u,v(ug)) + (Vo0 (v, v(ug)) , up — u)
+ /0 (V. (0 + g — 1), 0(ug)) — Vi (1, 0(ug) , s — udt
> inf {9(u,v) : v € V}+ (V0 (u,v(w)),ur — u) + o (||ug — ul|) .

Hence, V,9(u,v(u)) is the gradient of m in the point w.

Finally, under the assumptions made, Theorem 2.8 permits to conclude that the operator
Vm(u) is Lipschitz on the set {u' € U : ||u' — ul| < p}. O
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3. Regularization of parametric minimax-functions and
generalized max-functions

For arbitrarily fixed ¢ > 0 we consider the following regularization of the parametric
minimax-function

‘= mi F 1
fle, z) min max (&,2,9,2), (3.1)
with

F(e,x,y,z) = F(.x,y,z)-i—EHyH2—EHZH2 (32)

(ObViOUSIya f(é‘, :E)|5:+0 = f(ﬂ?))

In this way F'(e,z,y, z) becomes strongly convex w.r.t. y and strongly concave w.r.t. z
for each ¢ > 0, and we have the possibility to construct the following smooth functions:

(e, z,y) :=max F(e,x,y,2), ¢¥(e,z,2):=minF(e,z,y,2). (3.3)
ZEZ yey

It is clear that

ole,z,y) = <€||y||2 + max{F(z,y,2) — 5Hz\|2 1z € Z}, (3.4)

Y(e, x,2) = —¢l|z||> + min{F(z,y, 2) +¢l||ly|[*: y € V}, (3.5)

and 90(5a33,y)|s:+0 = @(xay)a¢(5a$,2)|5:+o = w(xaz) Vz € gay € y,Z €z

Due to the definition of the functions ¢, v and the minimax theorem it holds for arbitrary
e>0

fle,z) =min{p(e,z,y) 1 y € YV} = max{y(e,z,2) : z € Z}. (3.6)
From Theorem 2.8 it follows that the sets
®(e,z,y) := Argmin{F (e, z,y,2) : z € Z}
and
V(e,x,2) = Argmin{F(e,z,y,2) : y € YV}

consist of the single points z(e, z,y) and y(e, z, z), respectively.

Obviously, for generalized max-function (1.4) the regularization (3.1), (3.2) takes the form:

f(e,2) = min max {h(x,z) - Zyshs(x, z) + z—:ny - 6||z||2} : (3.7)

€Y zeZ
Y ses ses

It should be noted that the values of ¥ can be computed explicitely. Indeed, the equation

min {Z (syf — yshs(x,z)) tys >0 (s€51), y, €R (s€ 52)}

sES
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= Z min {8y3 - yshs(:c, Z)} + Z min {Eyf - yshs($7 Z)}

SES1 vs20 SESa ySERI
= —(4e)7" (Z[hi(% 2P+ bz, Z)> ,
SEST SESs

with Al (x, z) = max{h,(z, z), 0}, leads to

Y(e, z,2) = —¢l|z||> + h(z, 2) — (4e)7! (Z [h}(z, z)}2 + Z h?(x,z)) . (3.8)

SEST SESa

Therefore, for arbitrary € > 0, the function 1 corresponds to the penalized Problem (1.6)

with a regularized quadratic penalty and the penalty coefficient (4e)~'.

Now, let us return to the general case of parametric minimax-functions. We formulate
some simple properties of the perturbed functions ¢ and 1.

Theorem 3.1. The following statements are true:

(i)  For arbitrary e > 0,z € G,y € Y the function F(z,y, z) —el||z||* is strongly concave
w.r.t. z on the set Z (with the coefficient k(c) = ;&) and attains its mazimum
w.r.t. z € Z in the unique point z(¢,x,y). Moreover, for each fized € > 0, the
vector-function z(g,x,y) is continuous w.r.t. {x,y} on the set G X ).

(ii)  For fired ¢ > 0,z € G, the function ¢ is strongly convex w.r.t. y on the set Y with
the coefficient is, independent of v € X.
© attains its minimum w.r.t. y € Y in the unique point y(,x). Moreover, for fized
e > 0, the vector-function y(e,x) is continuous w.r.t. x on the set G.

(iii) For each e > 0,x € G, the function 1 is strongly concave w.r.t. z on the set Z with
the coefficient is, independent of v € X.

Y attains its minimum w.r.t. z € Z in the unique point z(e,x). For fized e > 0, the
vector-function z(e,x) is continuous w.r.t. © on the set G.

Proof. (i) According to the concavity of the function F' w.r.t. z € Z, for each x € G,y €
Y, the function F(z,y,z) —¢l|2||? is strongly concave w.r.t. z € Z with the coefficient 1e.
Now, for arbitrary fixed ¢ > 0, put U:=X xY, U =X x Y, V=27,V := Z, and for
arbitrary u = (z,y) € U, v := 2z € Z set I(u,v) := —F(x,y, 2) + €||2||>. Thus, we obtain

min{d(u,v) : v € V} = —max{F(e,z,y,2) : z € Z}
and statement (i) immediately follows from Theorem 2.8 (i) and (ii).

(ii) The function max{F(z,y,z) — €||z||* : 2 € Z} is convex in y, because it is the
maximum (w.r.t. z € Z) of a family of affine functions in y. Therefore, for arbitrarily
fixed ¢ > 0,z € G, the function ¢ is stronly convex w.r.t. y (on the set )) with the
coefficient ie, independent of x € X. Hence, statement (ii) immediately follows from the
first two statements in Theorem 2.8, too.

(iii) Because the function min{F(x,y,z) + ¢l||y||? : y € Y} is concave in z, as minimum
(w.r.t. y € V) of a family of concave functions in z, we conclude that for arbitrarily fixed
e > 0,z € G, the function % is strongly concave w.r.t. z (on the set Z) with the coefficient
%s, independent of z € X. Hence, statement (iii) immediately follows from Theorem 2.8,
too. 0
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In Section 4 we will prove that for arbitrarily fixed x € G the estimate

f(e,2) = f2)] < O(e)

is true and that the function f(e,z) is differentiable w.r.t. = on G for arbitrarily fixed
€ > 0. Thus, the basic advantage of the regularization consists in a smooth approximation
of a, in general, non-smooth function f.

Theorem 3.2. For arbitrary € > 0,x € G the equality

; - 3.9
min (e, ¢, y) = maxy(e, , 2) (3.9)

holds true.

Proof. Due to Theorem 3.1 (ii) for each fixed € > 0,2 € G the function ¢ attains its

minimum w.r.t. y on the set ) in the unique point y(e,z). Hence, on account of the
relations (cf. (3.3))

min (e, 2,y) = minmax F(e,z,y,2), maxy(e,r,z) = maxmin F(e,z,y, 2),

equality (3.9) follows from the minimax-theorem (cf., for instance [10], [17]). O

Remark 3.3. From Theorem 3.2 and formula (3.8) it follows for a generalized max-
function f that

fle,z) = I/]zneaé({—stHQ + h(x,2) — (4¢)7! (Z [hi(z,2)] gt Zh2 x, 2 ) }, (3.10)

SEST SESy

i.e., f(e,x) is a max-function on the set Z. Observe that here Z does not depend on z
and, hence, f(e,z) is a simple max-function.

Theorem 3.4. Let ¢ — +0,x € G,x — x9. Then the relations

dist(z(e, ), Z2*(z0)) = min{||z(e,z) — 2'|| : 2’ € Z* (z9)} — 0, (3.11)
dist(y(e, 2), Y*(z0)) = min{l[y(e,z) = ¢/||: 4 € V" (w0)} = 0

are true.

Proof. Let w = (¢,z) be a vector of the closed set W = R x G in the Euclidean space
W = R! x X. The function F(e,z,y,2) = F(w,y,z) is continuous on the Cartesian
product W x Y x Z. Moreover, on the set W x Y x Z this function is concave w.r.t. z
(strongly concave w.r.t. z if & > 0) and convex w.r.t. y (strongly convex w.r.t. y if & > 0).
Now we consider for arbitrary w = (¢, z) € W the sets

V*(w) := Argmin{p(w,y) : y € YV}, Z2*(w) := Argmax{¢(w, 2) : z € Z}.

Let wg = (0, zo). Obviously, wg € W, due to the closeness of G. According to the Assump-
tions 2.2 and 2.3, the sets V*(wp) and Z*(wy) are non-empty and bounded. Therefore,
due to Theorem 15 in [10], the sets Y*(w) and Z*(w) are also non-empty if ¢ > 0,2 € G
and the values ¢ and ||z — yo|| are chosen sufficiently small. Moreover, the point-to-set
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mappings V*(-) and Z*(-) are upper semi-continuous on the set W in the point wy. Now,
using Theorem 3.1, with ¢ > 0,2 € G,w = (¢, ), one can conclude that Z*(w) consists
of the unique point z(e, z) and Y*(w) of the unique point y(e, x), respectively. Using the
upper semi-continuity of the point-to-set-mappings Y*(-) and Z*(-) in the point wy, the
statement follows immediately. O

Corollary 3.5. For arbitrary fired x € G and ¢ — +0 it follows that

dist(z(e, z), 2*(z)) — 0, dist(y(e, z), Y*(z)) — 0.

4. Differentiability of the smoothened function f(e,x)
and estimates for |f(e,z) — f(z)|

Recall that U=XxY, U =G x ).

Proposition 4.1. For arbitrary € > 0 the function ¢ in (3.4) is continuously differen-
tiable in each point u = (z,y) € U and its U-gradient V¥ (g, u) is continuous on the set
U and has the form

Vi0p(e,u) = Vo F(e,z,y, 2(,u)).

The proof follows immediately from Theorem 2.9 if we put, for fixed € > 0,
V:=2Z,V:=2Z m(u):=min{-F (¢,z,y,2) : z € Z}

and take into account that m(u) = —max{F(e,z,y,2): 2 € Z} = —p(e, u).

Remark 4.2. If the gradient V, F(z,y, %) is locally Lipschitz w.r.t. {z,y} on the
whole space X x Y x Z, then Theorem 2.9 ensures that, for fixed ¢ > 0, the U-gradient
VY p(e,u) is locally Lipschitz on the set .

Proposition 4.3. For arbitrary € > 0 the function v in (3.5) is continuously differen-
tiable in each point (x,z) € X X Z. If f is a generalized maz-function and f(e,z) has the
form (3.7), then the gradient of ¢ w.r.t. {x,z} has the form

V{w,z}dj(‘sa €T, Z) = {Vﬂ/f(ﬁa Z, Z): Vz’lﬁ(é‘, Z, Z)}

with

Voib(e, 2, 2) = Voh(z,2) —e™! (Z hi(z,2)Vihs(z,2) + Z hs(x, 2)Vhs(x, z)) ;

SEST SESy

V.(e,x,2) = =2z + V,h(x, z)

—e7t (Z hi(z,2)V hs(z, 2) + Z hs(z,2)V  hs(z, z)) :

SEST SESa

The proof follows immediately from formula (3.8).
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Theorem 4.4. For arbitrary € > 0 the function f in (3.1) is continuously differentiable
w.r.t. x on the set G and its gradient w.r.t. x has the form

V.fle,z) =V (e,2,y(e,x)) = V. F (e,2,y(e,x), 2(g,x,y(g, x))) . (4.1)

Proof. With ¥(u,v) = —F(e,2,y,2) = —F(¢,u,v) we obtain from Theorem 2.9 that
there exists the gradient

V40(e,u) = V,F (e, u, 2(,u)).
In particular,
Vi0(e,1,y) = V. Fl(g,2,y, 2(c,2,9)) (4.2)

holds true. Again, applying Theorem 2.9 to the function 9(u,v) = ¢(e,z,y) with u =
r, v=y, V=), and m(u) = f(e,z), we get

Vofle,z) = Vap(e, 2, y(e, ). (4.3)

Thus, the inequalities (4.2) and (4.3) lead to (4.1).

Continuity of V,f(e,z) w.r.t. = on the set G follows from formula (4.1). Continuity of
V4p(e, z,y) w.r.t. z on the set Y = G x Y can be concluded from the continuity of the
operator y(e, x) on the set G and also from the continuity of the operator z(e, z,y) on the
set U. 0

Now, in case of a generalized max-function we obtain also another formula for V, (¢, x).

Theorem 4.5. Let f be a generalized maz-function and f(e,x) be of the form (3.7).
Then, for arbitrary e > 0,x € G, it holds

V.f(e,x) = Vih(x, z(e, 1))

—e 1 (Z h:(x,Z(S,x))vxhs(x,z(gax)) + Z hs(xaZ(Sﬂx))vwhS(‘raz(‘E’m))> :

$ES) SES?

The proof follows from the expression of f in (3.10) and from Proposition (4.2).

Under the continuity, closedness and convexity assumptions and infycy(x,y) = sup.cz
Y(z,z) (= f(x)), with possible no existence of a saddle point for F(z,-,-), we have:
lim._, f(e,z) = f(x). This is more or less standard. In fact, for each z € G, F(e, z,-,-)
has a unique saddle-point on Y x Z and f(e, ) is equal to the saddle value. Existence
results from convex analysis (see [8], Chap. VI, Prop. 2.2), and uniqueness results from
the strict convexity-concavity. Writing the double inequality of saddle-point we deduce
easily that

sup,ez(z, z) < liminf f(e,2) < limsup f(e,z) < inf ¢(x,y).
e—0 yey

e—0

Now, let € > 0 be given and we look for estimates |f(e,z) — f(z)].
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Theorem 4.6. For arbitrary e > 0, x € G, y*(z) € Y*(x), 2*(x) € Z*(x) it holds

fle,2) < f(z) —ellz(e, )1 + elly* (@), (4.4)

fle,2) > f(z) —ell2" (@)1 +elly(e, o)I* (4.5)
Proof. Inequality (4.4) follows from (3.6) and the relations

fle,z) = (e, x,2(e,2)) < F(e,z,y"(2), 2(€,))
= F(z,y"(2), 2(e,7)) — ellz(e, 7)1 + elly" ()|

< max F(z,y" (), 2) —€l|2(e, 2)|* +elly" (@)

—_— —

Due to y*(z) € Y*(x), we get from (3.3)

max F'(z, y*(2), 2) = ¢(z,y*(2)) = f(2).

Analogously, inequality (4.5) follows from (3.6) and the relations

fle,z) = ole,z,y(e,z)) > F(e,z,y(e, ), 2% ())
F(z,y(e, ), 2" (x)) — el|z* (@) []* + elly(e, )|

min F(z,y, 2*(z)) — ell2*(@)|I” +elly (e, 2)I1*

v

With regard to z*(x) € Z*(x),

min F(z,y, 2" (z)) = ¢(z, 2" (z)) = f(x).

yey

O

Recall that, according to (2.7), Z(z), g(z) denote the norm-minimal points of the sets
Z*(x), Y*(x), respectively.

Corollary 4.7. For arbitrary € > 0, x € G the following two-sided estimate is true:
f(@) = ell2@)|* < fle, ) < f@) +ellg(a)] | (4.6)
To prove this result it is sufficient to choose in the inequalities (4.4), (4.5):

y'(z) = §(z) = argmin {[|y||* : y € V*(2) },
2*(z) = Z(z) = argmin {||z]|* : z € Z*(z)} .

Corollary 4.8. For arbitrary € > 0,x € G the following estimate is true:

12(e, 2)|* + [y (e, 2)|* < [|2(2)[1” + [19(=)]* (4.7)
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5. Convergence of the vector functions z(e,z) and y(e, z) for ¢ — +0
First we consider, for fixed x € G, the behavior of the points z(e, z), y(e, z) for £ — +0.
Theorem 5.1. For fired v € G, € — 0 it holds
z(e,z) = 2(z), y(e,z) — (),

where, according to (2.7), 2(x), 4(x) are the normal points of the convex, compact sets
Z*(x) and Y*(z), respectively.
Proof. In view of Corollary 3.5 for ¢ — +0 the relations

dist(z(e, z), 2*(z)) — 0, dist(y(e, z), Y*(x)) = 0

are true. Let Z(¢,z), 7(e, x) are the projections of the points z(e, z), y(¢, z) onto the sets
Z*(x) and Y*(x), respectively. Then, we have

l|z(e,2) — Z(e, z)|| = 0, |ly(e,z) —7(e,z)|| — 0 for e = +0. (5.1)
Hence,
|2(e, 2) |12 + [ly (e, 2) |1 = [|2(e, 2)[|* + [|5(e, 2)|]” + £ (e, @), (5.2)

with &(e,2) — 0 for ¢ — +0 and fixed x € G. With regard to (5.2) and (4.5), we obtain
for each ¢ — +0, x € G that

12(e, 2)II” + 115(e, @)1 + &(e, 2) < [|2(@)I]° + [19(2)]]*. (5-3)
Summing up the inequalities (2.8) and (2.9) with z = Z(e,z), y = §(e, z), we get
,CC) -

12(e, 2)I* + [5(e, 2)I1* > [[2@)]]* + [1[9(@)]]° + [|2(e, 2) — 2(2)|]” + ||, ) — §(=)]*.

(5.4)

For fixed z € G, (5.3) and (5.4) lead to
12(e,2) — 2(2)|]* + ||(e, 2) — 9(2)|]* < —&(e,2) — 0 for & — +0. (5.5)
Now, to finish the proof, we have to use the relations (5.1) and (5.5). O

In order to solve optimization problems with functions of the type (1.1) by means of a
smoothing procedure, sometimes it is important to know under which assumptions the
following convergence happens:

z(ex, z) — 2(x),  yleg, xx) = Y(x) for e, — 40,24 € G,z — . (5.6)
If that would be true, then uniform convergence of
z(e,x2) — 2(x), y(e,z) = g(x) for € — 0 on each compact set G

would be an important conclusion of (5.6). Under additional assumptions on the point-
to-set-mappings Z*(z) and and Y*(x), relation (5.6) turns out to be true. To prove that,
we have to strengthen the statements in the Theorems 3.4 and 5.1.

Let z € G. The normal points Z(x), y(x) are called stable points of the point-to-set-
mappings Z*(z), Y*(x), respectively, if for each sequence {zx} € G, xp — z, there exist
sequences {z} and {yx} such that

2z € Z2%(zy), 2z, — 2(x) and yx € Y*(xk), yp — Y(2).
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Theorem 5.2. Assume that x € G and that the points 2(x), y(x) are stable points of
the sets Z*(x), YV*(x), respectively, w.r.t. the sequence {xy} € G,zy — x. Then, if
xr € G, 1 — x, it holds:

z(ex, Tx) — 2(), y(er, v&) — G(x) for e — +0.
Proof. The statement can be proved by means of the same scheme as in the proof of
Theorem 5.1. Due to Theorem 3.4, we have
diSt(z(‘Sk: xk)a Z*(l‘)) — Oa diSt(y(‘Sk: Il?k;), y*(l')) — 0.

If Z(eg, zx) and §(eg, i) are projections of z(e, zx) and y(ex, 2x) onto the convex, compact
sets Z*(x), Y*(x), respectively, then

||2(ek, mk) — Z(ee, me)|| = 0, |y(ex me) — Flew, )| —= 0. (5.7)
Hence,
[l2(er, 2)I* + |y (er, z)lI” = [|2(er, @) I* + |7 (er, i) [[* + &, with & — 0. (5.8)
From relation (4.5) we obtain that
[12(ek; mr)1* + |y (er, i) [I* < [|2(@e) " + 9(e) [ (5.9)
Due to the assumption made there exist sequences {zx}, {yx} such that
2, € Z*(x1), 2z — 2(x) and y, € V*(x1), yp — §(2).
In view of
[2(@r)|* = min{][2]]* : z € Z"(21)} < [|z]|* = [|2(2)]?
and
19(2)|1* = min {||y[]* - y € Y*(wi) } < |lyel* = [5()]],

one can conclude that

e@) I + () 1* < 2@ + [1§(2)]]* + e, with ne — 0. (5.10)
The relations (5.8)-(5.10) lead to
12(ex, zi) | I* + 15 (er, i) [I* < 2@ + 15(2)]* + (e — &)- (5.11)

Summing up the inequalities (2.8), (2.9) with z := Z(eg, zx) € Z*(2), y := G(ep, k) €
V*(z), we get
|12 (en, i) * + 113 (ek, 2)
> [|2(2)[1? + [|5(@)|* + [|2(ek, xx) — 2@)I1” + |5 (e, zx) = §(2)[[°. (5.12)
Now, the inequalities (5.11), (5.12) ensure that
12(ek, xx) = 2(@)[17 + (|5 (e, z) = §(@)|[* < (9 — &) — 0 (5.13)
and the statement follows from (5.7), (5.13). O

1”

Corollary 5.3. Let H C G be a compact set. Assume that for each x € H, according
to the sequence {xy} € H, zp — x, the vectors zZ(x), y(x) are stable points of the point-
to-set-mappings Z*(-) and Y*(-), respectively. Then, for ¢ — 40, uniform convergence
(w.r.t. © € H) of

z(g,x) = 2(z), y(e,z) — y(x)

18 true.
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6. Estimates of the extremal values of parametric minimax-functions and
their regularizations

Proposition 6.1. Let H C G be a compact set. Then the relations
p(H) :==sup {||2(z)||* : 2 € H} < 400, G(H) :=sup{|[§(z)|]*:z € H} < +o0

are true.

Proof. From the upper semi-continuity of the point-to-set-mappings Z*(-) and Y*(-) on
G it follows that the functions

p(z) := max{[[2||” : 2 € Z*(2)}, q(2) := max{||y|]” : y € V*(2)}
are upper semi-continuous on the set G. Indeed, let z;, x € G, x;, — = and
2 = argmax {|[z]|*: z € Z"(x)}, yp =argmax {||y]|*:y € V*(zk)}.

In view of the compactness of the sets Z*(-) and Y*(-) in the spaces Z and Y, respectively,
these points 2, yx exist. Due to the upper semi-continuity of the maps Z*(-) and Y*(-) on
g, for arbitrary p > 0, starting with some number & = k(p), the points zx, y are included
in some p-neighborhood of the compact sets Z*(z) and Y*(z), respectively. Hence, taking
into account that p > 0 can be chosen arbitrarily small, we obtain

limy0p (21) = limpooo||26||? < p(2), limgse0q (7)) = limygeo| | * < g(2).
From the inequalities
12(@)|? < p(z), |§(=)]]* < q(z)

and the boundedness from above of an upper semi-continuous function on an arbitrary
compact set it follows that

B(H) < +00, G(H) < +oo.

Proposition 6.2. Let H C G be a compact set. Then the two-sided estimate
f@)—=pH)e < fle,2) < f(z) +¢(H)e VreH,e>0

18 true.

The proof immediately follows from Corollary 4.7 and Proposition 6.1.

Corollary 6.3. For arbitrary compact set H C G and arbitrary € > 0 the following
estimate holds:

sup | f(e, ) — f(x)| < e max{p(H), ¢(H)},

TEH

i.e., on arbitrary compact set H C G, for ¢ — +0, the estimate

|f(e;z) = f(z)] £ O(e)
holds uniformly (w.r.t. © € H).
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Now, we consider Problem (1.1). Denote
fe=f{f(z):z € Q}
and assume that f, > —oc.

In the sequel we give a two-sided estimate for the exactness of the approximate solution
of Problem (1.1), calculated by means of the corresponding regularization of the function

f.
Theorem 6.4. Assume that for some T € Q the set H = {z € Q : f(z) < f(Z)} is
bounded in X. Then the estimates

min{f(g,z):x € H} —§(H)e < f. <min{f(e,z) :x € H} + p(H)e (6.1)
are true.

Proof. Note that the closeness of H follows from the closeness of ) and the continuity
of f on G, hence, H is compact. Obviously, f, = min{f(z) : © € H}. Due to Proposition
6.2, we obtain that

fe = p(H)e <min{f(e,z) : x € H} < fu + ¢(H)e,
proving inequality (6.1). O

Now, let 2 € Q, H ={z€Q: f(z)< f(Z)}, € > 0, § > 0. Finally, we consider the
regularized problem
fole) =min{f(e,z) : z € H} (6.2)
and denote by
M;(e) :=={z e H: f(e,z) < f.(e) + 6}
the d-optimal set of the regularized function f.
If there is known some point of M;(¢), then the right-hand side of (6.1) can be improved.

Theorem 6.5. For some T € Q) let the set H={z € Q: f(x) < f(Z)} be bounded in X
and for some € >0, 6 > 0 let z5(c) € Ms(e). Then

fle,zs(e)) — 6 — a(H)e < fu < f (e, 25(e)) +ellz(zs () II” — elly(e, zs(@))I*  (6.3)

18 true.

Proof. The left-hand side of estimate (6.3) immediately follows from the left-hand side
of inequality (6.1). From (4.3) and Theorem 5.1 we get

fle,zs(e)) > flzs(e)) —ellz(@s(e)|]” +elly(e, zs(e))*
> min{f(z) : v € H} —ell2(zs(e))|I” + elly(e, z5(e)) I
fo —ellz(@s(e)I]” +elly(e, 25(e)) |-
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